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A major goal of linguistics and cognitive science is to understand
what class of learning systems can acquire natural language.
Until recently, the computational requirements of language have
been used to argue that learning is impossible without a highly
constrained hypothesis space. Here, we describe a learning system
that is maximally unconstrained, operating over the space of all
computations, and is able to acquire many of the key structures
present in natural language from positive evidence alone. We
demonstrate this by providing the same learning model with data
from 74 distinct formal languages which have been argued to
capture key features of language, have been studied in experi-
mental work, or come from an interesting complexity class. The
model is able to successfully induce the latent system generating
the observed strings from small amounts of evidence in almost all
cases, including for regular (e.g., an, (ab)n, and {a, b}+), context-
free (e.g., anbn, anbn+m, and xxR), and context-sensitive (e.g.,
anbncn, anbmcndm, and xx) languages, as well as for many lan-
guages studied in learning experiments. These results show that
relatively small amounts of positive evidence can support learning
of rich classes of generative computations over structures. The
model provides an idealized learning setup upon which additional
cognitive constraints and biases can be formalized.

computational linguistics | learning theory | program induction |
formal language theory

One of the central debates in language acquisition is whether
the structures of natural language are genetically specified

or learned through experience. A key tool in this debate has
been the use of formal mathematical analysis to determine what
learners could or could not logically induce from the type of data
they observe. Perhaps the most influential formal result is Gold’s
Theorem (1), which implies that there are classes of even regular
languages (2) which contain members that cannot be identified
by learners who rely on positive examples alone. Gold’s result has
been interpreted to mean that human children could not succeed
in learning natural language without substantially informative in-
nate constraints, following arguments from Chomsky (3). Gold’s
result gave rise to detailed formal theories of learning under
similar assumptions (4–8). Learnability proofs for certain classes
of grammars have also been formulated (9–16), as well as closely
related theories of induction in computer science (17–22).

However, Gold’s negative learnability result is not widely ac-
cepted as relevant to human language (13, 23, 24). Gold relied
on a worst-case analysis, which assumes that a parent would in-
tentionally mislead a child through an unbounded number of in-
correct hypotheses if they can. This made analysis tractable using
his formal tools, but, critically, was disconnected from naturalistic
parent–child interactions. In situations where some of Gold’s
assumptions are altered, learnability can be established under
less antagonistic assumptions (22, 25–27). A striking, recent re-
sult shows that languages can be learned using positive evidence
alone, out of the maximally unconstrained space of all possible
computations (28). This more optimistic analysis involves several
critically different assumptions. For one, it assumes that sen-
tences are sampled from a distribution, meaning that it uses an
average-case analysis rather than worst case; it also quantifies
learning through how well a learner could predict future strings.

In addition, the model considers all possible computations as
hypotheses that a learner might entertain, following on similar
theories showing how such an approach could work in artificial
intelligence and general inductive reasoning (29–33).

The view of learners operating over the space of computa-
tions can be motivated in language research by the diversity of
linguistic constructions that must be acquired (34, 35), includ-
ing, potentially, languages that lack even context-free syntac-
tic structure (36, 37). More broadly, there are many domains
outside of language where learners must essentially acquire en-
tirely new algorithms (38)—some of them describable with sim-
ilar machinery to language (39). It is ordinary for children to
come to know new computational processes in learning tasks
like driving, cooking, programming, or playing games. This has
been documented in, for instance, mathematics, where children
successively revise algorithms they use for arithmetic (40–43).
Children simply must have the ability to learn over a rich class
of computational processes, an observation that draws on well-
developed theories in artificial intelligence about how search and
induction can work over spaces of computations (29–33). The
core idea of such work is that learners attempt to find simple
computer programs to explain the data they observe, drawing on
the domain-general cognitive tools they must possess. Learners,
in this view, are much like scientists (44) who look at data and
construct computational theories in order to explain the patterns
that they observe; indeed, the approach builds on similar efforts
to automate scientific discovery (45–47).

While the above work addresses learnability as a mathematical
question, the central ideas remain relatively unconnected to
contemporary ideas about mental representations. First, most
theoretical analyses do not provide working implementations.
Second, the representations prior analyses have used tended to
focus on Turing machines or treated languages as abstract sets,
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but philosophers, cognitive scientists, and linguists have made
a convincing case that compositional representations are natu-
ral for capturing human-like thinking (48–52) and computation
itself (53–56). Indeed, theories of inductive inference centered
on compositionality provide good fits to human learning curves
across domains (57–61). Third, prior work has not targeted many
of the specific computations that are thought to be important for
natural language. Here, we address these problems by providing
a learning model that uses components which have been indepen-
dently argued for in concept learning experiments. We show how
a compositional model can learn key generative pieces of natural
language, including many that motivated classic theories of lin-
guistic representation. We begin by considering simple linguistic
patterns that inaugurated both modern linguistics and modern
computer science.

Our starting point—and the inspiration for our title—is Chom-
sky’s “Three models for the description of language” (62) which
noted that many dependencies in natural language could be
captured abstractly with distinct kinds of computational devices
(63–65). Some devices require a finite amount of memory (e.g.,
finite-state machines), some require an unbounded amount
of memory in a stack, and some require even more powerful
systems. Chomsky’s work, in collaboration with Marcel-Paul
Schützenberger, charted out different kinds of string sets and
classified what classes of devices could compute each. Following
this literature, we use the term “formal language” to refer to a set
of strings, typically one that is generated according to a simple
computational pattern.

For example, the tail recursion allowed by English adjectives
(“The adorable, friendly, young monkey”) mirrors the structure
in the simple formal language a∗ = {ε, a, aa, aaa, . . .}, where
zero (ε) or more successive adjectives (a) could be concatenated
into a valid substring of English. In turn, this can be captured
with a computational device with one internal state, which may
optionally emit an a and return to the same state. Dependencies
between determiner–noun pairs (“Bring me two boats, three
accordions, and six babies.”) mirrors the formal language
(ab)+ where each determiner (a) requires a correspond-
ing noun (b). The formal language {anbn : n = 1, 2, . . .}=
{ab, aabb, aaabbb, . . .} might characterize the key dependencies
in English “if–then” relationships. Specifically, every “if” (an
“a”) must be followed by a “then” (a “b”), as in “If Mary
cried then John was sad then John cares about Mary” (63).*
This formal language cannot be generated or recognized by a
computational device with a finite number of states but can be
captured by a context-free grammar. Although the applicability
of such examples to natural language is often contested (66),
the study of such formal languages has provided a fertile ground
for linguistics (67) to characterize what computations underlie
human language (2, 39, 62, 63). A considerable amount of effort
has gone toward understanding whether natural language can be
captured entirely by context-free grammars or other systems (66,
68–70), or how non–context-free aspects may be handled (71),
although many arguments that have been made are inadequate
technically (72).

Here, we study a variety of formal languages which pose many
of the key challenges that have attracted attention in learning the-
ory, including the underdetermination of grammars by evidence,
the “subset problem” of how learners appropriately constrain
their generalizations, and the puzzle of how learners come to
know productive generative processes. As we show, these can

*Note here, and elsewhere, that the connection is analogous rather than a direct
formalization of English grammar, since “If if then then” is not a valid English sentence.
We focus on examples like anbn instead of more complex formal languages that
directly capture intervening material in order to simplify presentation. Note that closure
properties of formal languages under, for example, intersection and homomorphism
likely mean that simple formal languages are relevant to richer sets of strings.

all be resolved by formalizing proper statistical inference over a
space of computations. We apply our model to a variety of test
cases spanning simple formal languages, versions of stimuli from
experimental work, and a simple English grammar.

Formal Model
Following a growing body of work in compositional Bayesian
models (38, 58, 59, 61, 73–88), we assume that the representations
learners must discover are built by combining primitives in a
language of thought (LOT) (49) to form the mental analog of
programs. In this setup, learners observe data (here, strings) and
compare hypotheses that are built out of primitives, as a way to
explain the data, much as scientists might consider possible physi-
cal laws which are compositions of mathematical operations (e.g.,
F =G ·m1 ·m2/r

2). The specific primitives that we assume are
motivated by minimalist functional programming languages like
Scheme (54) which try to build in as little as is practical while
remaining able to express all computations.

Table 1 lists the types of operations we consider, many of which
are meant to be domain-general primitives that can be—and have
been—deployed in other areas of concept learning. The first kind
are list/string operations, pair, first, and rest, which build
and manipulate sequences of characters from the alphabet. The
functions pair and append are similar in spirit to “merge” in
minimalist linguistics (89, 90), except they come with none of
the associated machinery that is required in those theories; here,
they only concatenate. The function insert puts one string in the
middle of another (e.g., insert(‘abcd ′, ‘efg ′) yields ‘abefgcd ′),
which allows concise construction of long-range dependencies

Table 1. Assumed primitive functions

Primitive Description

Functions on lists (strings)

pair(L, C) Concatenates character C onto list L
first(L) Return the first character of L
rest(L) Return everything except the first character

of L
insert(X, Y) Insert list X into the middle of Y
append(X, Y) Append lists X and Y

Logical functions

flip(p) Returns true with probability p
equals(X, Y) True if string X is the same string as Y
empty(X) True if string X is empty; otherwise, false
if(B, X, Y) Return X if B else return Y (X and Y may be

lists, sets, or probabilities)
and, or, not Standard Boolean connectives (with short cir-

cuit evaluation)

Set functions

Σ The set of alphabet symbols
{s} A set consisting of a single string
union(set, set) Union of twos sets
setminus(set, s) Remove a string from a set
sample(set) Sample from s of strings

Strings and characters

ε Empty string symbol
x The argument to the function
‘a’, ‘b’, ‘c’, . . . Alphabet characters (language specific)

Function calls

Fi(z), Fmi(z) Calls factor Fi with argument z; the Fmi ver-
sion memoizes probabilistic choices (see text)

The space of hypotheses consists of all compositions of these functions
that respect the input and output types.
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because it permits dependent elements to be generated con-
secutively (e.g., abcd) and then displaced (e.g., ab . . . cd). The
assumed Boolean operators include common logical connectives
and conditionals. Both flip and sample are notable in that they
are stochastic, allowing nondeterminism in the program (91, 92),
an ability that is possibly itself useful for organisms with finite
memory (93). We note that the classical Chomsky hierarchy no
longer directly applies to formal languages in this probabilistic
setting (94, 95). Finally, we allow a computation to call another
function F1, F2, etc. (potentially itself). This call may be memo-
ized, which means that it remembers any stochastic choices that
were made on a previous call with the same arguments (91).
This use of recursion is meant to be domain general, as humans
deal with recursion outside of syntax, like pragmatics (96), and
even outside language (97–99). We note the similarity between
these primitives and others used in modeling human conceptual
systems (59, 61, 73, 74, 76, 78, 91, 100).

Valid compositions of primitives—those that respect the input
and output types of each function—define an infinite set of
hypotheses for learners to consider. For instance, the hypothesis

F0(x ) := pair(if(flip(1/3), ε, F0(ε)), a)

concatenates (pairs) an “a” with either an empty string (ε)
or the outcome of calling itself with an empty string as an
argument, F0(ε). When called with the default argument of
an empty string (i.e., x = ε), F0 generates the set of strings
{a, aa, aaa, aaaa, . . .}= {an : n = 1, 2, 3, . . .}. Importantly,
this function also gives a probability distribution over strings
through its use of flip. Here, the distribution is geometric,
meaning that the length of each output is determined by the
number of times a 1/3-weighted coin can be flipped before
getting heads, giving P(an) = (1− 1

3
)n−1 · 1/3.

If we define H to be the space of all functions that can be con-
structed by composing the operations in Table 1 and define a vari-
able D to be a multiset of observed strings, an idealized learner
will compute a posterior distribution on hypotheses P(H |D) via
Bayes rule P(H |D)∝ P(H ) · P(D | H ). Here, P(H ) is given
by a probabilistic context-free grammar (PFG) on the operations
in Table 1, which effectively penalizes complexity. Thus, P(H )
implements a simplicity preference just as in induction of Tur-
ing machines (28–31), although the question of precisely which
simplicity measure is psychologically accurate is an empirical one
(63), and one which has been examined in closely related domains
(59). P(D | H ) is a likelihood specifying how likely the observed
strings are to be generated by H, as discussed in the next section.

Technical Innovations
Our implementation includes several important technical inno-
vations that allow it to be scaled to interesting classes of formal
languages. First, the choice of likelihood function P(D | H ) is
chosen to allow incremental improvements to hypotheses. In its
simplest form, we might just run the program H and use its
output set of strings. The problem with this is that it does not
assign any partial credit to hypotheses which get most pieces of a
string correct. For instance, if a hypothesis generates the strings
{a, aa, aaa, . . .}, this likelihood would assign zero probability to
observed data {ab, aab, aaab, . . .} even though most characters
in most strings were produced. To address this, we apply a “prefix
likelihood” which assumes a noise process that may delete and
then append on the end of a string in a stochastic manner where
each deletion or generation happens with a fixed probability.
Thus, if a hypothesis generates aaa, it will assign aaab a nonzero
likelihood equal to the probability of appending one b.

Second, we allow the possibility that hypotheses involve multi-
ple LOT expressions (101), here called “factors” F0, F1, F2, etc.
For example, a hypothesis might be

F0(x ) := pair(if(flip(1/3), ε, F0(ε)), a).

F1(x ) := if(empty(x ),

ε,

append(pair(ε, first(x )), pair(F1(rest(x )), b))).

F2(x ) := F1(F0(ε))

The first function, F0, is the an formal language shown above.
The second function, F1, takes an argument x, and recursively
concatenates the first element of x with a recursive call to itself,
followed by a b. Because this is recursive on a shortening string
(rest(x )), one b will be added for each element of x. For instance,
if we called F2 on the string xyz, it would return the string
xyzbbb. Finally, F2 puts F0 and F1 together. Thus, the strings
an generated by F0 will be passed to F1, which will attach a
single b for each a. This therefore generates strings of the form
anbn (although it is not the simplest way). Allowing for multiple
factors, in conjunction with the likelihood, allows for complex
computations to be learned via individual pieces which are more
manageable.

As described above, the expressions we evaluate may be non-
deterministic. This provides a challenge for evaluating the set of
strings that a given expression generates. Our implementation
handles randomness by following multiple possible execution
paths when a random primitive is encountered, enumerating
the possible paths greedily in order of their probability, an idea
drawing on techniques for evaluation of probabilistic programs
more generally (102). We then compute the overall distribution
of output strings, marginalizing approximately over execution
paths. We use stochastic sampling methods to find high posterior
probability hypotheses (see Methods). To do this, we developed
a C++ library called Fleet (distributed under the GNU Public
License v3 at https://github.com/piantado/Fleet). Notably, the
Fleet implementation includes examples in other domains out-
side language, such as number learning (73) and logical rule
induction (58), demonstrating the generality of the approach.

Results
We first study the model’s ability to learn probabilistic versions
of several formal languages which have been motivated by the
structures present in natural language. We choose the targets
of learning primarily following examples from reviews and the-
oretical pieces (67, 72, 103), while adding a number of other
interesting examples. Our intention is not to engage the debate
about which examples correspond to natural language; rather, we
use these to motivate the range of formal systems that a learner is
likely able to acquire. In all cases, we provide the learning model
with positive examples only of the formal language. Moreover,
for all formal languages and sections below, the inferential setup
is identical between these languages—the only things that change
are the data provided, the alphabet of symbols the model is
expected to work over, and the amount of run time.

We visualize results by approximating the posterior model-
average precision and recall for the most likely strings generated
by each hypothesis (see Methods). When precision is high but
recall is low, the model undergeneralizes (the strings it generates
are all in the target formal language, but it does not capture
all of them). Conversely, when recall is high and precision is
low, the model overgeneralizes. When precision and recall are
both 1.0, that means that the model has successfully learned the
target formal language up to the approximation used to compute
precision and recall. We also include a gray “Memorized (F)”
line corresponding to what F score would be achieved by simply
memorizing the observed data.

Learning Simple Formal Languages. Fig. 1 first shows learning
curves for 56 different simple formal languages. Each plot shows
the estimated precision and recall (y axis) as a function of the
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Fig. 1. Learning curves for the model, provided with data from each target formal language. Precision (blue), Recall (green), and F score (red) are for the
learning model, while Memorized (F) (gray) gives the F score for a model that only memorized the training data. Here, we have adopted the convention
that Σ = {a, b}, n, m ∈ N, Count(v, x) counts the number of times the character v occurs in string x, and |w| is the number of characters in a string w. The
x axis is the number of sampled tokens from the target formal language (note the logarithmic scale).

amount of data provided to the model (x axis) (see Methods).
In general, determining equivalence of hypotheses is uncom-
putable, so our precision and recall measures provide a quantifi-
cation of how well the learner has acquired the target language,
but we caution that, in all our figures, the results must be inter-
preted with care because these values are approximate.
The model is able to learn many types of formal languages. Fig. 1
shows that the implemented model is able to learn programs
for formal languages that vary in computational complexity,
including regular (e.g., an , (ab)n , and Σ+), context-free (e.g.,
anbn , anbn+m , and anb2n), and context-sensitive (e.g., anbncn ,
anbnc2n , and anbn+1cn+2). It succeeds on the Dyck language,
consisting of balanced sequences of parentheses—valid parse
trees—and the “mirror” language xxR. Both are context-free,
and versions of them have been examined in recent experimental
work (104, 105). The model’s success across such diverse formal
languages shows that techniques for program induction can work
across levels of computational complexity.

Researchers have also explored formal languages that can
be captured with other formalisms, including linear indexed
grammars (106), tree-adjoining grammars (107) or combinatory
categorial grammars (50). Formal languages relevant to these
additional classes are learnable, such as anbncndn . Several
other interesting examples are also shown (GoldenMean,
Count(a, x )≥ 2, Count(a, x ) is even, a+ba+, (a∗)(ba∗)+,
(a+)(ba+)+), including those which distinguish other classes
(103).† The formal language anbmanbmccc is an example from
ref. 64; the ChineseNumeral language {abn1abn2 . . . abnk : ni >
nn+1} has been discussed previously as a model of numerals
in Chinese (109, 110) and a motivating example for range
concatenation grammars. This formal language is only learned

†The GoldenMean language—strings over Σ = {a, b} with no two adjacent as—is a
classic example in symbolic dynamics. It contains a Fibonacci number of strings of each
length and has a symbolic dynamic entropy equaling the log of the Golden Mean (108).
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approximately. The model learns anbmcndm , which was moti-
vated by crossed-serial dependencies in natural language (69,
111–113). The formal language xx = {xx : x ∈ Σ+} is motivated
by “respectively” examples (114, 115) where lists must be paired
up 1–1, as in “Bob, Pietro, and Johnny are a guitarist, accor-
dionist, and troubadour, respectively” as well as examples from
Mohawk’s use of noun stems in verbs (116). Another interesting
example is the Count language {ab, ababb, ababbabbb, . . .},
which shows that other computations—perhaps unlike those
needed in natural language—can be inferred in the same setup.
The hypotheses the model constructs reflect importantly different
underlying processes. Examination of the specific hypotheses
that the model constructs shows that it develops a generative
model of the data, rather than simply memorizing patterns it
sees. To illustrate a few examples, the model learns to construct a
system equivalent to a context-free grammar when given strings
from anbn ,

F0(x ) := append(pair(ε, a), pair(if(flip(1/3), x , F0(ε)), b)).

This puts an a at the start of a string, puts a b at the end,
and flips a coin for whether to add a recursive call in between
the two. Not only does this generate the right set of strings
{ab, aabb, aaabbb, . . .}, it does so with the correct probabilities.
Moreover, following the trace of recursive calls to F0 in gener-
ating a string reveals that the execution path of this program is
tantamount to a parse tree,

[a b], [a [a b] b], [a [a [a b] b] b], . . . . [1]

In cases like this, the learner acquires a structure matching what
a grammar would generate, although note that, in general, our
evaluation metric evaluates only the generated string set, not its
latent structure. The model discovers a clever and nonobvious
way to express anbncn :

F0(x ) := append(pair(ε, a), pair(if(flip(1/3), pair(x , b),

Fm0(pair(x , b))), c)).

SI Appendix contains listings of the top hypotheses found at the
end of learning for each of the languages tested, as well as
the observed number of data tokens. In most cases, the best
hypotheses correspond to ones that can be seen to correctly
compute each language, or come very close, showing that the
model is genuinely discovering appropriate generative processes.
Learning takes little data, and the model does more than mem-
orize. Note that, in most cases, the amount of data required
for learning to succeed is surprisingly small—often within less
than 10 sentence tokens sampled from the target language. This
accords with the small estimates of the total information required
for syntax (117) and highlights that, even though the hypothesis
space is large, that doesn’t mean that huge amounts of data will
be required. Intuitively, since each observed string is unlikely
under most hypotheses, only a few strings are enough to reduce
the set of likely hypotheses to a manageable number. Moreover,
in most cases where the model is able to learn, it learns much
faster than a model which simply memorized the data, as shown
by the model F score (red) generally being above the memorized
F score (gray). For example, the model acquires a nearly perfect
F score on anbncn after about 10 tokens, but it takes around
105 tokens for memorization to achieve a similar level. We note
that the slow speed of memorization results from how long it
takes to sample the top 25 strings under the assumed distribution
on string lengths. This comparison highlights that the model
generalizes far beyond the data it has seen.

The model eagerly generalizes finite data to infinite string sets.
An interesting comparison can be made between the formal
language an and a1,2,3 = {a, aa, aaa}. The latter is a subset of
the former, but it has a finite cardinality. One of the most striking
properties of natural language is that English grammar seems to
permit arbitrarily long sentences (cf. ref. 118). This fact might be
considered to be a core aspect of our innate linguistic endowment
(119, 120) or a consequence of evolving a communication system
with many signals (121). Alternatively, learners might even con-
sider as statistical hypotheses that language was finite or infinite,
as suggested by the purportedly finite languages in existence like
Pirahã (36, 37). It might seem that there could be no data to show
a learner that their language was infinite because that hypothesis
necessarily goes beyond what has been observed. Indeed, infinite
generalization is contrary to subset-principle accounts (6, 122–
124) that posit learners make only the narrowest generalization
possible from data (cf. refs. 125 and 126). Here, however, the
issue comes down to whether finite or infinite languages are
easier to express. The model shows that an is easier to learn than
a1,2,3 or a1,2,3,4, and this is because the infinite language has
a simpler description, matching prior theoretical analysis (127).
The model’s success in learning infinitely productive generative
systems of rules can be contrasted with claims in generative
linguistic textbooks. For instance, one states that “a productive
system like the rules of Language probably could not be learned
or acquired. Infinite systems are in principle, given certain as-
sumptions, both unlearnable and unacquirable” (128).

We note that all of the learning results use data which are
sampled from the target formal language, typically using geomet-
rically distributed string lengths. In principle, however, this kind
of model allows us to examine how many—or which—individual
data points at different embedding depths license learners to
infer that the language is infinite. Detailed investigation of these
kinds of learning patterns should help to refine debates about the
possible role of rare data in natural language acquisition, as even
a few sentences can lead to unbounded productivity.
Not all formal languages are easily learned, even though the
model is Turing complete. Finally, it is often argued that models
which have a capacity to learn any formal language are inappro-
priate for human language because humans appear unwilling to
learn some patterns. But, even for unconstrained models like
this one, the limitations of inference, the strength of priors,
and the informativity of data make some languages effectively
unlearnable. For instance, this model has difficulty with the Bach
3 formal language, which consists of all strings in {a, b, c}+ with
an equal number of as, bs, and cs (129). This language might
be more easily learnable with other operations like “scrambling”
(130) but is difficult to express with our assumed primitives. The
formal language x |x | isn’t learned, and others like a2n can be
learned only approximately even with large amounts of data.
Which languages are difficult to learn is determined by a subtle
combination of the available primitives, the assumed inferential
biases, and the way in which the data distinguish close alterna-
tives.

A related consideration in linguistics is whether learning mod-
els can acquire patterns which are not typologically attested. Of
course, any model like this that operates over an infinite hypoth-
esis space must acquire unattested languages, since there are
only finitely many attested languages. Importantly, however, we
do not take the model as making typological predictions, mainly
because there are many other pressures that factor into the form
of languages beyond structural biases, including considerations
of communicative usefulness (131, 132). To illustrate, the formal
language computed by if(flip(), a, b) is high probability in the
prior (since it is short) and would be easy for the model to learn.
But this language only contains two symbols and therefore cannot
be used to communicate much information. The model does
not predict that such small languages with just two sentences
should exist in the natural sample of languages. Instead, it claims
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Fig. 2. Learning curves for the model when run on examples from artificial language learning, including the Finite State grammar from Reber (149), a
version of word segmentation motivated by Saffran et al. (134), “ABA” and “ABB” grammars from Marcus et al. (139), context-free grammars from Newport
and coworkers (141, 146), a grammar from Morgan et al. (142), a finite set of strings consisting of all valid English words with “m,” “a,” and” n” (e.g.,
“man, am, an, a, mam”), a finite state machine for English auxiliaries from Berwick and Pilato (150), the QAXB grammar from Reeder et al. (154), a grammar
modified from Hudson Kam and Newport (219), a finite language from Braine (147), a version of lexical learning from ref. 190, and string sets analogous to
Gómez (144).

that people could learn a two-sentence formal language if given
enough input consistent with it.
Connections to Artificial Language Learning. We next study simpli-
fied versions of languages that have been examined in artificial
language learning studies. Experimental work has characterized
specific biases and limitations in real biological learners, and it is
not our intention to show how these can be built into the model.
Instead, our goal is to articulate a coherent computational-level
(133) framework for learning onto which one can later add
specific limitations and abilities documented in empirical studies.

One of the most well-known artificial language paradigms,
by Saffran et al. (134, 135), examines the ability of adults and
children to segment a continuous speech stream into words. We
provided the learning model with data modeled after ref. 134,
with the primary change that the distribution of string lengths
was geometric. This was necessary in order to avoid having to
deal with hypotheses that generate infinite sequences (which are
possible, although more challenging technically), and also may
better match the observation that utterance boundaries provide
an important cue in segmentation (136). Results are shown in
Fig. 2 and illustrate that the model is able to create representa-
tions of the regularities in Saffran et al.’s stimuli. Notably, even
though the model, like people, is provided only with an unseg-
mented stream of syllables, it is able to construct the appropriate
recursive calls to generate these syllables as a stream of words.
For instance, it learns to generate a word “tapiro” by constructing
an internal structure pair(pair(pair(ε, ta), pi), ro). The model
succeeds even though it is not told to search for words, nor is
it given special cues like transitional probabilities. Words are
learned simply as an efficient way of statistically “compressing”
the observed data, in line with, for example, ref. 137. Such success
shows how processes like segmentation, lexical learning, and
syntactic category learning may all fall under the same umbrella
(138).

Marcus et al. (139) studied infants’ ability to learn abstract
variables in the form of languages that followed an “ABA” pattern
(e.g., do–re-do) vs. an “ABB” pattern (e.g., do–re-re). The rele-
vant feature of these languages is that “A” and “B” are variables
which get realized as specific syllables. Infants’ success in learning
these patterns suggests that the role of variables may be more
broadly central to cognition (78, 140). Fig. 2 shows that the
learning model is capable of learning these patterns by using
the appropriate combination of function calls and variables. The
representation learned in this case is

F0(x ) :=append(append(sample(Σ), x ), x ).

F1(x ) :=Fm0(sample(Σ)).

This hypothesis explicitly captures the ABB pattern in its struc-
ture.‡

“Morgan & Newport” (141) follows simple phrase structure
grammar in Fig. 3, and has been examined in several empirical
studies (142, 143). In this grammar, elements in parentheses are
optional. “Morgan, Meier, & Newport” is a version from ref. 142
with “function words” (o, a, u, i) that mark the syntactic grouping
and speed learning. Fig. 2 shows that both versions of the lan-
guage are learnable with very little data (∼ 100 tokens), although
note that, despite being presented as grammars, these are finite
languages and are not learned faster than memorization. Work
by Gómez (144) and Gómez and Maye (145) has examined lan-
guages of the form aXb where the number of possible X elements
varied. In Fig. 2, several “Gómez” curves are shown, correspond-
ing to languages with varying cardinality of 2, 6, and 12. As this
makes clear, these languages are learnable; similarly, the model
is also able to learn the nonadjacent dependencies studied by
Newport and Aslin (146), consisting of sentences of the form
{bXt , gXd , pXr , kXu, lXi} where X ranges over {1, 2, 3, 4}. The
model has some difficulty learning the simple finite grammar
from Braine (147, 148) that mimicked some properties of serial
order and phrase structure rules.

Fig. 2 also shows learning curves for finite state languages
examined by Reber (149) and Berwick and Pilato (150), which
are described in Fig. 3. These languages are interesting, in part,
because they are fairly complex in terms of description length, yet
are simple—finite state—in computational complexity. Reber’s
was constructed to provide a learnable but nontrivial set of
strings, and both it and similar languages have been modeled with
neural networks (151, 152), as well as models based on chunking
(153). Berwick and Pilato’s captures the English auxiliary system,
and the model can only approximate it, likely due to the complex-
ity of this language and the model’s limited inference scheme.

Reeder et al. (154, table 2) is an interesting case where some
strings are held out from the language (and the human training).
Learners and the model are given a “QAXB” pattern and then
tested on unseen strings. This means that, for the model to per-
form well, it should exhibit a high recall (correctly reproducing
the test strings) and a lower precision (generating strings outside
of the training set). It does this, and generates, for instance, many
strings like “scb” and “axB” which are not in the training set but
do fit the intended pattern of the training data.

‡We did not require A �= B in this implementation.
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Fig. 3. Finite state machines from Reber (149) (Left) and Berwick and Pilato (150) (Center). Words in this latter machine were converted to single characters
to simplify the learning model. Grammars are from Morgan and Newport (141) and Morgan et al. (142) (Right).

Overall, these results demonstrate that the model is capable
of learning many of the patterns examined in experimental work.
We expect that the model will not provide a tight fit to the details
of human behavior in such tasks without incorporating additional
cognitive considerations, including memory limits and perceptual
salience.

Toward Natural Language Grammars. The problem faced in natural
syntax is not just a series of unrelated, simple languages but that
of learning a language that combines many patterns simultane-
ously. We next examine an English-like grammar that one might
find in an introductory linguistic textbook,

S → NP VP

NP → n | d n | d AP n | NP PP

AP → a | a AP

VP → v | v NP | v t S | VP PP

PP → p NP

. [2]

This target grammar includes several syntactic structures of En-
glish, including multiple expansions of a nonterminal type (e.g.,
NP), tail recursion (in AP), transitive and intransitive verbs (in
VP), sentential embedding (in VP), and prepositional phrases
with embedded noun phrases. For instance, one string the model
might observe is “d a n p d a n v t n v,” which corresponds to
the part-of-speech sequence for a sentence like “The delightful
accordionist by the old cafe knew that music heals.” As with
all datasets, the model is not told there is a (e.g., context-free)
grammar to learn, but is only told to construct something out of
its primitives to explain the observed strings.

The model’s learning curve for this grammar is shown in Fig. 4.
The model is able to learn a program that closely approximates
the target grammar after seeing a few hundred sampled string
tokens, showing that the learning model is capable of rapidly
learning the required patterns.

Fig. 5 visualizes the space of generalizations after observing
200 tokens. Each row shows a different hypothesis, and each
column is a string, with cells colored according to the log proba-
bility that hypothesis assigns to each string. This figure shows only
strings which are not seen in the data and therefore provides a
view of how the model generalizes to rare data, a key considera-
tion in many linguistic theories. First, the space of generalizations
is complicated: The space of high probability strings does not
vary smoothly with hypotheses. Sometimes, hypotheses which are
close in posterior probability exhibit very subtly different patterns
of generalization; sometimes, hypotheses which agree for many
strings differ in other less frequent strings. This shows that the
task of selecting exactly a parent’s grammar must be difficult,
because top hypotheses on this dataset are only distinguished
on rare strings. Additionally, because the space of computations
is highly structured, learners will exhibit nontrivial beliefs about
constructions they have never seen—even in the absence of
language-specific constraints.

Discussion
Although “poverty of the stimulus” arguments are often con-
sidered classic and foundational in linguistic theorizing (3, 155–
159), prior reviews (35, 160–162) and theoretical results (28) have
been devastating to the hypothesis that learners must be highly
constrained in order to ensure that language can be learned.
The model developed here provides a concrete alternative to
pessimism about the power of learning. It acquires generative
systems from relatively small amounts of positive data, working
out of a broad class of computations. Ongoing developments in
program induction models—such as the ability to reuse com-
ponents (101), evaluate parital hypotheses (163), work in con-
tinuous spaces (164), and apply rich toolkits of programming
methods (38)—are likely to help such learning scale.

Learners who operate over relatively unrestricted spaces show
many hallmarks which have traditionally been attributed to uni-
versal grammar (UG), a domain-specific genetic endowment
hypothesized to support language acquisition. Pullum and Scholz
(161) identify and reject a number of common claims about lan-
guage acquisition that have been used to support UG, including
the speed with which children learn, the fact that children acquire
a system that can deal with essentially unbounded sentences,
the fact that their data underdetermine their grammar, and
that different individuals in the same community learn similar
grammars. The model provides an implementation which also
shows such properties—quickly and reliably learning computa-
tions from underdetermined evidence—while operating in the
most unrestricted space possible. Other authors have empha-
sized, in support of UG, that children’s knowledge of language
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Fig. 4. Learning curves for the simplified English grammar (2). Note that
here, precision and recall was computed on the top 100 strings. This lan-
guage is learned to high accuracy considerably faster than memorization.
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Fig. 5. A visualization of the generalizations by the learning model for the simple English grammar, after observing 200 data points. This shows the
posterior probability (greyscale) assigned to strings not observed in the data (columns) by each hypothesis (row). The rows are sorted with the highest
posterior probability at the top, and duplicate rows with identical generalizations patterns have been removed. The pattern of generalizations is complex,
structured (e.g., with correlations apparent between strings), and highly dependent on which hypothesis is selected, even among those with close posterior
probabilities.

goes beyond what they directly observe. The present work high-
lights one sense in which that fact might be unremarkable: Any
learning system that works over a sufficiently rich space of com-
putations will appear to know about strings that have not been
observed. This can be seen in even the simplest case of an , but
the point is most clear for grammars which yield complex patterns
of generalizations.

A huge body of literature has been dedicated to articulating
and critiquing the subset problem of how it is that learners who
use only positive evidence can avoid arriving at an overly general
grammar (122, 125, 159, 165–170). If a learner hypothesizes that
an ungrammatical string is actually grammatical, they will never
receive directly contradictory evidence from positive examples.
One solution to this can be found in the present model’s use of
distributions, ideas which date back to ref. 22 (see ref. 171) and
have a simple basis in probability theory (172): Since probabili-
ties must sum to one, hypotheses that use some probability for
unseen strings will necessarily have less probability for the data
that are observed, lowering the hypothesis’ likelihood. This fact
also interacts with the structural priors, which sometimes favor
hypothesizing that unobserved strings are actually grammatical
because this leads to a simpler computation.

It is worth emphasizing that the assumptions of no negative
evidence (173) have been questioned by many language acquisi-
tion researchers (161, 174–178). Our general model could easily
be made compatible with positive evidence, or even other forms,
including pedagogical evidence, as has been examined in similar
statistical setups (179). However, even if children do receive
substantially informative negative evidence, they still face a deep
inductive problem. To choose a simple example, the formal lan-
guage an is infinite, and yet any data a learner sees—positive
or negative—will be finite. Apart from explicit metalinguistic
instruction, there does not seem to be any form of negative
evidence or rephrasing that could lead learners to deduce this
fact directly. Instead, learners must have an inductive mechanism
that can consider the infinite language as a possibility, and weigh
it against alternatives. We suspect that many structural aspects
in language acquisition will have this flavor, where the precise
form of evidence is not as crucial as the inductive biases learners
possess and the hypotheses they consider.

Our results demonstrate that positive evidence not only can
work in theory for discovering the right computation, but it
works in practice, using simple, domain-general search tech-
niques that have been applied broadly across cognitive science.
At the same time, these methods are still in their infancy. We have
only applied them to some of the basic descriptions of linguis-
tic phenomena—ideas like recursion, nesting, simple context-
free phrase structure, and context-sensitive dependencies. This
work leaves open the question of how more-detailed kinds of

phenomena may be acquired—for instance, long-distance de-
pendencies in syntactic islands (180, 181). We note, however,
that many such phenomena have been hypothesized to result
from UG, but may, in fact, be better explained as properties of
constructions and pragmatics (182–184). Either way, the learning
of such aspects of grammar have simply not yet been explored
using powerful domain-general learning tools.

Our approach was motivated, in part, by Perfors et al. (27), who
compared different grammars—for example, finite, finite state,
and context-free—and showed that a small amount of child-
directed speech from the CHILDES project (185) was sufficient
for learners to infer that language had a hierarchical structure.
One response to Perfors et al. has been to emphasize linguistic
facts that go beyond the mere presence of hierarchical structure,
often depending on subtle distinctions and connections between
constructions or interpretations (157), although Bayesian models
have shown success in learning some such phenomena (186).
A more interesting—although we think ultimately misguided—
critique of Perfors et al. is that their model “builds in” more
than UG because learners consider multiple grammars. Surely
it is a more parsimonious theory of human nature that learners
come equipped with one single grammar than the seven Perfors
et al. used? The argument also applies to our model: How
could “building in” an infinite number of possible computations
be a more parsimonious solution to the problem of language
learning?

It turns out that this thinking is wrong, for a very interest-
ing reason. The issue can best be understood by considering
Jorge Luis Borges’ short story, “The Library of Babel” (187).
Borges imagines an infinite library full of every possible book—
every possible sequence of characters. The curious fact about
the library which contains every possible book is that it actually
contains essentially no information at all. Its contents can be
completely specified with just a few words (“all possible books”),
or compressed into an extremely short generating computer
program, yielding a negligible minimum description length.§ Cer-
tainly, it is much easier to describe the entire library than to
describe just one of its typical books. The story illustrates that
it is often more parsimonious to build in a larger, unconstrained
space of hypotheses because a large space can easily have a more
concise description. Theories which hypothesize that minimal
amounts of structure and content are innate should embrace this
perspective.

Our results also address a critique of domain-general ap-
proaches to language learning: It is often argued that children
must possess constrained sets of hypotheses because there are

§For example, F0(x) := pair(F0(x), sample(Σ)).
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many constructions that children simply don’t learn. However,
our results also showed that there are languages that are difficult
to learn, even for a universal model. This fact is not remarkable—
it is inevitable. Only a few languages can have short description
lengths or equivalently high priors, and so almost all logically
possible languages will be difficult to learn. Consequently, there
simply must be logically possible generalizations children never
make, regardless of whether there are constraints specific to
language or not. Learnability analyses have too often ignored
these issues and conflated the class which can practically be
learned with the total hypothesis space (160).

This model tackles acquisition of language from a different
perspective than connectionist models (188, 189), which often are
taken as contrary to poverty of the stimulus claims due to their
ability to acquire key aspects of language as well as model human
performance on learning tasks (152, 190–196). Connectionist ap-
proaches have seen remarkable success in recent years in natural
language tasks (197–199), including hierarchical languages (200).
The datasets studied here may provide a compelling testbed for
such neural network models, and are closely related to Turing-
complete neural architectures (164).

Finally, our results suggest that the Chomsky–Schützenberger
hierarchy—popular for characterizing human and animal com-
munication (201, 202)—may not align with psychological notions
of complexity. Because of the chosen form of the prior, the
model’s inferences are sensitive to description length rather than
hierarchy level: Some languages that have short descriptions are
higher on the hierarchy (like anbncn), and some languages (like
Reber) that are lower on the hierarchy are nonetheless difficult
because they do not have concise descriptions as programs. The-
ories of language acquisition would do well to prioritize measures
of description length (203, 204) in considering the complexity of
hypotheses, bringing such theories in line with experimental work
in human learning (59, 88, 131, 205–207).

These results also point to several important directions for
future modeling, experimentation, and theoretical work. Many
aspects of learning—from words to grammars—may primarily
require learners to find concise descriptions of observed data
(29, 31, 204, 205). While some languages like the simple En-
glish grammar presuppose that categories are known, some of
the formal languages—even simple ones like anbn—have the
model implicitly discover that different symbols (a and b) have
different distributional properties. The goal of finding concise
computational descriptions can likely be applied to other levels of
linguistic representation, including part of speech categories or
phonemes, where the relevant abstractions are thought to pro-
vide simple descriptions of apparent patterns. Generally, how-
ever, this work leaves open the question of what domain-specific
constraints and knowledge are present in each of these levels of
linguistic analysis and how those interface with domain-general
capacities. At the very least, claims of domain-specific knowledge
will only be tenable when formulated relative to demonstrable
shortcomings in implemented domain-general learning theories.

While this model provides a theoretical proposal for learning
the patterns that govern sequences of discrete symbols, it is
important to remember that real-life language learning is closely
tied to language use (208–210), including semantics, pragmatics,
and social inference. None of these are captured in the present
framework, which was designed to study a simplified setting akin
to Gold’s. Although these other processes are central to how
children learn language, the present work does suggest that there
is unlikely to be an in principle learnability problem even without
them. One additional limitation of our work is that it is not clear
how to extend such models to a mental lexicon that contains
thousands of lexical items—or, more specifically, how induction
of structure interfaces with humans’ distinctive memory archi-
tecture. Relatedly, this learning model does not learn any mean-
ings associated with strings. However, similar program-learning

models have been used to acquire compositional representations
of semantics (211–214) while operating over larger vocabularies.
These models illustrate one way in which program-like learning
models may be extended to richer settings.

Conclusion
The model described in this paper shows how learners could
begin with a simple set of domain-general computational opera-
tions and create grammars in order to explain observed data. The
model shows that implemented program induction techniques
can build representations of provably different computational
power, including regular, context-free, and context-sensitive hy-
potheses. It also shows that such learning requires surprisingly
little data, and that positive evidence is sufficient. This model
provides an inferential foundation onto which psychological or
linguistic constraints—perhaps including pressures in memory or
computational limitations (215)—can be added in order to refine
debates about what resources learners must necessarily bring
to language acquisition. Notably, in this approach, grammars
are just one kind of computation that learners might acquire,
and the model’s key assumptions and mechanisms have been
independently argued to explain nonlinguistic learning in other
domains. The model thus points to how language acquisition
might be unified with learning more broadly in cognition, includ-
ing the many domains where children also acquire structures and
abstraction from statistical evidence (216).

Methods
In all formal languages, words and syllables in prior literature have been
reduced to single characters so that the primary components that are
generated are sequences of characters in a fixed alphabet. Languages are
made probabilistic using generative (flip) parameters that prevent data
generation from creating strings that are too long or recursions that are
too deep. Note that, in evaluating a hypothesis, the initial value for x that
is passed in is the empty string (ε); however, when one factor is called
by another, it may pass in other arguments. In running, we enumerate
execution paths down to a log probability of −15, 64 recursions, 1,024
program steps, or 256 different outputs. For the English example, we
increased these bounds to output a larger distribution of strings. All of
the code for specifying and sampling the input data and the input data
themselves are available at the Fleet GitHub.

Inference was run using a custom implementation of the adaptive parallel
tempering scheme from ref. 217 in Fleet, using proposals from ref. 58. This
ran five temperatures from 1 to 1.2, spaced exponentially. The inference
proposed swaps between chains every 0.25 s and adapting the temperature
ladder every 5 s. This inference scheme was run on data consisting of 1, 2,
5, 10, 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 50,000, and 100,000
strings sampled from the target grammar. This inference was run on times
varying from 1 min to 7 d total, across all amounts of data (evenly divided).
The specific times each language was run for are provided in SI Appendix.
Note that, in general, it is difficult to search over factors, since changes to
one factor may depend on what another factor computes. We therefore
run multiple parallel searches while constraining the number of factors
n = 1, 2, 3, 4 within each search. For instance, on the search with three
factors, we reject any proposal that fails to call all three factors, although
we note that this still often results in trivial factors. We ran this inference on
a collection of Dell servers for varying amounts of time using GNU Parallel
(218). We collected the 500 highest posterior hypotheses found in each chain
at each amount of data and used this to plot the posterior-weighted F curves
shown in figures. We note that such approximation and sampling is not
intended as part of the high-level interpretation of our approach. We intend
the model to be on Marr’s computational level (133) in that people solve the
same problem of inferring the algorithm that generates strings; we do not
claim that they necessarily use the same methods as our implementation.

For all languages but the simplified English grammar, we computed preci-
sion and recall using the most frequent 25 strings in the data and generated
by each hypothesis. Let S(h) be the set of strings from a hypothesis h
and let S(D) be the set of strings for a dataset D. Let S25(h) and S25(D)

denote the most frequent (or high probability) 25 strings enumerated by
the model and occurring in the data, respectively. Let P̂(h | D) denote the
probability of h given the data, renormalized to sum to one over the top
500 hypotheses found (note that, since the hypothesis space is discrete, the
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top 500 hypotheses contain virtually all of the posterior probability mass).
Then, posterior-weighted precision is defined as

precision =
∑

h∈H

P̂(h | D)
| S25(h) ∩ S(D) |

| S25(h) |
, [3]

with recall defined analogously. Thus, the precision measures the proportion
of the top 25 model strings that occur in the data, and the recall measures
the proportion of the top 25 data strings that are output by the model.

Because the simplified English grammar was substantially more complex
than other languages, it was run on factor sizes of 1, 2, 3, 4, 5, and 6, with
15 threads each, for 7 d. Precision and recall was computed on the top 100
strings instead of the top 25 in order to better assess learning. In addition,
these runs permitted more steps and smaller log probability in order to
enumerate more strings.

Several languages (e.g., Braine 66) introduced nonuniform sentence
probabilities into the original grammar. This was done so that the strings

yielded could be more easily evaluated in our metric of number of top
strings. In this way, the tested languages were sometimes more skewed in
distribution than the original references. While this makes the string set
easier to identify by our metric, it also makes the distribution harder to
match, since uniform distributions should be very easy for the model to
learn.

Data Availability. The C++ library called Fleet, which we created, is dis-
tributed under the GNU Public License v3 at GitHub, https://github.com/
piantado/Fleet.
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