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Abstract

Objectives

To use next generation sequencing to characterize the microbiota of horses during healing

of skin wounds in two anatomical locations (body and limb) known to present different heal-

ing patterns; and to investigate the impact of bandaging on bacterial communities of skin

wounds located on the limbs of horses.

Methods

Full-thickness skin wounds were created on the distal extremity of both thoracic limbs

and on one lateral mid-thoracic wall of four healthy horses. Limb wounds were randomly

assigned to bandaging or not. A full-thickness sample was collected with a biopsy punch

from intact thorax and limb skin (T0) and from the margin of one wound per site (thorax,

unbandaged limb, bandaged limb) 1 week (T1) and 2 weeks (T2) postoperatively, and at full

healing (T3). Thoracic skin samples obtained from three healthy horses were included in the

analysis as controls.

Results

Anatomic location (thorax vs. limb) significantly influenced bacterial composition of equine

skin and healing wounds. Fusobacterium and Actinobacillus were strongly associated with

limb wounds during the initial phases of healing. Bandaging had a significant impact on the

microbiota during the healing process. The skin microbiota after healing was more similar to

samples from controls, demonstrating the resilience and stability of the environment.

Conclusions

Equine skin microbiota is a rich and stable environment that is disturbed by wounding, but

returns to its previous stage after full healing. Anatomic location significantly influences bac-

terial composition of the equine skin during wound healing. Bandaging has a significant

impact on the skin microbiota of horses during the healing process. Results of this study
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provide new insight for a better understanding of the contribution of bacteria to wound heal-

ing in horses and may facilitate the future development of therapeutic strategies using com-

mensal bacteria.

Introduction

Wound management is an important component of equine practice because horses’ “flight

instinct” predisposes them to injury [1–4]. Trauma to the skin often requires labour-intensive

treatment, which generates significant financial commitment, since primary closure is seldom

successful and second intention healing is fraught with complications [5]. Healing wounds in

horses often become chronic, especially when they are located on the limb, where persistent

inflammation is associated with the development of exuberant granulation tissue (EGT) [6].

Many factors may impair wound healing, most notably bacterial infection [5]. In humans,

skin contains up to one billion microorganisms/cm2, collectively referred to as the microbiota,

which provides protection against disease when skin is intact [7]. When injury compromises

the skin barrier, microbes can populate sterile tissues leading to bacterial overgrowth and

infection, which delay and complicate wound healing. Wounds at the distal extremity of the

horse’s limb are highly susceptible to infection as the limb is often contaminated with feces

and soil.

Chronic wounds in humans are polymicrobial, with bacterial populations cooperating to

promote their survival in a biofilm, thereby perpetuating the chronic nature of the infection

[8]. Biofilm is defined as a community of microorganisms attached to a surface, or to each

other, who live within a self-synthetized three-dimensional matrix of extracellular polymeric

substances [9]. This structure can contain one or more species and enhances the resistance to

the host’s immune response and to antimicrobial agents. A few studies reported the presence

of biofilm in the wounds of horses [10,11], suggesting that biofilm might impair wound heal-

ing also in this species. Jorgensen et al. (2017) detected biofilm in experimental wounds on the

limb but not on the body of horses; moreover, biofilm was significantly more prevalent in limb

wounds that were bandaged [12]. That study suggested that intact skin microbiota may differ

according to anatomic location in horses and that high biofilm burden in limb wounds might

relate to proximity to an extreme bacterial load (i.e. ground), and to management practices.

Despite the evident importance of the role of bacteria in wound healing, the full skin micro-

biota has been just recently explored in the horse [13].

Until recently, microbiologists have mostly relied on culture techniques to elucidate the

complexity of infections. However, culture techniques detect only organisms that grow readily

in laboratory media (5–20% of bacterial species) [14] and bacteria in chronic wound patho-

genic biofilms are generally recalcitrant to culture. Moreover, culture of isolates collected

using a swab can lead to an overrepresentation of surface bacteria and an underrepresentation

of isolates residing deeply within the wound [15]. In horses, the microbiology of intact skin

and of wounds has been scantly documented, mostly using conventional techniques such as

Gram staining, aerobic and anaerobic culturing, or denaturing gradient gel electrophoresis

[10,11,16]. Consequently, information is lacking on the characterization of bacterial popula-

tions that occur in association with chronic wounds in horses.

Next generation sequencing (NGS) has been used to characterize the chronic wound micro-

biota of human patients [17], and to measure the impact of various therapeutic alternatives to

standard antimicrobials, for example commensal microbiota [18] or probiotics [19] in an
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effort to curb antimicrobial resistance. Notably, NGS diagnostics led to a 22.9% faster healing

rate compared to culture information [20], consistent with literature reporting that the use of

molecular surveys enables detection of bacterial species undetected by culture-based reporting.

A better understanding of horse skin microbiota and bacterial populations associated with

chronic wound pathogenic biofilms should enable development of next generation therapeu-

tics and may be achieved through the use of novel molecular techniques, such as NGS.

The objectives of this study were to use NGS to investigate the microbiota of a group of

horses in two anatomical locations (thoracic wall and distal limb) during the early and late

healing phases in experimental full-thickness excisional skin wounds; and to investigate the

effects of bandaging on the bacterial communities of skin wounds on the distal limb.

Materials and methods

Wound model

Archived samples collected as part of another study and obtained from four healthy mixed

breed mares, 5–12 years of age, with no evidence of dermatological disease, wounds or scars,

were used in the study. Horses were bought from a local private dealer where they access to ad
libitum hay and were turned-out outside in a large paddock during the day and kept in stalls

overnight. Prior to the study, horses were dewormed and vaccinated (tetanus, encephalitis,

influenza and rabies) and allowed an acclimation period of 2 weeks following purchase. Horses

were kept in individual box stalls on wood shavings changed daily, and allowed ad libitum
access to grass hay and water. Each horse was examined daily for signs of discomfort, lame-

ness, and systemic illness; vital parameters, appetite, as well as bandages, were evaluated. The

study was conducted in compliance with guidelines for the care and use of laboratory animals

as sanctioned by the Canadian Council on Animal Care and approved by the Institutional Ani-

mal Care and Use Committee of the University of Montreal (#15-Rech-1811).

Horses were restrained in stocks and sedated (detomidine hydrochloride 0.01mg/kg, butor-

phanol tartrate 0.04mg/kg, iv), then a square area of 25cm X 25cm on one randomly assigned

thoracic wall, and on the surface of both metacarpal regions, was clipped and surgically pre-

pared by scrubbing with 2% chlorhexidine gluconate soap for 5 minutes and rinsing with iso-

propyl alcohol. Local anesthesia was performed using 2% lidocaine hydrochloride: an inverted

L-block was used just below the carpus to desensitize the dorsolateral surface of the cannon

while an inverted L-block performed craniodorsally to the wound area desensitized the tho-

racic wall. Based on a previously established equine wound model [21], with some variations,

full-thickness skin wounds were created on the distal extremity of both thoracic limbs (two,

6.25cm2 wounds per limb, placed 4cm apart—model of chronic wound healing) and on one

lateral mid-thoracic wall (two, 15cm2 wounds placed 4cm apart—model of normal wound

healing) [22]. All wounds were left to heal by second intention. The wounds on the right or left

limb were randomly assigned to bandaging (model of EGT) [23] and the contralateral wound

was left uncovered. Bandaged limbs received a traditional half-limb bandage consisting of a

low-adherent gauze-like dressing (Melolite, Smith & Nephew) covered by cotton wool roll

held in place with an adhesive tertiary layer. Bandages were changed every 2–3 days until 4

weeks post-wounding (estimated time to the start of the remodeling phase), then wounds were

left uncovered until full healing. Wounds developing EGT, defined as irregular granulation tis-

sue with many grooves and clefts that protrudes over the margins of the wound, were sharply

excised with a sterile scalpel when appraised as grade IV, as described [24]. Wounds on the

thoracic wall were left unbandaged for the duration of the study, as per clinical practice. No

antimicrobial drugs were given prior to or during the study. Pain was managed with butorpha-

nol tartrate (0.08 mg/kg), as required.

The equine skin microbiota
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At both anatomical sites, skin removed upon wound creation was kept as the time 0 (T0)

sample (normal, intact skin). Following sedation, anesthesia and skin antiseptic preparation as

described earlier, wounds to be harvested were gently cleaned with saline-soaked gauze and a

full-thickness wound margin sample was collected with an 8mm diameter biopsy punch from

one wound per site (body, unbandaged limb, bandaged limb) 1 (T1) and 2 (T2) weeks postoper-

atively, and at full healing (T3). Furthermore, intact skin samples from the thoracic wall of three

healthy horses enrolled in a different project were included in the analysis and designated as

controls (CON). Samples from control wounds were collected using the same biopsy protocol,

but without prior surgical antiseptic preparation. All samples were snap frozen in liquid nitro-

gen immediately following collection, and stored at -80˚C while awaiting DNA extraction.

Microbiota evaluation

Total DNA was extracted from each sample using QIAGEN DNeasy Blood & Tissue Kit (Qia-

gen, Toronto, ON, CA) following manufacturer’s instructions. The V4 region of the bacterial

16S rRNA gene was amplified by PCR using the primers S-D-Bact-0564-a-S-15 and S-D-Bact-

0785-b-A-18 [25] in a dual-indexing sequencing strategy: the first PCR consisted of 2 min at

94˚C and 33 cycles of 30 sec at 94˚C, 30 sec at 58˚C and 30 sec at 72˚C with a final 7 min

at 72˚C. Illumina adapters incorporation was carried out at 10 min at 95˚C followed by 15

cycles of 15 sec at 95˚C, 30 sec at 60˚C and 60 sec at 72˚C with a final period of 3 min at 72˚C.

Sequencing was performed using an Illumina MiSeq IEMFile version 4 platform, using a

reagent kit V2 (2x250 cycles) at the Genome Quebec Innovation Centre. Sequences are avail-

able at the NCBI Sequence Read Archive (SRA) under accession number SRP163273.

Bioinformatic analysis was carried using the software mothur [26]. Good quality reads were

clustered in operation taxonomic units (OTUs) at the genus level (>94% similarity) and classi-

fied according to the Ribosomal Database Project (RDP) databank. The number of observed

genera, Chao1 richness estimator, Shannon and Simpson’s index were used for characteriza-

tion of alfa diversity. Beta diversity (comparison between communities) was addressed by the

Jaccard and the Yue and Clayton indices, to compare respectively community membership

(that considers the different bacterial taxa) and structure (that considers the different taxa and

how they are distributed within the community). The similarity between communities’ mem-

bership and structure was compared using the Principal Coordinate Analysis (PCoA) and the

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm, visualized by

tree diagrams (dendrograms).

Statistical analysis

Alfa diversity indices were compared over time using repeated measures ANOVA considering

the time of sampling and the anatomical location of the wound (thorax or limb) as variables.

Alfa diversity indices were then compared between anatomical locations and managements

(bandaged versus unbandaged) using the Student’s t-test considering each time of sampling

individually. Linear Discriminant Analysis Effective Size (LEfSe) [27] was used to find differ-

ences in the relative abundances to detect meaningful biological differences between sampling

times, anatomical sites and between managements. Community membership and structure

were compared with the Parsimony (t test) and the analysis of molecular variance (AMOVA)

tests.

Results

No signs of discomfort nor abnormalities in vital parameters recorded during physical exami-

nation were observed throughout the study period, and therefore analgesia was not required.

The equine skin microbiota
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As expected of this model, limb wounds took longer to heal than did body wounds: average

time to full healing for unbandaged limb wounds was 83 days (SD 2.58 days) and that for body

wounds was 62.5 days (SD 2.52 days). All bandaged, but no unbandaged limb wounds devel-

oped EGT. Time for healing of bandaged limb wounds was not recorded, but since all devel-

oped EGT, it took approximately 7 days longer than unbandaged wounds. The different

healing phases in each anatomical location are presented in Fig 1.

Characterization of equine skin microbiota

A total of 4,321,050 good quality sequences were used for the final analysis (mean, 88,185 per

sample; SD, 38,986). The sample providing the lowest number of reads (6,848) was used as a

cut-off for subsampling the other samples to decrease bias caused by non-uniform samples.

Using this cut-off, the average coverage was 99.64% (SD, 0.30), indicating that the analysis

could detect almost all genera estimated to be present on the skin of horses.

Virtually all of the most abundant genera (>1%) found in the skin of healthy horses from

the control group were unclassified at the genus level and most of them belonged to the Acido-

bacteria phylum. Abundances of the main genera (>1%) present on skin of control horses are

presented in Fig 2.

Changes in microbiota composition over the healing process and the comparison between

anatomical sites are presented in Fig 3. S1 and S2 Figs show the relative abundance of the main

phyla and genera, respectively, for each individual included in the study. It is interesting to

note the inter-individual variability of the composition of the main populations in each sam-

ple, especially at the genus level.

Comparison of the two anatomical locations (thorax vs. unbandaged limbs) performed by

the LefSe analysis revealed that Fusobacterium and Actinobacillus were strongly associated

Fig 1. Healing of experimentally induced wounds of one single horse at the different body sites. A: 24h, B: 7 days,

C: 14 days, D: 21 days, E: cicatrix.

https://doi.org/10.1371/journal.pone.0206989.g001
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(LDA score >4) with limb wounds at T1 and T2. Other significant associations can be

observed in S3 and S4 Figs.

Comparison of the two wound management approaches (bandaged vs. unbandaged limb

wounds) revealed greater variability in communities present in wounds from bandaged limbs

(Fig 4). Fusobacterium, unclassified Neissereaceae and Omonadaceae were associated with

unbandaged limb wounds at T1 and unclassified Prevotellaceae and Parvimonas at T2 (LefSe

analysis). The full list of bacteria associated with limb wounds left unbandaged is presented in

S5 and S6 Figs.

Fig 2. Relative abundance of the main genera bacterial genera (>1%) found in skin biopsies of three healthy horses.

https://doi.org/10.1371/journal.pone.0206989.g002
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Alfa diversity

Mean values and standard deviation (SD) of alfa diversity indices within each sampling time

and results of statistical analysis comparing anatomical sites and management are presented in

Table 1.

Main findings include more diverse communities in thoracic wounds compared to limb

wounds at T2. Unbandaged limb wounds had a richer and more diverse community compared

to bandaged limbs at T1. The same trend was observed at T2, but no statistical significance was

achieved, probably due to small sample size and substantial inter-animal variability observed

among samples from bandaged limb wounds.

Beta diversity

Similarities between communities’ membership (that considers only which genera were pres-

ent in each sample) and structure (that accounts for the relative abundance of each genus) are

represented in Fig 5. Noteworthy, there was a great spatial separation between limb and tho-

racic wound samples at T1 and T2, which was confirmed by statistical analysis (Table 2).

There were no statistically significant differences between bacterial communities in samples

from limb and thoracic wounds after healing (T3). In fact, microbiota similarity of those

samples can be observed by the clustering in the PCoA (Fig 5), in which T3 samples appear

together with samples from controls with normal skin, suggesting a stable microbiota that

returns to a “normal” state once the healing process is complete.

The comparison between management approaches revealed differences in membership,

that can be clearly visualized in Figs 6 and 7. However, statistical significance was not consis-

tent across all tests applied (Table 2) probably because of the great variability in communities

present between bandaged individuals.

Fig 3. Relative abundances of main bacterial genera found at different body sites (thorax and limbs) during wound

healing in horses. T0: after surgical scrubbing; T1: 1-week post wounding; T2: 2-weeks post wounding; T3: full healing.

Bandaged limb wound group excluded.

https://doi.org/10.1371/journal.pone.0206989.g003
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Discussion

Skin microbiota of healthy horses

The great similarity in the skin microbiota of the three control horses (Figs 2 and 5) was sug-

gestive that this is a stable environment that is consistent across individuals, as it has been

Fig 4. Relative abundances of main bacterial genera found in the limb of horses 1-week post wounding (T1) under two different managements (bandaged and

unbandaged).

https://doi.org/10.1371/journal.pone.0206989.g004
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shown in other species [28] and in horses [13]. Acidobacteria comprised the vast majority of

bacteria present on the skin of control horses. This difficult-to-grow bacterium has been

reported to be of low abundance as identified by NGS in the skin of humans and mice [29]

and was associated with occurrence of psoriasis in humans [30]. This demonstrates that the

skin microbiota of horses is unique and extrapolation of data from humans or laboratory ani-

mals may not be accurate for the equine species. Further studies designed to better characterize

Acidobacteria living in the equine skin at the species level and its role as a commensal organ-

ism are warranted. Although Ross et al. (2018) reported Corynebacterium spp. as the most

Table 1. Mean values, standard deviation (SD) and P values of statistical comparison of alfa diversity indices found in the skin of horses at different moments of

wound healing. T0: after surgical scrubbing; T1: 1-week post wounding; T2: 2-weeks post wounding; T3: full healing.

# genera Chao Simpson Shannon

Limb—unbandaged

T0 50 (22) 60 (23) 8 (4) 2 (1)

T1 108 (34) 138 (45) 5 (1) 2 (0)

T2 60 (30) 79 (35) 4 (2) 2 (1)

T3 187 (90) 218 (109) 25 (16) 4 (1)

Limb—bandaged

T1 23 (7) 33 (7) 3 (1) 1 (1)

T2 31 (17) 44 (23) 2 (1) 1 (0)

T3 132 (69) 160 (71) 11 (13) 3 (2)

Thorax

T0 55 (37) 66 (47) 6 (5) 2 (1)

T1 105 (67) 126 (73) 10 (14) 2 (1)

T2 108 (35) 126 (36) 16 (5) 3 (0)

T3 263 (42) 315 (47) 18 (11) 4 (1)

Controls 307 (10) 384 (12) 19 (2) 4 (0)

Statistics (P values) # genera Chao Simpson Shannon

Limb x thorax�

T0 0.408 0.409 0.372 0.335

T1 0.465 0.396 0.241 0.365

T2 0.405 0.055 0.003 0.020

T3 0.089 0.763 0.248 0.234

Bandaged x Unbandaged

T1 0.001 0.002 0.008 0.057

T2 0.072 0.073 0.054 0.025

T3 0.187 0.205 0.084 0.057

Thorax x Controls

T0 <0.001 <0.001 0.004 0.014

T1 0.002 <0.001 0.163 0.053

T2 <0.001 <0.001 0.201 0.026

T3 0.070 0.030 0.440 0.218

Overtime changes

Limb—unbandaged 0.225 0.208 0.146 0.376

Limb—bandaged 0.163 0.131 0.571 0.091

Thorax 0.105 0.111 0.152 0.384

� unbandaged limb samples only

values in bold font indicate comparisons that are statistically significant

https://doi.org/10.1371/journal.pone.0206989.t001
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Fig 5. PCoA of membership (A) and structure (B) of bacterial communities collected during the healing process from the

thoracic and limb wounds of horses. Only unbandaged limb wound samples were included in this graphical representation. T0:

after surgical scrubbing; T1: 1-week post wounding; T2: 2-weeks post wounding; T3: full healing.

https://doi.org/10.1371/journal.pone.0206989.g005
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common bacterial genus found in horses, this elegant study focuses on the comparison

between different species but does not provide much detail on the full composition of the

equine skin microbiota [13]. More studies investigating this environment are required.

The fact that most bacteria found in this study were unclassified at the genus level along

with 20% unclassified bacteria at the phylum level, reinforces the need of further efforts to

investigate this unexplored environment. Considering the strict bioinformatics methods

adopted for this analysis, it is unlikely that those unclassified DNA sequences are the conse-

quence of sequencing errors [31]. Furthermore, the same pipeline and database have been

used to successfully classify up to 97% of genera present in other environments [32,33]. There-

fore, this finding may truly reflect the presence of a high number of unknown bacteria in the

skin of horses, which might be of special importance for the development of new therapies.

Temporal changes during healing

The present study provides evidence that bacterial communities change in a predictable fash-

ion during the healing process. These preliminary observations are an important step towards

a better understanding of the role of bacteria in wound healing in horses and might be the

basis for the exploration of innovative prophylactic approaches.

Despite empirical use of cutaneous probiotics in horses, to date, there is no strong evidence

supporting the effectiveness of such products. It is well established that commensal bacteria

play a major role in mucosal wound healing [34], but the efficacy of probiotics in cutaneous

wound healing is controversial, mainly because well controlled studies evaluating this topic are

scarce. Nevertheless, there is increasing evidence that commensal bacteria may accelerate heal-

ing by regulating inflammation through stimulation of regulatory T cells and skin dendritic

cells [35,36].

Table 2. P values obtained from statistical analyses comparing community membership and structure of bacterial

communities found through wound healing in horses.

Membership Structure

Limb x Thorax—overall

Parsimony 0.054 0.015

AMOVA 0.032 0.002

Control x Limb—overall

Parsimony 0.007 0.009

AMOVA <0.001 <0.001

Control x Thorax—overall

Parsimony 0.014 0.018

AMOVA 0.008 0.007

Bandage x Unbandage T1

Parsimony 0.097 0.498

AMOVA 0.027 0.075

Unbandage limbs T1 x T3

Parsimony 0.014 0.107

AMOVA 0.002 0.002

Unbandage limbs T2xT3

Parsimony 0.020 0.325

AMOVA 0.001 0.004

values in bold font indicate comparisons that are statistically significant

https://doi.org/10.1371/journal.pone.0206989.t002
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The dynamics of bacterial communities during the healing process can be observed from

Figs 3 and 5. Interestingly, microbial communities present in fully healed cutaneous wounds

(T3) clustered with those of intact skin from control samples. Together, this evidence suggests

that the skin microbiota of horses is markedly altered during healing, likely in relation to a

local inflammatory process [37], but returns to a baseline state that resembles the microbiota

of normal, intact skin. Unfortunately, intact skin sampled for this project had been surgically

prepared, therefore precluding further inferences regarding microbial dynamics within the

same individual.

Influence of anatomic location

It has been hypothesized that bacterial contamination of the equine limb skin due to proximity

to the ground is responsible for an increased inflammatory response, which in turn could be

the cause of EGT, a condition that develops frequently and almost exclusively in wounds

located on the limb [12]. The present study demonstrated differences in bacterial composition

of wounds between body sites as well as higher bacterial diversity in the thoracic location, as it

has been demonstrated in humans [38]. Diversity is usually associated with more stable and

resilient communities while decreased diversity is present in the face of dysbiosis (microbial

imbalances) [39,40] however, the consequences of such observations in equine wound healing

remain purely speculative at this point.

While this study showed differences in microbial communities between body sites, associa-

tion of specific organisms with certain aspects of healing (i.e.: healing time, presence of EGT)

exceeded the scope of this study, and further investigation comparing different body sites with-

out previous surgical preparation, or using clinical cases, is necessary. Although it is tempting

Fig 6. PCoA representing bacterial community membership similarity during the healing process in limb wounds according

to management (bandaged and unbandaged) and over time. T1: 1-week post wounding; T2: 2-weeks post wounding; T3: full

healing.

https://doi.org/10.1371/journal.pone.0206989.g006
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to speculate that differences in microbiota between anatomic locations could be the cause of

chronicity in the limb wounds of horses [41], the design of the present study does not allow

inference of a cause-consequence relationship (i.e.: role of bacteria by modulating the immune

system vs. microbiota changes caused by inflammation). Nevertheless, Fusobacterium and

Actinobacillus spp. were strongly associated with limb wounds during the initial phases of heal-

ing, and could potentially exacerbate the inflammatory response, as it has been demonstrated

in other tissues [42]. This finding may direct future studies to elucidate the role of those organ-

isms in wound chronicity in the horse.

Interestingly, differences in microbiota between body and limb wounds at earlier times of

healing (T1, T2) disappeared once wounds were healed (i.e. as these differences resolve, so

does the chronic inflammation that is hindering healing of the limb wounds). Indeed, samples

Fig 7. Dendrogram representing similarity of bacterial membership of microbiota present in limb of horses under two managements (bandaged and

unbandaged) 1 week after wounding (T1).

https://doi.org/10.1371/journal.pone.0206989.g007
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obtained from healed wounds (T3), had very similar communities regardless of anatomic loca-

tion, which were also clustering with the microbiota found in the normal skin of control sam-

ples (Figs 3 and 5).

Management

The differences in alfa and beta diversity indices observed between bandaged and unbandaged

limb wounds indicate that it is possible to manipulate the skin microbiota during the healing

process. In addition to differences in community membership, the richer and more diverse

community in unbandaged limb wounds at T1 (Tables 1 and 2) suggests that bandaging alters

environmental conditions possibly via an effect on temperature, moisture, debris, oxygen ten-

sion and decreasing interaction with the ground microbiota. The potential impact of topical

wound treatments and wound-care products on a wound’s microbiota is a nascent and prom-

ising field of research.

Although differences in membership are clearly visualized in Figs 6 and 7, statistical signifi-

cance was not consistent across all tests (Table 2) probably because of the great variability in

communities present in bandaged wounds and the small sample size (n = 4) available for the

study. Finally, it appears that the effect of bandaging on wound microbiota may cause long-term

changes, since several genera present after full healing (T3) were associated only with wounds

that had been left unbandaged (S5 Fig). However, the consequences associated with such bacte-

rial changes remain to be investigated before formulating management recommendations.

Limitations

Some limitations of this study deserve attention. Firstly, only four horses were included in this

study and results should not be extrapolated to a broader population, especially considering

that this experimental model uses antisepsis of the skin, simulating a surgical procedure.

Therefore, further studies evaluating contaminated wounds obtained from clinical cases are

necessary.

A higher number of animals would also decrease inter-individual variation, as observed in

S2 Fig. Nevertheless, for this type of studies it is essential that the environment be as standard-

ized as possible, so that other factors will not influence the results (such as including other

barns), and the similarities in beta diversity observed in each treatment and time are suggestive

that those changes were indeed caused by healing.

Sampling timing was designed in order to cover the early phases of healing: hemostasis

and acute inflammation (T1), fibroplasia at the beginning of the remodeling phase (T2), and

wound closure (T3). More sampling times would have probably allowed a better evaluation of

the microbiota dynamic through healing.

It is important to note that the DNA sequencing technology used here is limited to taxo-

nomic classification at higher levels (i.e. family) and therefore suitable for visualization of

bacterial shifts over time or differences in communities between groups, but not to identify

specific organisms. Also, these methods are sensitive to detect DNA, which should be consid-

ered, for example, when interpreting the presence of bacterial DNA at T0 (after surgical

preparation): the presence of bacterial DNA does not mean the bacteria were live or viable.

Finally, this is a descriptive study not intended to infer any cause-and-effect relationship

with our clinical findings.

Conclusions

Equine skin microbiota is a rich and stable environment that is disturbed by wounding, but

returns to its previous stage after full healing. Anatomic location significantly influences
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bacterial composition of the equine skin during wound healing. Bandaging has a significant

impact on the skin microbiota of horses during the healing process. Results of this study pro-

vide new insight for a better understanding of the contribution of bacteria to wound healing in

horses and may facilitate the future development of therapeutic strategies using commensal

bacteria.
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