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Background: Muscle fat infiltration (MFI) is increasingly recognized as a critical factor influencing muscle 
function and metabolic health. Accurate quantification of MFI is essential for diagnosing and monitoring 
various muscular and metabolic disorders. Quantitative Dixon (Q-Dixon) magnetic resonance imaging 
(MRI) and high-speed T2-corrected multi-echo (HISTO) magnetic resonance spectroscopy (MRS) are both 
advanced imaging techniques that offer potential for detailed assessment of MFI. However, the validity and 
reliability of these methods in measuring volumetric changes in muscle composition, particularly in both 
thigh and paravertebral muscles, have not been thoroughly compared. This study aims to validate volumetric 
measurements using Q-Dixon MRI against HISTO MRS in thigh and paravertebral muscles, taking into 
account the heterogeneity of MFI.
Methods: A retrospective study was conducted with 54 subjects [mean age, 60 years; 38 male (M)/16 female 
(F)] for thigh muscle and 56 subjects (mean age, 50 years; 22 M/34 F) for paravertebral muscle assessment 
using a 3-Tesla MRI. The proton density fat fraction (PDFF) was measured with Q-Dixon MRI and 
HISTO MRS within the upper-middle part of quadriceps femoris and paravertebral muscles at L4/5 level in 
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Introduction

Muscle fat infiltration (MFI) is an essential aspect of 
muscle health that directly influences muscle strength and 
functionality (1,2). Its relevance spans several metabolic 
and musculoskeletal disorders, including chronic kidney 
disease (3), type 2 diabetes (4,5), chronic pain (6-8), 
sarcopenia (9), and muscular dystrophy (10,11). MFI 
occurs both at a macroscopic level called intermuscular 
adipose tissue (IMAT), either as perimuscular adipose tissue 
accumulated between muscle groups or as intramuscular 
adipose tissue inside muscles called extramyocellular lipids 
(EMCL), and at a microscopic level inside myocytes called 
intramyocellular lipids (IMCL) (12,13). MFI could distort 
muscle architecture, further resulting in negative impacts 
on muscular function (14). The complex interplay between 
MFI and muscle loss contributes to reduced mobility, 
vulnerability to fragility fractures, and other detrimental 
health outcomes (15-19). Consequently, accurate and 
reliable quantification of muscle fat content is indispensable 
for clinical practice and research.

Magnetic resonance imaging (MRI) has emerged as the 
primary modality to evaluate MFI (11,20). One is water-fat 
separation based and another is proton magnetic resonance 
spectroscopy (1H MRS) based. Various MRI techniques, 
commonly recognized in the field as quantitative Dixon 
(Q-Dixon) (21) for water-fat separation and high-speed 

T2-corrected multi-echo (HISTO) (22) for 1H MRS 
respectively, facilitate noninvasive reproducible examination 
and quantitative measurement of fat proportion in the liver 
(22,23), bone (21), bone marrow (24) and muscle (25,26). 
Both methods quantify volumetric tissue fat in terms of 
proton density fat fraction (PDFF), defined as the ratio 
of the signal strength from fat to the total signal from fat 
and water (27,28). 1H MRS is considered the reference 
standard for non-invasive quantification of fat content in 
vivo, both in liver (29,30) and muscle (25,26). Compared 
with T1-weighted (T1w) imaging without the capability of 
detecting IMCL (31), HISTO MRS, and Q-Dixon MRI 
have greater accuracy and objectivity for quantifying the 
total muscle fat content (IMAT and IMCL) (25). Both 
methods show advantages in MFI quantitative assessment, 
especially for a fat content of 50% or less with lipids mainly 
stored as IMCL which are not visually identified as fat in 
traditional MRI. However, the cubic volume-of-interest 
(VOI) with a small volume of HISTO MRS restricts its 
clinical applications. Q-Dixon MRI provides scalable maps 
of fat distribution, which may be more representative of 
the overall muscle fat distribution (32), and the VOIs for 
volumetric fat quantification can be placed in any size and 
location after image acquisition, which makes the Q-Dixon 
MRI much more realistically achievable for clinical routine 
and for quantification in clinical research.

Only a few studies have looked into the relationship 

volumes-of-interest (VOIs). The corresponding volumetric Q-Dixon freehand VOI PDFF was measured. 
Scatterplots, Bland-Altman plots, Spearman correlation coefficients, and Wilcoxon signed rank test with 
Bonferroni correction were employed. The Kruskal-Wallis H tests followed by Bonferroni-corrected post 
hoc tests were analyzed to compare parameter differences with visual MFI grades.
Results: Q-Dixon cubic VOI PDFF correlated positively with HISTO MRS PDFF in thigh (r=0.96, 
P<0.001) and paravertebral groups (r=0.98, P<0.001), with insignificant differences (P=0.29, 0.82, 
respectively). Both PDFF values from cubic VOIs in Q-Dixon and HISTO MRS differed from the freehand 
Q-Dixon PDFF (all P<0.001). Only for <5% HISTO MRS PDFF, there was a difference between HISTO 
MRS PDFF and Q-Dixon cubic VOI PDFF (P=0.002).
Conclusions: Volumetric Q-Dixon cubic VOI PDFF exhibited good correlation and consistency with 
HISTO MRS PDFF for quantitative fat assessment in thigh and paravertebral muscles except for muscles 
with fat fraction <5%, and the Q-Dixon freehand VOI PDFF offers a more comprehensive assessment of the 
actual MFI compared to cubic VOI.
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between HISTO MRS and the cross-sectional region-
of-interest (ROI) based measurements of Q-Dixon MRI 
which focused on areal PDFF measurements predominantly 
(25,26). To date, there are no dedicated reports about the 
comparison of volumetric PDFF measurements between 
HISTO MRS and Q-Dixon MRI, specifically in the 
context of thigh and paravertebral muscle fat content. The 
use of volumetric measurements even combined with the 
freehand delineation can provide a more comprehensive 
understanding of the spatial distribution of fat within the 
muscles, which necessitates a more extensive exploration 
and validation of volumetric PDFF measurements via 
Q-Dixon MRI.

The primary objective of this study is to validate the 
accuracy of volumetric Q-Dixon cubic VOI PDFF for 
quantifying the fat content in thigh and paravertebral 
muscles, using HISTO MRS PDFF as the reference 
standard. In addition, we aim to highlight the enhanced 
clinical applicability of volumetric Q-Dixon freehand VOI 
PDFF compared to cubic VOI PDFF. Ultimately, our 
research aspires to solidify the role of volumetric Q-Dixon 
PDFF as an essential tool in radiology, thereby facilitating 
more comprehensive and robust assessments of MFI. 
We present this article in accordance with the STROBE 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-24-127/rc).

Methods

Study population

This study was a retrospective analysis of prospectively 
collected data, which was conducted according to the 
principles of the Declaration of Helsinki (as revised in 2013) 
and in accordance with the current scientific guidelines. 
The study protocol was approved by the institutional ethics 
committee of Beijing Jishuitan Hospital (No. 202112-11-
01). Written informed consent was obtained from each 
subject prior to examination.

One hundred and ten adults were recruited from 
February 2022 to August 2023 in Beijing Jishuitan Hospital. 
Of these, the thigh muscles of only 54 subjects were 
measured (thigh muscle group), while the paravertebral 
muscles of the remaining 56 subjects were measured 
(paravertebral muscle group). The age of participants was 
widely distributed between 19 and 89 years. Inclusion 
criteria were adults more than 18 years old with complaints 
of back pain, muscle weakness, or limited mobility 

warranting an MRI evaluation of the thigh or lumbar 
region in Beijing Jishuitan Hospital. Exclusion criteria were 
pregnant women, individuals with pacemakers or certain 
metal implants; or people who had a history of surgical or 
invasive procedures in the thigh or lumbar region within 
the past year; or individuals who were intolerant of MRI 
examination because of claustrophobia or psychiatric 
conditions. No subjects were excluded based on the above 
criteria (Figure 1).

Magnetic resonance examination

Magnetic resonance examination was performed on 
a 3-Tesla MR system (MAGNETOM Vida, Siemens 
Healthcare, Erlangen, Germany), with a flexible 18-channel 
body radiofrequency surface coil for the thigh and a phased-
array spine coil for lumbar paravertebral muscles in supine 
position with headfirst towards the MR system. Apart 
from the Q-Dixon MRI and HISTO MRS protocol, a 
conventional clinically common T1w turbo spin echo (TSE) 
sequence for high-resolution anatomical reference was 
obtained. All detailed imaging parameters are summarized 
in Table 1.

Images of the left thigh quadriceps femoris (from the 
proximal border of the patella to the superior aspect of 
the femoral lesser trochanter) or lumbar paravertebral 
muscles were obtained in both Q-Dixon MRI and T1w 
TSE sequence. Quadriceps femoris in the thigh and the 
paravertebral muscles in the L4/L5 intervertebral level were 
chosen because both of them could be separated well from 
surrounding muscles or tissues and were large enough to 
encompass the entire HISTO MRS VOI (20×20×20 mm3 
for paravertebral muscle; 30×30×30 mm3 for thigh muscle) 
in all subjects. 

HISTO MRS protocol and MRS measurement

The spectroscopy method for quantitative muscle fat 
measurement was a single-voxel HISTO MRS sequence, 
which was performed in the stimulated echo acquisition 
mode (STEAM) and could quantify lipid percentages by 
correcting for the R2 relaxation of water and fat (22). The 
reconstructed axial, coronal, and sagittal planes of T1w 
images were used to guide the localization of the left mid-
thigh quadriceps femoris or the left paravertebral muscles 
in L4/L5 intervertebral level with the HISTO MRS 
VOI placement. The HISTO MRS VOI was positioned 
on three-planes reconstructed from the T1w localizing 

https://qims.amegroups.com/article/view/10.21037/qims-24-127/rc
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Adults warranting an MRI evaluation of thigh or 

lumbar region (n=110)

from February 2022 to August 2023

MRI examination of left thigh  

(n=54)

MRI examination of lumbar paravertebral 

muscles (n=56) 

Q-Dixon MRI HISTO MRS Traditional T1-weighted imaging  

Quantitative MFI measurement Visual MFI evaluation  

Q-Dixon cubic 

VOI PDFF

Q-Dixon freehand 

VOI PDFF

HISTO 

MRS PDFF
Goutallier classifications  

  Data analysis  

Figure 1 Flowchart summarizes the study design. MRI, magnetic resonance imaging; Q-Dixon, quantitative Dixon; HISTO, high-speed 
T2-corrected multi-echo; MRS, magnetic resonance spectroscopy; MFI, muscle fat infiltration; VOI, volume-of-interest; PDFF, proton 
density fat fraction.

Table 1 Imaging parameters of MRI protocol

Sequence T1w TSE HISTO MRS Q-Dixon MRI

TR (msec) 3.88 3,000 8.82

TE (msec) 2.46 12/24/36/48/72 1.05/2.46/3.69/4.92/6.15/7.38

TM (msec) – 10 –

Spatial resolution (mm3) 1.4×1.4×3.0 – 1.4×1.4×3.0

HISTO MRS VOI size (mm3) – 20×20×20 or 30×30×30a –

Slice thickness (mm) 3.0 – 3.0

Slices 104 – 104

FOV (mm2) 450×390 – 450×390

FA (°) – 90 4

BW (Hz/px) 1,042 1,200 1,080

NA 1 1 1

TA (min:sec) 0:12 0:15 0:17
a, the size of HISTO MRS VOI is 20×20×20 mm3 for paravertebral muscle and 30×30×30 mm3 for thigh muscle. MRI, magnetic resonance 
imaging; T1w, T1-weighted; TSE, turbo spin echo; HISTO, high speed T2-corrected multi-echo; MRS, magnetic resonance spectroscopy; 
Q-Dixon, quantitative Dixon; TR, repetition time; TE, echo time; TM, mixing time; VOI, volume-of-interest; FOV, field of view; FA, flip angle; 
BW, bandwidth; NA, number of acquisitions; TA, acquisition time.
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images, avoiding the main vessels and femoral bone by the 
MR technologist at the time of the HISTO MRS scan. 
Additionally, the dimensions of the HISTO MRS VOI 
were specified as 20×20×20 mm3 for the left paravertebral 
muscles and 30×30×30 mm3 for the left thigh muscles. The 
rationale behind this differentiation is that thigh muscles, 
being generally bulkier, are more accurately represented 
with a 30×30×30 mm3 cubic VOI for optimal PDFF 
analysis. However, the paravertebral muscles, being thinner, 
necessitate a smaller VOI of 20×20×20 mm3 to avoid 
including areas beyond the muscle boundaries.

The HISTO MRS VOI was placed in the upper-middle 
part of the quadriceps femoris without macroscopic fatty 
septa, if possible. Additionally, the HISTO MRS VOI could 
not exceed the outer edges of the quadriceps femoris in the 
axial, coronal, and sagittal planes. The center of the HISTO 
MRS cubic VOI was located in the quadriceps femoris 
starting at approximately 8 cm below the lower border of 
the lesser trochanter. The basic placement principle for 
the HISTO MRS VOI within paravertebral muscles in 
L4/L5 level aligns with the method described in the prior 
paragraph. The positioning of the HISTO MRS VOI is 
visualized in Figure 2. Following the completion of the 
HISTO MRS sequence scan, the HISTO MRS PDFF value 
was automatically generated.

Q-Dixon MRI protocol and MRI measurement

The Q-Dixon MRI is a multi-echo three-dimensional (3D) 
gradient echo (GRE) volumetric interpolated breath-hold 
examination (VIBE) T2*-corrected 6-point (6pt) Q-Dixon 
sequence, which is used to generate water, fat, T2*, R2*, 
in-phase and opposed-phase images (31). Finally, PDFF 
map reconstruction could be automatically completed. 
Reconstructed PDFF maps of the Q-Dixon sequence 
were processed with open-source software ITK-SNAP  
(version 3.6) (33) for the data extraction. 

To compare fat measurements between the Q-Dixon and 
HISTO MRS sequence, the locations of Q-Dixon MRI 
cubic VOIs were manually placed in the same position on 
the quadriceps femoris or lumbar paravertebral muscles 
using the axial, coronal, and sagittal planes for the same 
participant as far as possible according to precise spatial 
coordinates of HISTO MRS cubic VOIs (Figure 2). The 
VOIs—20 mm cubic for paravertebral muscles and 30 mm 
cubic for thigh muscles—were manually positioned on the 
Q-Dixon PDFF images.

On Q-Dixon MRI, the volumetric PDFF, derived from 

freehand segmentation of left side of the quadriceps or the 
left paravertebral muscles (inclusive of the erector spinae 
and multifidus, along with the intermuscular fascia), was 
also evaluated. This type of freehand-delineated VOI is 
termed Q-Dixon freehand VOI, with the corresponding 
PDFF referred to as Q-Dixon freehand VOI PDFF. The 
freehand VOI was delineated on each 3 mm thick axial 
slice, spanning 10 slices for the thigh muscle and 7 slices for 
the paravertebral muscle. The central slice was positioned 
approximately 8 cm below the lower border of the lesser 
trochanter (Figure S1), ensuring the entirety of the HISTO 
MRS VOI was encompassed within the selected slices 
(Figure 2).

All the Q-Dixon MRI cubic VOI placement and freehand 
segmentations were measured by two radiologists (Reader 
1 and Reader 2) respectively to determine the interobserver 
precision, who were blinded to HISTO MRS PDFF 
results and each other’s findings. For each VOI, the values 
measured independently by two readers were averaged 
to obtain a final value, which was then used for statistical 
analysis. This approach was consistently applied to both 
the Q-Dixon cubic VOI PDFF and the Q-Dixon freehand 
VOI PDFF. Repeated measurements were performed in 
a randomly selected group comprising 15 subjects each 
from both the thigh and paravertebral groups, totaling 30 
subjects, to assess the intraobserver variability by one reader 
(Reader 1) after a six-week internal on the Q-Dixon PDFF 
images.

Visual MFI evaluation in T1w imaging

The T1w MR images were independently graded based on 
a Goutallier classification (34) by two radiologists (Reader 
1, with 6 years of experience; and Reader 2, with 5 years 
of experience) as grade 0 (G0, no fatty streaks), grade 1 
(G1, some fatty streaks), grade 2 (G2, more muscle than 
fat), grade 3 (G3, as much fat as muscle) and grade 4 (G4, 
less muscle than fat). Any disagreement  was resolved 
by discussion and consensus including a third more 
experienced reader (Reader 3, with 12 years of experience). 
The final agreed classifications were formulated and 
available for further analysis.

Statistical analysis

Statistical analysis was performed by using the SPSS 
software (version 26, IBM Corp. Armonk, NY, USA) 
and GraphPad Prism (Version 7.04, GraphPad Software 

https://cdn.amegroups.cn/static/public/QIMS-24-127-Supplementary.pdf
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Figure 2 Localization diagrams for VOI measurements of left quadriceps femoris and left paravertebral muscles fat content on HISTO MRS and 
Q-Dixon MRI. Axial, coronal, and sagittal images of the left thigh in a 47-year-old woman (A1-A3) and the paravertebral muscles in a 69-year-old 
man (B1-B3) reconstructed from 3D T1w images were used for HISTO MRS VOI localization. Matching axial, coronal, and sagittal views from 
Q-Dixon fat fraction mapping depict Q-Dixon cubic VOI PDFF [(A4-A6) thigh, (B4-B6) paravertebral muscles] and freehand PDFF [(A7-A9) thigh, 
(B7-B9) paravertebral muscles]. The size of cubic VOI is 30×30×30 mm3 for thigh muscle (A1-A6) and 20×20×20 mm3 for paravertebral muscle  
(B1-B6). VOI, volume-of-interest; HISTO, high-speed T2-corrected multi-echo; MRS, magnetic resonance spectroscopy; Q-Dixon, quantitative 
Dixon; MRI, magnetic resonance imaging; 3D, three-dimensional; T1w, T1-weighted; PDFF, proton density fat fraction.

A1

B1

B4

B7

A2

B2

B5

B8

A3

B3

B6

B9

A4

A7 A8 A9

A5 A6



Zhang et al. Q-Dixon vs. HISTO in thigh and paravertebral muscle fat4496

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4490-4505 | https://dx.doi.org/10.21037/qims-24-127

Table 2 Characteristics in thigh group and paravertebral muscles group

 Parameters Total
G grades

P value
0 1 2

Thigh group

Sample size (n) 54 8 37 9 –

Age (years) 61.5 (52.2, 68.5) 53.9 (42.6, 67.0) 58.8 (51.8, 67.3) 64.5 (63.9, 78.4) 0.06

Gender (male), n (%) 38 (70.4) 7 (87.5) 28 (75.7) 3 (33.3) 0.23

BMI (kg/m2) 21.7 (20.1, 25.0) 22.0 (21.3, 24.9) 20.8 (19.7, 24.3) 23.5 (21.0, 27.4) 0.36

HISTO MRS PDFF (%) 6.05 (4.25, 11.91) 2.72 (1.33, 3.80) 5.90 (4.84, 9.54) 18.11 (14.50, 27.03) <0.001

Q-Dixon cubic VOI PDFF (%) 6.52 (4.44, 11.11) 3.25 (3.02, 3.70) 6.42 (4.92, 8.10) 16.58 (14.87, 24.50) <0.001

Paravertebral muscles group

Sample size (n) 56 18 21 17 –

Age (years) 51.4 (37.7, 60.8) 38.2 (29.8, 44.5) 54.5 (42.8, 59.2) 65.2 (53.8, 68.4) <0.001

Gender (male), n (%) 22 (39.3) 8 (44.4) 8 (38.1) 6 (35.3) 0.85

BMI (kg/m2) 23.7 (22.6, 26.1) 23.7 (21.5, 24.9) 26.0 (22.7, 27.0) 23.4 (22.6, 26.1) 0.28

HISTO MRS PDFF (%) 9.70 (6.14, 17.32) 4.86 (2.99, 6.14) 9.79 (8.24, 14.51) 20.05 (17.58, 22.06) <0.001

Q-Dixon cubic VOI PDFF (%) 9.58 (5.61, 17.66) 4.54 (3.48, 5.61) 9.77 (7.93, 14.27) 19.99 (18.08, 21.80) <0.001

The distribution of characteristics is based on MR classification. Statistical difference analysis is performed between different 
Goutallier grades by using Chi-square tests for categorical variables and Kruskal-Wallis H tests for continuous variables. 
Continuous variables are presented as medians (25th quartile, 75th quartile). Categorical variables were expressed as numbers 
and percentages. P<0.05 represents statistically significant. G grades, Goutallier grades; BMI, body mass index; HISTO, high-
speed T2-corrected multi-echo; MRS, magnetic resonance spectroscopy; PDFF, proton density fat fraction; Q-Dixon, quantitative 
Dixon; VOI, volume-of-interest; MR, magnetic resonance.

Inc.). Continuous variables were expressed as means ± 
standard deviation or medians (25th quartile, 75th quartile). 
Categorical variables were expressed as numbers and 
percentages. The Shapiro-Wilk normality test was used to 
assess continuous data distribution. Interobserver reliability 
analysis of visual MFI evaluation in T1w images between 
two radiologists (Reader 1 and Reader 2) was performed 
with weighted Cohen’s kappa coefficient (weighted κ 
values), which were interpreted as follows: 0 (poor), 0–0.20 
(slight), 0.21–0.40 (fair), 0.41–0.60 (moderate), 0.61–0.80 
(substantial), and 0.81–1.0 (almost perfect agreement) 
(34). Inter- and intra-observer agreement of quantitative 
Q-Dixon PDFF results were determined by calculating 
the intraclass correlation coefficient (ICC), which was 
interpreted as follows: ≤0.40 (poor), 0.40–0.58 (fair), 
0.59–0.75 (good), and >0.75 (excellent) (34). HISTO MRS 
PDFF and Q-Dixon PDFF measurements were plotted 
as histograms, and the mean and standard deviation (for 
normal distribution) or median and interquartile range 
(for nonnormal distribution) were calculated. Scatterplots, 
Bland-Altman plots, and Spearman correlation coefficients 

were used to examine the relationship between HISTO 
MRS PDFF and Q-Dixon PDFF. The Wilcoxon signed 
rank test with Bonferroni correction was used for pairwise 
comparisons between HISTO MRS PDFF, Q-Dixon 
cubic VOI PDFF, and Q-Dixon freehand VOI PDFF. 
Furthermore, we also compared the differences between 
HISTO MRS PDFF and Q-Dixon cubic VOI PDFF in 
distinct Goutallier grades (G0–G2) groups and in various 
HISTO MRS fat fraction groups (<5%, 5–9.9%, 10–14.9% 
and ≥15%), respectively. The Kruskal-Wallis H tests 
followed by Bonferroni-corrected post hoc tests were 
analyzed to compare quantitative parameter differences 
with visual MFI-evaluated grades. P values <0.05 were 
considered to indicate statistical significance. 

Results

The characteristics of the thigh and paravertebral muscle 
groups are detailed separately in Table 2. All MR sequences 
were successfully implemented without technical problems, 
and detailed MRI data were available for all subjects.
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Table 3 Inter- and intraobserver agreement for visual and quantified evaluation

Parameters Weighted κ/ICC 95% CI P value

Interobserver agreement

G grades 0.541a 0.408–0.675 <0.001

Q-Dixon cubic VOI PDFF (%) 0.927b 0.895–0.949 <0.001

Q-Dixon freehand PDFF (%) 0.908b 0.869–0.936 <0.001

Intraobserver agreement

Q-Dixon cubic VOI PDFF (%) 0.932b 0.862–0.967 <0.001

Q-Dixon freehand PDFF (%) 0.912b 0.823–0.957 <0.001
a, interobserver reliability analysis of visual MFI evaluation was performed with weighted κ values; b, inter- and intraobserver agreement 
of quantitative Q-Dixon PDFF were determined by ICC. P<0.05 represents statistically significant. Weighted κ, weighted Cohen’s kappa 
coefficient; ICC, intraclass correlation coefficient; CI, confidence interval; G grades, Goutallier grades; Q-Dixon, quantitative Dixon; VOI, 
volume-of-interest; PDFF, proton density fat fraction.

Interobserver agreement of initial visual MFI evaluations 
in T1w images by Reader 1 and Reader 2 was relatively low 
(Table 3). Following consensus, 52.7% (58/110) of participants 
were classified as Goutallier grade 1, with both grades 0 and 
2 representing 23.6% (26/110) each. Additionally, no subjects 
were classified with a grade of 3 or 4.

Distribution of HISTO MRS PDFF and Q-Dixon cubic 
VOI PDFF measurements

Figure 3  shows the distributions of the volumetric 
measurements of HISTO MRS PDFF and Q-Dixon cubic 
VOI PDFF, respectively, plotted as histograms. The HISTO 
MRS PDFF ranged from 1.02% to 37.35% for thigh 
(Figure 3A) and 0.59% to 26.45% for paravertebral muscles 
(Figure 3E), compared with 2.08% to 38.39% for thigh 
(Figure 3B) and 1.39% to 24.59% for paravertebral muscles 
(Figure 3F) respectively for the Q-Dixon cubic VOI PDFF 
measurements. The description of data distribution is detailed 
in Table 2. As a measure of repeatability, both interobserver 
and intraobserver agreements of quantitative Q-Dixon cubic 
VOI PDFF were found to be excellent (Table 3).

Correlation, Bland-Altman analysis, and comparisons of 
HISTO MRS and Q-Dixon PDFF measurements

Figure 3 shows the scatterplot and Bland-Altman plot, 
respectively, of HISTO MRS PDFF against Q-Dixon cubic 
VOI PDFF. For the 54 thigh muscles (Figure 3C,3D), the 
scatterplot has a positive correlation (r2=0.96; P<0.001) 
with an overall bias of −0.04%, and the Bland-Altman plot 

shows that 96.3% (52/54) of the measured values were 
within the 95% limit of agreement for HISTO MRS PDFF 
and Q-Dixon cubic VOI PDFF. For the 56 paravertebral 
muscles (Figure 3G,3H), scatterplots and Bland-Altman 
plots showing similar outcomes are comprehensively 
depicted. Wilcoxon signed-ranks test showed that there was 
statistically no significant difference between HISTO MRS 
PDFF and Q-Dixon cubic VOI PDFF in MFI quantified 
measurements of quadriceps femoris (P=0.82) and lumbar 
paravertebral muscles (P=0.29). However, PDFF values 
from cubic VOIs in both Q-Dixon MRI and HISTO MRS 
significantly differed from the volumetric PDFF obtained 
via freehand delineation on Q-Dixon MRI (all P<0.001; 
Figure S2). 

In different Goutall ier grades (G0–G2) groups  
(Figure 4), there was no statistically significant difference 
between HISTO MRS PDFF and Q-Dixon cubic VOI 
PDFF, as well as in the 5–9.9%, 10–14.9% and ≥15% 
HISTO MRS PDFF groups (Figure 5). However, in 
the group of <5% HISTO MRS PDFF (Figure 5), the 
compared Wilcoxon signed-rank test showed that there was 
a significant statistical difference between HISTO MRS 
PDFF and Q-Dixon cubic VOI PDFF, which indicates that 
in cases of minimal MFI (PDFF <5%), the Q-Dixon cubic 
VOI PDFF measurements lack precision.

Table 2 also shows Kruskal-Wallis H and Bonferroni-
corrected post hoc  tests of cubic VOI PDFF measured 
by HISTO MRS and Q-Dixon MRI among different 
Goutallier grades. Cubic VOI PDFFs were statistically 
different for grades acquired by Q-Dixon MRI (P<0.001) 
and by HISTO MRS (P<0.001). The results indicate that, 

https://cdn.amegroups.cn/static/public/QIMS-24-127-Supplementary.pdf
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whether for the 54 participants in the thigh group, or the 
56 in the paravertebral muscles group, cubic VOI PDFFs 
determined by Q-Dixon MRI and by HISTO MRS were 
statistically different among different Goutallier grades (all 
P<0.001).

Discussion

In the present study, we analyzed the correlation and 
consistency of cubic volumetric muscle fat content as 
measured by 6pt Q-Dixon MRI and HISTO MRS in 
both the thigh and paravertebral muscles. Further, we 
explored and compared the discrepancies between the 
freehand segmentation of volumetric Q-Dixon PDFF and 
the cubic VOI PDFF of either Q-Dixon MRI or HISTO 
MRS. One of the primary emphases of this research is to 
underscore the practicality and applicability of volumetric 
measurements in assessing muscle fat content. Another focal 
point is to provide data-driven evidence that the volumetric 

PDFF values measured by Q-Dixon MRI are accurate and 
reliable. Specifically, in inhomogeneous tissues like muscles, 
the freehand segmentation of volumetric Q-Dixon PDFF 
more accurately reflects the true nature of fat infiltration 
than the cubic VOI PDFF does.

Firstly, our investigation demonstrated that volumetric 
PDFF measurements obtained using Q-Dixon MRI in 
cubic VOIs exhibited robust correlation and agreement 
with HISTO MRS PDFF, which served as the reference 
standard for quantifying muscle fat content in both the 
thigh and paravertebral regions. This finding substantiates 
the reliability and accuracy of Q-Dixon MRI for assessing 
volumetric MFI. Importantly, using volumetric Q-Dixon 
freehand VOI PDFF measurements provides a more 
comprehensive view of muscle fat distribution. This method 
captures the inherent heterogeneity and subtle variations 
of fatty infiltration throughout the delineated muscle 
volume. While areal assessments provide only a snapshot, 
volumetric evaluations offer a detailed view of the muscle 
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fat distribution, ensuring a comprehensive representation 
of fatty infiltration. Our study demonstrates the clinical 
applicability and potential value of employing volumetric 
measurements from Q-Dixon MRI in clinical assessments, 
especially Q-Dixon freehand VOI PDFF measurements.

Secondly, the observed inter- and intraobserver 
agreement for the volumetric Q-Dixon cubic VOI PDFF 
was excellent. This outstanding reliability can be largely 
attributed to the precise process adopted during the 
delineation of the cubic VOI on Q-Dixon. Given the 
inherent properties of the sequence, Q-Dixon PDFF 
map has a relatively lower spatial resolution, leading to 
suboptimal representation of detailed anatomical structures. 
Additionally, the coronal, sagittal, and axial positioning 
of the HISTO MRS VOI during scanning was based on 
T1w images. Given these challenges, our study opted to 
identify the spatial coordinates of the HISTO MRS VOI 
on the T1w images first, cross-referencing this with the 
specific anatomical structure of the muscle. Subsequently, 
a volumetric mask, mirroring the volume of the HISTO 
MRS VOI, was delineated on the T1w images. This mask 
was then matched to the Q-Dixon PDFF map to derive 
the corresponding volumetric Q-Dixon cubic VOI PDFF 
value. This process significantly minimized the potential for 
subjective measurement errors. Furthermore, our results 
substantiated that, in terms of inter- and intraobserver 
agreement, the volumetric Q-Dixon cubic VOI PDFF 
measurements offered superior reliability compared to the 
conventional Goutallier classification system used for visual 
MFI evaluation.

Interestingly, this study observed that in the <5% 
HISTO MRS PDFF group, there was a significant 
discrepancy between HISTO MRS PDFF and Q-Dixon 
cubic VOI PDFF (Figure 5). However, no significant 
differences were found in either the <10% HISTO MRS 
PDFF group or the 5–9.9% HISTO MRS PDFF group. 
This suggests that while both methods generally align well, 
when the muscle fat fraction is less than 5%, the Q-Dixon 
cubic VOI PDFF shows some deviation compared to the 
HISTO MRS PDFF. Similar findings have been mentioned 
in previous studies (25,35). One potential explanation is 
that in MRI analyses, particularly in low-fat regions, image 
noise significantly impacts accuracy due to its non-zero 
mean distribution after magnitude operations, unlike the 
standard Gaussian distribution with a zero mean. This 
anomaly, prominent in areas with minimal fat, artificially 
elevates signal values within the ROI, leading to an 
overestimation of fat percentages. Therefore, recognizing 

this noise behavior is crucial for enhancing the precision of 
fat quantification in MR images, especially in contexts of 
low-fat fractions.

Additionally, our study demonstrated that the volumetric 
freehand VOI Q-Dixon PDFF, obtained from delineating 
one side of the quadriceps and the paravertebral muscles, 
differed statistically from both the Q-Dixon cubic VOI 
PDFF and the HISTO MRS PDFF. This result further 
underscores the limitations of using cubic VOI PDFF for 
measuring fat content in inhomogeneous tissues like muscle, 
suggesting that cubic VOI PDFF may not adequately 
represent the entire muscle due to the inhomogeneity of 
fatty infiltration. Grimm et al. (32) previously reported that 
the repeatability errors of HISTO MRS VOI PDFF in 
muscle tissue were pronounced due to the inhomogeneity, 
elasticity, and susceptibility to deformation of muscle tissue. 
Furthermore, the viewpoint that cubic VOI MRS is unable 
to assess the heterogeneity of MFI in skeletal muscle is also 
recognized in the expert consensus paper (36). Our findings, 
from the perspective of overall representativeness, resonate 
with the emphasis on the repeatability of the study by 
Grimm et al., further collectively emphasizing the clinical 
practicability of volumetric Q-Dixon freehand VOI PDFF 
in MFI assessments.

Grimm et al. (37) reported the accuracy of 6-point 
Dixon MRI and MRS in measuring thigh muscle fat, but 
their study did not involve freehand volumetric PDFF 
measurements of Q-Dixon MRI. Agten et al. (25) confirmed 
the reliability of the multi-echo Dixon sequence for 
evaluating early fatty infiltration (within Goutallier grades 
0–1) in the supraspinatus muscle, and its results were 
comparable to MRS. However, their study utilized areal 
Dixon PDFF in muscles with minimal fat infiltration. The 
homogeneity of the muscle tissue may lead to the alignment 
between areal Dixon PDFF and MRS PDFF, limiting its 
applicability in cases with uneven fat distribution. Our study 
highlights the significance of volumetric measurements, 
distinguishing it from the earlier research by Agten et al. 
Our study expands the scope to include evaluation of thigh 
and paravertebral muscles, covering Goutallier grade 0–2. 
Additionally, our findings revealed poor agreement between 
the two observers regarding Goutallier grades. Potential 
factors that may affect the reliability of Goutallier grading 
in our study include variations in image quality, differences 
in interpretation criteria among observers, and the inherent 
challenges of visually grading MFI, especially in cases with 
lower fat content. This suggests to some extent that the 
qualitative assessment method, Goutallier classification, 
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may not be as precise or robust as quantitative parameters. 
This conclusion is consistent with the outcomes previously 
published by our team (38). Overall, the application of 
volumetric measurements offers a more comprehensive 
understanding of muscular changes and fat infiltration, 
especially in cases with inhomogeneous fat distribution. 
While multiple studies have reported on PDFF accuracy 
in the liver, in-depth discussions on Dixon PDFF in the 
muscle domain remain limited (22,23,39).

To the best of our knowledge, no prior studies have 
emphasized the volumetric measurements of Q-Dixon 
PDFF in the paravertebral muscles. Importantly, none have 
provided empirical evidence demonstrating the practicality, 
objectivity, and comprehensive representativeness of 
volumetric Q-Dixon freehand VOI PDFF in evaluating 
MFI within both thigh and paravertebral muscles, especially 
in mildly inhomogeneous muscle tissues. Interestingly, 
the subjects in our study exhibited relatively mild MFI 
(Goutallier grade 0–2). Notably, even with this mild fat 
infiltration, significant differences between cubic VOI 
PDFF and freehand VOI PDFF were observed. This 
suggests that, in instances of more severe and heterogeneous 
MFI, the discrepancy between cubic VOI PDFF and the 
actual overall MFI could be even more pronounced.

This study presented several strengths. Firstly, the 
thorough spatial registration method between the core 
positions of the Q-Dixon MRI VOIs and the HISTO MRS 
VOIs ensured the comparability of Q-Dixon and HISTO 
MRS PDFF measurements. Secondly, attention was paid 
to both the cubic VOI and the freehand segmentation 
corresponding to volumetric Q-Dixon PDFF. Furthermore, 
these measurements of volumetric PDFF were validated 
in two distinct anatomical muscle groups, the lower limb 
muscles, and the paravertebral muscles. 

Several limitations of our study deserve consideration. 
First, the number of participants was limited, and none 
of the evaluated muscles exhibited severe fat infiltration 
classified as Goutallier grade 3/4. Second, although 
manually delineating the VOI by experienced hands took 
about a minute, the application of Artificial Intelligence for 
fully automated segmentation and measurement has the 
potential to significantly boost efficiency (40). Our research 
team is actively exploring such AI-assisted approaches. 
Thirdly, the HISTO MRS technique, instead of the 
biochemical extraction or histopathology was used for 
reference, which could potentially introduce bias and might 
have the potential to bias results. However, invasive biopsies 

for muscle fat evaluation are practically infeasible in clinical 
settings. Lastly, this investigation primarily compared 
different MR methodologies and did not delve into clinical 
correlations. Nonetheless, our study importantly lays the 
technical groundwork for subsequent research on MRI-
based muscle fat quantification and its associations with 
diverse clinical outcomes.

Conclusions

In summary, volumetric measurements using Q-Dixon 
cubic VOI PDFF overall exhibited good correlation and 
consistency with HISTO MRS PDFF considered as the 
reference standard for quantitative fat assessment in both 
thigh and paravertebral muscles. Notably, in the context of 
inhomogeneous muscle tissues, freehand segmentation of 
volumetric Q-Dixon PDFF provides a more comprehensive 
reflection of actual MFI compared to cubic VOI PDFF. 
Therefore, Q-Dixon MRI, focusing on volumetric freehand 
PDFF, could serve as a reliable alternative to HISTO MRS 
for the rapid quantification of volumetric fat depositions in 
muscle for future clinical applications.
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