
RESEARCH ARTICLE

Trace metals in Northern New England

streams: Evaluating the role of road salt

across broad spatial scales with synoptic

snapshots

Jessica F. WilhelmID
1*, Daniel J. Bain2, Mark B. Green1,3, Kathleen F. Bush1,4, William

H. McDowell5

1 Center for the Environment, Plymouth State University, Plymouth, New Hampshire, United States of

America, 2 Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh,

Pennsylvania, United States of America, 3 Northern Research Station, United States Forest Service,

Durham, New Hampshire, United States of America, 4 New Hampshire Department of Health and Human

Services, Concord, New Hampshire, United States of America, 5 Natural Resources and the Environment,

University of New Hampshire, Durham, New Hampshire, United States of America

* wilhelmjf1@gmail.com

Abstract

Mobilization of trace metals from soils to surface waters can impact both human and ecosys-

tem health. This study resamples a water sample archive to explore the spatial pattern of

streamwater total concentrations of arsenic, cadmium, copper, lead, and zinc and their

associations with biogeochemical controls in northern New England. Road deicing appears

to result in elevated trace metal concentrations, as trace metal concentrations are strongly

related to sodium concentrations and are most elevated when the sodium: chloride ratio is

near 1.0 (~halite). Our results are consistent with previous laboratory and field studies that

indicate cation exchange as a metal mobilization mechanism when road salt is applied to

soils containing metals. This study also documents associations among sodium, chloride,

dissolved organic carbon, iron, and metal concentrations, suggesting cation exchange

mechanisms related to road deicing are not the only mechanisms that increase trace metal

concentrations in surface waters. In addition to cation exchange, this study considers dis-

solved organic carbon complexation and oxidation-reduction conditions affecting metal

mobility from soils in a salt-rich environment. These observations demonstrate that road

deicing has the potential to increase streamwater trace metal concentrations across broad

spatial scales and increase risks to human and ecosystem health.

Introduction

Salinization of surface waters occurs across seasonally snow-covered areas of the world

through the practice of road-deicing [1], and has important consequences for water quality

[2–4] and aquatic ecosystems [1,5,6]. Chemical road deicers accumulate in groundwater [7,8],

increasing the total concentration of major cations in groundwater throughout the year [9].
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The higher concentrations of chloride (Cl) and sodium (Na) cause physiological stresses to

aquatic organisms, and thus degrade aquatic ecosystems [4]. Salinization due to deicers also

impairs drinking water [10], for example, some groundwater aquifers contain Na concentra-

tions that are unsafe for consumers with high blood pressure [11]. Further, recent work sug-

gests that elevated Cl in water increases corrosivity of drinking water infrastructure and may

contribute to elevated trace metals in drinking water (e.g. lead, copper) [12].

Deicer-driven salinization also impacts soils. Many studies have demonstrated the impact

of salinization on soil cation exchange dynamics [13,14], which can mobilize trace metals from

soils [15,16]. Soils with sorbed trace metals–either natural concentrations or concentrations

enhanced due to human activities–are susceptible to altered ion exchange processes and mobi-

lization [17]. Metal mobility is also enhanced by interactions among deicers, dissolved organic

matter, and colloidal materials [15,17] (Fig 1).

Soils serve as an important regulator of trace metal dynamics, storing a range of potentially

toxic metals. High concentrations of cations, particularly Na introduced during deicing, can

displace metals via cation exchange and interact with dissolved organic carbon (DOC) and

colloids to make soil metals available for potential transport to waters further downstream.

In particular, Amrhein et al. [15] assessed trace metal mobility in roadside soils from cold

weather climates using soil columns leached with road salt chemicals. They found metal con-

centrations increased during flushing by fresh water following exposure to NaCl. This simu-

lated snowmelt seemed to mobilize low molecular weight DOC and bound metals. The fresh

water flush contained loads of trace metals that were greater than those in the experimental

high salt flush.

The vast majority of deicer salinization and soil studies have been conducted either in the

laboratory [15,18] or at limited spatial scales [17,19–21], and the impact of these salinization

processes on regional streamwater quality remains poorly understood. This study documents

total trace metal concentrations across a large spatial scale in Northern New England, using an

archive of synoptically sampled surface waters, and compares the spatial variability of trace

metal concentrations with indicators of chemical deicers (Fig 2). Given the archival nature of

the samples, the impacts of storage conditions are assessed as part of this analysis. Strong co-

variance between the amount of urbanization and chemical indicators of road salt has been

documented in this region previously [9,22]. Therefore this study focuses on soil-streamwater

processes in areas impacted by road salt.

Methods

In 2013 approximately 70 sites in northern New England were sampled synoptically in May,

June, and July (sampling and storage methods detailed below). All sampling sites are located at

road crossings of flowing waters. By New Hampshire State law, all navigable waters (broadly

defined) are public spaces (Concord Mfg. Co. v. Robertson, 25 A. 718, 720 (N.H. 1890)) and

these public spaces are accessible via road right of ways (Hartford v. Town of Gilmanton, 101

N.H. 424 (N.H. 1959)). Therefore, special collection permissions were not required for any of

the locations. Further, this study did not involve endangered or protected species. We evalu-

ated concentrations of As, Cd, Cu, Pb, and Zn in the archived samples and compared these

concentrations with road salt indicators (Na, Cl, and Na: Cl), water quality parameters (DOC),

and redox indicators, iron (Fe).

Site distribution

Sites were located in New Hampshire and northern Massachusetts and associated with the citi-

zen science Lotic Volunteer Temperature, Electrical Conductivity, and Stage (LoVoTECS)
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sensing network [23] (Fig 3). Sites spanned a range of conditions including basin size, eleva-

tion, and land cover. Catchments ranged from 1.5 km2 to 2646 km2. Sample collection sites

included four major New England rivers and their tributaries: the upper and lower Androscog-

gin, the Saco, the Merrimack, and the upper Connecticut. Study area climate is temperate;

Fig 1. Associations among sodium, chloride, dissolved organic carbon, iron, and metal concentrations. This study considers cation exchange, dissolved organic

carbon complexation, and oxidation-reduction conditions affecting metal mobility from soils in a salt-rich environment.

https://doi.org/10.1371/journal.pone.0212011.g001
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average July highs ranging between 24˚C and 28˚C, and average January lows ranging between

-20˚C and -9˚C. Mean annual precipitation ranges between 40 cm and 118 cm [24]. The

regional elevation ranges from 0 (MSL) to the highest point, Mount Washington, at 1,917

meters.

The bedrock geology of the greater New Hampshire region can be broadly separated into

three composite terranes: the Grenville, Central Maine, and Nashoba-Casco-Miramichi [25].

Metasedimentary materials, found particularly in the southwestern part of the state, dominate

most of New Hampshire. To the west, calc-silicate metasediments, and volcanic rocks and gra-

nitic gneisses are also important bed rock types [25].

Fig 2. Metal concentrations during periods of fluctuating halite levels. The sites representing the tail denote metal concentrations when higher Na+ is released from

exchange sites, relative to lower Cl- flushed following road salt inputs. Corresponding Cl- is quickly flushed through the system following input, and therefore absent in

periods not dominated by halite. The sites near the 1:1 halite peak, i.e. equal Na+ and Cl-, suggest high dissolved metal flux associated with periods of high halite inputs.

https://doi.org/10.1371/journal.pone.0212011.g002
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Fig 3. Site map. Sites in Massachusetts and New Hampshire evaluated for metal concentrations and biogeochemistry.

https://doi.org/10.1371/journal.pone.0212011.g003
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Water sampling

Three synoptic sampling events were performed May 14th (n = 61), June 11th (n = 66), and

July 16th (n = 77) 2013. Although most sites were sampled on all three-sample collection dates,

not all sites were sampled on all three dates. This limits our ability to interpret temporal pat-

terns. All samples were collected within a 12-hour period on the sampling date. Grab samples

were collected 1 to 2 meters from the stream or riverbank. One-liter polypropylene sample

vials were rinsed three times with filtered stream water and 30 mL borosilicate glass vials were

rinsed three times with stream water before sample collection. One-liter polypropylene sam-

ples were field filtered and used for major ion and DOC analyses. The samples collected in 30

mL borosilicate glass vials were intended for water isotope analysis and therefore were neither

filtered nor acidified at the time of collection. Immediately following collection, the samples

were placed on ice, and stored at 4˚C upon return to the laboratory.

There was some hydrologic variability among sampling events (Fig 4). Mean daily runoff

for four USGS gages spanning our sampling area was 3.6 mm/d in May (flows were elevated

due to residual snow melt), 4.2 mm/d in June (collected between two storms), and 2.1 mm/d

in July (low flow conditions).

Fig 4. 2013 hydrograph comparisons at four sites spanning our sampling domain. River discharge measurements from the Ammonoosuc (north central New

Hampshire; USGS gage 01137500), Ashuelot (southwestern New Hampshire; USGS gage 01157000), Pemigewassett (central New Hampshire; USGS gage 01076500),

and Lamprey (southeast New Hampshire; USGS gage 01064500). Dashed vertical lines indicate synoptic sampling events.

https://doi.org/10.1371/journal.pone.0212011.g004
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Analytical methods

Dissolved organic carbon was measured with a Shimadzu TOC analyzer, and major ions (Na,

K, Mg, Ca, Cl) were measured on a Dionex X2 ion chromatograph at the University of New

Hampshire in 2013. These water chemistry measurements were made using sub-samples from

the polypropylene bottles that were filtered and held frozen prior to analysis. Metals and metal-

loid concentrations (hereafter named “metals”) were measured with an Inductively-Coupled

Plasma-Mass Spectrometer (ICP-MS, Perkin Elmer NexION 300X) at the University of Pitts-

burgh in February 2014, 8–10 months after collection. Metal concentrations were determined

from sub samples of the synoptic water isotope archive described above. Sub-samples for met-

als analysis from the glass vials were diluted with sub-boil distilled 2% nitric acid (HNO3) to

standardize matrix composition and spiked with an internal standard of Be, Ge, and Tl. The

ICP was calibrated with a five-point curve and blanks and drift checks measured roughly every

10 samples. For elements with strong polyatomic interferences (e.g., As) kinetic energy dis-

crimination collision cell methods were used.

These data were produced from a sample archive stored under conditions that do not fol-

low typical conventions for dissolved metal preservation (samples were not filtered, not acidi-

fied, and stored in borosilicate vials). These samples should not be compared directly with

either total or dissolved metal concentrations. To evaluate the impact of these storage condi-

tions, a set of six samples were collected in July 2017 from sample sites that spanned the range

of Na concentration and watershed land cover across our sampling domain, and collected and

stored using both methods (filtered, acidified, polypropylene container and not filtered, not

acidified, borosilicate glass container) (Fig 5). These samples were allowed to sit for four

months to allow equilibration. Then metal concentrations in the two sets of samples were eval-

uated on the ICP-MS as described above and compared.

Statistical methods

Data did not uniformly meet normality criteria and therefore relationships between trace met-

als and other biogeochemical parameters (e.g., DOC and Fe concentrations) were evaluated

using Spearman’s rank order correlation with alpha = 0.05. All statistics were performed in R

Computing Software [26].

Results

Direct comparison of preservation methods demonstrates that the metal concentrations mea-

sured in the archived samples are not precisely comparable to the filtered and acidified samples

(Fig 5). However, in general, the signal strengths are related positively, though substantial

noise is introduced. Therefore, the measurements presented throughout this paper seem to

reflect overarching trends in synoptic metal concentrations, albeit a relatively noisier version

of that signal.

Quality assurance procedures (e.g., internal standard values) identified three of the synoptic

samples that were clear outliers, and these samples were removed from all subsequent data

analysis. In the remaining 191 samples, metal concentrations varied widely across the study

area (Table 1). Despite the variability, median concentrations were relatively consistent across

the three summer months. High concentrations of As and Pb (max As = 18.1 μg/L, max

Pb = 2.77 μg/L) occurred in samples with elevated Cl and Na concentrations (Fig 6). Further,

the highest concentrations of As, Cd, and Pb occurred in samples with molar Na: Cl ratios that

approached 1.0 (Figs 6 and 7). Copper, Pb, and sometimes As concentrations were associated

with samples containing elevated DOC concentrations (Figs 8 and 9). Samples with higher

concentrations of As were associated with samples with higher concentrations of Fe.
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Elemental relationships

Metal concentration associations with DOC, Na and Cl, and Fe are consistent across months

(Table 2). Over the course of the summer, arsenic and lead have the strongest relationships

with all three indicators of chemical processes, i.e., cation exchange (Na, Cl) (Fig 6), dissolved

organic carbon complexation (DOC), and oxidation-reduction reactions (Fe) (Fig 8).

Fig 5. Comparison of metal concentration measurements on unfiltered, unacidified samples. Samples were stored in borosilicate glass (total; x-axes) and

filtered, acidified samples stored in polypropylene vials (dissolved; y-axes). Zinc is not shown because it was not detectable in unfiltered and unacidified

samples (e.g. bdc, hbk, hod, nwd, pbb, prp), and filtered and acid-preserved samples (e.g. hbk, hod, pbb, prp), and therefore comparisons could not be made

between total and dissolved zinc concentrations.

https://doi.org/10.1371/journal.pone.0212011.g005
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Arsenic. Arsenic relationships with other metals and DOC are relatively consistent across

months, and the strongest associations are observed in July (Figs 6 and 8, Table 2). Arsenic is

strongly related to Na and Cl throughout the summer, and the highest concentrations of As

occur as the molar Na: Cl ratio approaches one, the characteristic value of halite (Fig 6).

Cadmium. Cadmium has no apparent relationships with Fe, DOC (Fig 8), nor with Na

and Cl concentrations (Fig 7). Elevated cadmium concentrations occur as the Na: Cl ratio

approaches one (Fig 7).

Copper. Copper relationships with DOC and Fe are similar across months (Fig 9), and

Cu concentrations are associated with Na and Cl (Fig 7). Copper concentrations are elevated

with Na: Cl ratio values near 1.

Lead. Lead is associated with DOC and Fe throughout the summer months (Fig 8), and

Na and Cl concentrations in May, June, and July (Fig 6). Lead concentrations are highest in

samples with Na: Cl ratios that approach the 1.0 molar ratio.

Zinc. Zinc does not seem to correlate with Fe or DOC (Fig 9). Zinc concentrations are not

related to Na or Cl concentrations (Fig 7).

Dissolved organic carbon, iron, sodium chloride. Dissolved organic carbon is associated

with Na throughout the summer months, and with Cl (Fig 10). Slight increases in DOC con-

centrations occur near 1.0 Na: Cl. Dissolved organic carbon is strongly correlated with Fe

throughout May, June, and July. Iron is strongly associated with Na and Cl.

Discussion

It is difficult to directly compare our water chemistry measurements with dissolved concentra-

tion data commonly reported in the literature. In this study, trace metal concentrations were

Table 1. Monthly cation sample statistics.

Month Samples (n) Min (μg L-1) 25th Percentile (μg L-1) Med (μg L-1) 75th Percentile (μg L-1) Max (μg L-1)

Arsenic

May 61 0.0067 0.15 0.28 0.61 3.4

June 63 0.033 0.22 0.35 0.73 18

July 77 0.019 0.25 0.5 1.5 7.02

Cadmium

May 51 0.0035 0.014 0.0201 0.035 0.29

June 66 0.0058 0.031 0.038 0.055 0.28

July 73 0.0037 0.015 0.025 0.0407 3.5

Copper

May 42 0.16 1.03 1.4 3.09 22

June 66 0.2 1.5 2 2.6 12

July 77 0.54 0.98 1.4 2.6 33

Lead

May 35 0.0049 0.029 0.11 0.29 1.5

June 66 0.038 0.14 0.27 0.45 2.8

July 71 0.0028 0.078 0.14 0.35 1.6

Zinc

May 41 0.56 1.8 3.9 14 4400

June 66 0.46 3.3 4.6 6.3 37

July 63 0.15 2.05 3.4 6 61

Monthly sample ranges of cation concentrations during May 14, June 11, and July 16, sampling. Site statistics include number of samples, minimum, 25th percentile,

median, 75th percentile, and maximum cation concentrations.

https://doi.org/10.1371/journal.pone.0212011.t001
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measured in subsamples of an unfiltered, unacidified archive that was stored in borosilicate

containers. This raises the potential for 1) the measurement of metals bound to particles (i.e.,

larger than 0.45 micron) that would be removed by filtration; 2) sorption of dissolved metals

to the borosilicate surfaces; and 3) chemical precipitation processes and the formation of par-

ticulates that sorb dissolved trace metals (e.g., iron oxidation and the formation of iron

hydroxides). Our direct comparison of samples subject to both the conditions for the synoptic

Fig 6. Arsenic and lead relationships with Na and Cl. Relationship between As and Pb concentrations and Na and Cl concentrations and Na: Cl molar ratios in

synoptic samples collected May 14, June 11, and July 16, 2013. Na:Cl molar ratio is colored using a gradient from high Cl concentrations (light pink), to low Cl

concentrations (dark purple).

https://doi.org/10.1371/journal.pone.0212011.g006
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sample archive and a standard dissolved metal measurement suggest that a mixture of these

potential processes likely occurred, with concentrations in the synoptic archive measuring

both above and below the concentrations measured in “dissolved metal” samples. Nonetheless,

the measurement of the archived samples captures interesting patterns across broad spatial

scales; although these patterns are likely more noisy than those that would be observed under

Fig 7. Cadmium, copper, and zinc relationships with Na and Cl. Relationships among Cd, Cu, and Zn concentrations and Na and Cl concentrations and Na: Cl molar

ratios in synoptic samples collected May 14, June 11, and July 16, 2013. Na:Cl molar ratio is colored using a gradient from high Cl concentrations (light pink), to low Cl

concentrations (dark purple).

https://doi.org/10.1371/journal.pone.0212011.g007
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optimal preservation methods, the limitations of archive conditions do not preclude assess-

ment of spatial trends in metals.

Our data are consistent with road salt mobilization of trace metals and the resultant ele-

vated streamwater concentrations of these metals. Observed Na and Cl concentrations range

from highly dilute (min Na = 1800 μg/L; min Cl = 1320 μg/L) to highly concentrated (max

Na = 160000 μg/L; max Cl = 420000 μg/L). The strong, positive correlation between trace

metal concentrations (Pb, As, Cu, and Zn) and both Na and Cl indicate trace metal concentra-

tions are elevated in salty waters. Further, the elevated concentrations of Pb, As, and Cd in

Fig 8. Arsenic and lead relationships with DOC and Fe. Relationships between As and Pb concentrations and dissolved organic carbon (DOC) and Fe

concentrations during May 14, June 11, and July 16, 2013.

https://doi.org/10.1371/journal.pone.0212011.g008
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samples where dissolved Na: Cl ratios are near 1:1 (i.e., the ratio in halite) provide a parallel

and consistent line of evidence that road salt mobilizes trace metals. The Na:Cl ratio can vary

in surface waters both above 1 (during periods after salting when lagged Na transport occurs)

and below 1 (during the early salt flux where Na is sorbed and Cl is transported rapidly). In

addition, other common sources of Na and Cl are not 1:1. For example, rainfall in experimen-

tal catchments is ~0.8 [27,28]. We do not have the data to claim causality, but the clear ten-

dency warrants continued attention. While trace metals are mobilized, the concentrations are

Fig 9. Cadmium, copper, and zinc relationships with DOC and Fe. Relationships among Cd, Cu, and Zn concentrations and

dissolved organic carbon (DOC) and Fe concentrations during May 14, June 11, and July 16, 2013.

https://doi.org/10.1371/journal.pone.0212011.g009
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relatively low, and streamwater metal concentrations were always low relative to US EPA

drinking water standards (Table 3). Some sites with a strong road salt signature had metal con-

centrations approaching levels of concern with concentrations above EPA freshwater chronic

criteria for aquatic organisms measured at several stations. Comparisons of our measured

trace metal values with water quality standards should be made cautiously due to the archival

nature of the samples.

Previous studies of trace metal mobilization to surface waters by road salt have focused on

limited spatial scales. Bäckström et al [16] studied two transects located at most 30m from the

roadway, Löfgren [20] studied five small forested catchments (drainage areas 57–168 hectares),

and Cunningham et al. [30] collected samples within the limits of a single upstate NY city (76

hectare college campus and one additional off campus site). Our sites span tens of thousands

of km2, and allow evaluation of the road salt signal at much broader scales. Across these sites,

and during each month, trace metals were consistently related to both Na and Cl. We interpret

Table 2. Evaluation of elemental relationships using Spearman’s rank order correlation.

Rho, n

Month Na Cl DOC Fe

Arsenic

May 0.58, 57 0.52, 61 0.56, 61 0.65, 61

June 0.62, 61 0.61, 63 0.49, 63 0.65, 63

July 0.7, 73 0.61, 77 0.7, 77 0.77, 77

Cadmium

May 0.08, 47 0.099, 51 0.2, 51 0.18, 51

June 0.1, 64 0.16, 66 0.053, 66 0.002, 66

July 0.094, 69 0.13, 73 0.086, 73 0.003, 73

Copper

May 0.39, 38 0.5, 42 0.34, 42 0.5, 42

June 0.57, 64 0.56, 66 0.29, 66 0.42, 66

July 0.3, 73 0.4, 77 0.15, 77 0.24, 77

Lead

May 0.5, 31 0.43, 35 0.42, 35 0.75, 35

June 0.57, 64 0.57, 66 0.54, 66 0.78, 66

July 0.56, 67 0.57, 71 0.5, 71 0.8, 71

Zinc

May 0.26, 37 0.23, 41 0.062, 41 0.17, 41

June 0.16, 64 0.2, 66 0.04, 66 0.028, 66

July 0.29, 59 0.23, 63 0.01, 63 0.041, 63

DOC

May 0.4, 58 0.38, 62 0.63, 62

June 0.57, 64 0.45, 66 0.72, 66

July 0.54, 73 0.46, 77 0.75, 77

Fe

May 0.65, 58 0.59, 62 0.63, 62

June 0.67, 64 0.67, 66 0.72, 66

July 0.7, 73 0.67, 77 0.75, 77

Monthly assessment of elemental relationships during May 14, June 11, and July 16 sampling. Italicized values

indicate significance (p<<0.001). Site statistics include rho, p values, and sample count (n). Smaller sample sizes in

May for copper, lead, and zinc are due to concentrations below detection limits.

https://doi.org/10.1371/journal.pone.0212011.t002
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the strength of these relationships across a large scale, and their persistence across months, to

indicate a general mechanism or set of mechanisms related to road salt driven salinization. Our

data cannot reveal the patterns of hydrologic transport that would move these trace metals from

soil pores to stream water. However, these mechanisms seem to alter trace metal concentrations

regardless of heterogeneity in hydrologic transport processes across wide spatial scales.

Further, our data indicate that trace metals are mobilized by processes that parallel or inter-

act with road salt chemical fluxes, processes that are consistent across broad spatial scales.

Most importantly, As and Pb are related to both Fe and DOC concentrations across all months

Fig 10. Na and Cl relationships with DOC. Concentrations of Na, Cl, and Na: Cl molar ratio plotted against dissolved organic carbon (DOC)

concentrations for all locations throughout northern New England on May 14, June 11, and July 16, 2013. Na:Cl molar ratio is colored using a

gradient from high Cl concentrations (light pink), to low Cl concentrations (dark purple).

https://doi.org/10.1371/journal.pone.0212011.g010
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sampled. These associations suggest a number of potential mechanisms. First, Mn and Fe

oxides in soils and sediments strongly sorb many cations [31]. In particular, As has strong

adsorption affinities for reduced Fe species, Fe (III) oxyhydroxides, and can be released to

groundwater during Fe-reducing biodegradation [32]. When these oxides are reduced, any

sorbed cations are mobilized [33,34]. Therefore, any flushing of reducing zones by waters rich

in road salt could mobilize dissolved metals in those waters. Alternatively, the association

between Pb/As and DOC suggests that road salt chemical fluxes can enhance the DOC flux

and therefore metals associated with the DOC. For example, Amrhein et al. [15,18] observed

NaCl mobilizes metals associated with organic matter and colloids. However, ultimately, the

covariance of Fe and DOC suggests increases in Fe could also simply result from increased

amounts of DOC-sorbed Fe during increased DOC flux that arises from salting. Increase in

soil salinity can cause DOC to flocculate with cations (Ca2+ and Mg2+) [35], enhancing metal

mobility from soils to streams. Therefore, the NaCl interactions with DOC can potentially

explain both associations (Pb/As with Fe and Pb/As with DOC) and reduction/oxidation

dynamics may not be an important control. Our results do not allow us to partition the relative

importance of salt pulses, redox conditions, and organic carbon to metal mobilization, though

the consistent associations among salt, Pb/As, DOC, and Fe suggests these interactions should

be more closely examined as inquiry into road salt effects continues.

It also should be noted that elevated As has been documented in groundwaters across the

southern part of our sampling domain. These concentrations are attributed partially to natu-

rally occurring As associated with weathering of bedrock minerals [36,37]. While our data

demonstrate a relationship with road salt indicators, we cannot quantify the potential contri-

bution of naturally occurring As. This is particularly challenging as areas rich in natural As

sources are also the most urban. Deicer impacts covary spatially with bedrock As hotspots and

observed associations could result from this covariance. However, the other trace metals we

measured (Pb, Cu, Zn, and Cd) do not have major, documented natural sources in this region.

Given the consistency in the observed relationships between these metals and deicer impacts,

this covariance driving the As signal alone seems less likely. Potential anthropogenic sources

of Pb, Cu, Zn, Cd, and As include road materials and mobile source emissions [38] and general

trace metal pollution sources [37,38]. In particular, As and Pb enrichment associated with his-

torical use of lead arsenate as a pesticide in orchards has been observed in study area stream-

waters [39]. The bottom line is that there are many potential sources of trace metal

contamination, however, road deicers and associated chemistry seem to mobilize the metals

regardless of source.

Conclusions

The patterns in our data highlight several important aspects of surface water salinization. Per-

sistent patterns in stream water chemistry across broad spatial scales suggest New England

Table 3. USEPA national water quality criteria [29].

Element Drinking Water Maximum Contaminant Level (MCL) (μg L-1) Aquatic Life Chronic Criteria (μg L-1) Aquatic Life Acute Criteria (μg L-1)

As 10 150 340

Cd 5 0.72 1.8

Cu 1300 aNot shown

Pb 15 2.5 65

Zn - 120 120

aSite-specific calculations needed for ligand model criteria.

https://doi.org/10.1371/journal.pone.0212011.t003
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flowing waters are influenced by pools with elevated Na and Cl concentrations (e.g., soil and

ground water). Soils, where most of the mechanistic work on metals mobilization has been

conducted, are only ephemerally connected hydrologically to streams—primarily during

storm events. In contrast, groundwater contributes a substantial fraction of streamwater flow,

especially during low flows (i.e., our sampled conditions). Detailed hillslope studies to trace

the movement of mobilized trace metals in soils [e.g., 21], and to determine whether they are

laterally transported to drainage systems or streams, or vertically percolated into groundwater

can clarify the relative importance of the pool. Second, the observed broad spatial interactions

among NaCl, trace metals, Fe, and DOC indicate that documentation of road salt impacts

should examine a broader range of chemical parameters. Without a broader perspective,

mechanism can be misattributed, and therefore, mitigation based on potential misunderstand-

ings will be less effective.

Supporting information

S1 File. Table A. Streamwater and river collected ion site-specific information. Water sam-

ple data collected across northern New England and analyzed for metals and water quality;

sites marked with (�) include those samples removed from subsequent statistical analysis. Sam-

ples indicated as ‘bdl’ are due to concentrations below detection limits. Table B. Land use and

landscape site-specific information. Site characteristics across northern New England from

the New Hampshire Land Cover archive (NLCD 2011); sites marked with (�) include those

samples removed from subsequent statistical analysis. Table C. Contrast dissolved and total

sample site-specific information. Resampled and analyzed ion data comprising a subset of

our sites in northern New England. Samples indicated as ‘bdl’ are due to concentrations below

detection limits.

(DOC)

Acknowledgments

Support for this study was provided by the National Science Foundation, Plymouth State Uni-

versity Center for the Environment, University of Pittsburgh Department of Geology and

Environmental Science, New Hampshire Established Program to Stimulate Competitive

Research (NSF EPS-1101245), and the U.S. Forest Service. We especially thank the citizen sci-

entist research group, Lotic Volunteer Temperature, Electric Conductivity, and Stage Sensing

Network (LoVoTECS), and field technicians Ashley Inserillo and Errin Volitis, who coordi-

nated the collection of the considerable data across Northern New England rivers and streams.

Author Contributions

Conceptualization: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green, Kathleen F. Bush.

Data curation: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green, Kathleen F. Bush, William

H. McDowell.

Formal analysis: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green, Kathleen F. Bush, William

H. McDowell.

Funding acquisition: Daniel J. Bain, Mark B. Green.

Investigation: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green, Kathleen F. Bush.

Methodology: Daniel J. Bain, Mark B. Green.

Trace metals in Northern New England streams

PLOS ONE | https://doi.org/10.1371/journal.pone.0212011 February 13, 2019 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0212011.s001
https://doi.org/10.1371/journal.pone.0212011


Project administration: Daniel J. Bain, Mark B. Green, Kathleen F. Bush, William H.

McDowell.

Resources: Daniel J. Bain, Mark B. Green, William H. McDowell.

Software: Daniel J. Bain, Mark B. Green.

Supervision: Daniel J. Bain, Mark B. Green, Kathleen F. Bush, William H. McDowell.

Validation: Daniel J. Bain, Mark B. Green, Kathleen F. Bush, William H. McDowell.

Visualization: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green.

Writing – original draft: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green.

Writing – review & editing: Jessica F. Wilhelm, Daniel J. Bain, Mark B. Green, Kathleen F.

Bush, William H. McDowell.

References
1. Kelly VR, Lovett GM, Weathers KC, Findlay SEG, Strayer DL, Burns DJ, et al. Long-Term Sodium Chlo-

ride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Envi-

ron Sci Technol. 2008; 42: 410–415. https://doi.org/10.1021/es071391l PMID: 18284139

2. Corsi SR, De Cicco LA, Lutz MA, Hirsch RM. River chloride trends in snow-affected urban

watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.

Sci Total Environ. 2015; 508: 488–497. https://doi.org/10.1016/j.scitotenv.2014.12.012 PMID:

25514764

3. Kaushal S, McDowell W, Wollheim W, Johnson T, Mayer P, Belt K, et al. Urban Evolution: The Role of

Water. Water. 2015; 7: 4063–4087. https://doi.org/10.3390/w7084063

4. Williams DD, Williams NE, Cao Y. Road salt contamination of groundwater in a major metropolitan area

and development of a biological index to monitor its impact. Water Res. 2000; 34: 127–138.

5. Hanes RE, Zelazny LW, Verghese KG, Bosshart RP, Carson EW, Blaser RE, et al. EFFECTS OF

DEICING SALTS ON PLANT BIOTA AND SOIL—EXPERIMENTAL PHASE. NCHRP Rep. 1976; Avail-

able: https://trid.trb.org/view.aspx?id=66581

6. Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD. A Fresh Look at Road Salt: Aquatic Toxicity

and Water-Quality Impacts on Local, Regional, and National Scales. Environ Sci Technol. 2010; 44:

7376–7382. https://doi.org/10.1021/es101333u PMID: 20806974

7. Findlay SEG, Kelly VR. Emerging indirect and long-term road salt effects on ecosystems: Findlay &

Kelly. Ann N Y Acad Sci. 2011; 1223: 58–68. https://doi.org/10.1111/j.1749-6632.2010.05942.x PMID:

21449965

8. Ostendorf DW, Palmer RN, Hinlein ES. Seasonally varying highway de-icing agent contamination in a

groundwater plume from an infiltration basin. Hydrol Res. 2009; 40: 520–532. https://doi.org/10.2166/

nh.2009.062

9. Daley ML, Potter JD, McDowell WH. Salinization of urbanizing New Hampshire streams and groundwa-

ter: effects of road salt and hydrologic variability. J North Am Benthol Soc. 2009; 28: 929–940. https://

doi.org/10.1899/09-052.1
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