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HIV-1 infection can be successfully controlled with anti-retroviral therapy (ART), but is not
cured. A reservoir of cells harboring transcriptionally silent integrated provirus is able to
reestablish replicating infection if ART is stopped. Latently HIV-1 infected cells are rare,
but may persist for decades. Several novel strategies have been proposed to reduce
the latent reservoir, including DNA sequence targeted CRISPR/Cas9 genome editing of
the HIV-1 provirus. A significant challenge to genome editing is the sequence diversity
of HIV-1 quasispecies present in patients. The high level of quasispecies diversity will
require targeting of multiple sites in the viral genome and personalized engineering of
a CRISPR/Cas9 regimen. The challenges of CRISPR/Cas9 delivery to the rare latently
infected cells and quasispecies sequence diversity suggest that effective genome editing
of every provirus is unlikely. However, recent evidence from post-treatment controllers,
patients with controlled HIV-1 viral burden following interruption of ART, suggests a
correlation between a reduced number of intact proviral sequences and control of the
virus. The possibility of reducing the intact proviral sequences in patients by a genome
editing technology remains intriguing, but requires significant advances in delivery to
infected cells and identification of effective target sites.
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INTRODUCTION

Retrovirus HIV-1 reverse transcribes a viral RNA genome to a linear double-stranded
complementary DNA (Coffin et al., 1997). The genome integrates into the host genome, termed
a provirus. The provirus may become latent, defined by lack of transcription (Van Lint et al., 2013).
The mechanisms that drive latency are not entirely known but include transcription interference,
repressive histone modifications, and absence of the HIV-1 Tat protein (reviewed in Donahue and
Wainberg, 2013). Long-lived memory CD4+ T cells harbor latent proviruses and other cell types
may also be part of the latent HIV-1 reservoir (Figure 1; Chun et al., 1995, 1997; Murray et al., 2016).
Anti-retroviral therapy (ART) suppresses HIV-1 replication, but does not affect latently infected
cells. The number of cells with an inducible latent provirus is estimated to be ∼1 in 106 resting
CD4+ T cells (Siliciano et al., 2003; Crooks et al., 2015). Without transcription of viral genes, such
as env, there are no obvious markers of latently infected cells making them difficult to identify
(Badia et al., 2018). Importantly, intact latent proviral genomes remain capable of reactivation and
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FIGURE 1 | Cartoon of latent reservoir formation. The HIV-1 virus readily
infects (thick arrow) activated CD4+ T cells (green, integrated provirus in red).
HIV-1 replication in activated T cells typically leads to cell death. However, a
fraction of these cells may become resting memory T cells (blue) and part of
the latent reservoir. A perhaps less frequent (thin arrow) alternative mechanism
for latency is the infection of resting naïve CD4+ T cells (blue). The latently
infected resting naive or memory CD4+ T cells may become activated, leading
to viral replication and cell death.

replication and HIV-1 viral load increases within weeks of
stopping ART (Li et al., 2016; Colby et al., 2018; Wen et al., 2018).

ELIMINATING THE HIV-1 LATENT
RESERVOIR

Several strategies have been proposed to purge the latent
reservoir. One is to activate the provirus with histone
deacetylase (HDAC) inhibitors (Shirakawa et al., 2013; Manson
McManamy et al., 2014; Walker-Sperling et al., 2016). Activated
viral transcription and replication should induce cell death.
Unfortunately, HDAC inhibitors have not eliminated the latent
reservoir (Rasmussen and Lewin, 2016; Kim et al., 2018). The
drugs induce HIV-1 transcription, but the cells do not die, likely
due to cellular mechanisms promoting survival (Rasmussen and
Lewin, 2016; Kim et al., 2018).

Genome editing with zinc finger nucleases (ZFNs) targeting
the CCR5 gene in hematopoietic stem cells (HSCs) has entered
clinicial trials (Tebas et al., 2014). ZFNs are a fusion of DNA
sequence specific zinc finger domains and a Fok1 nuclease
domain. A pair of ZFNs generate a DNA double strand break
(DSB) at a sequence specific site. DSBs are commonly repaired by
the error prone non-homologous end joining (NHEJ) pathway
resulting in short insertions or deletions (indels). NHEJ repair
can disrupt the reading frame of a targeted gene leading
to a null phenotype. The human CCR5 gene was chosen
because HIV-1 must bind CD4 and either CCR5 or CXCR4
to infect cells. Multiply exposed uninfected individuals encode
a homozygous 32 bp deletion in the CCR5 gene leading to
lack of cell surface expression (Liu et al., 1996). This suggested

that abrogation of CCR5 expression would be tolerated and
prevent infection. In this therapeutic approach, a ZFN pair
targeting the CCR5 gene is added to patient HSCs ex vivo. Edited
cells are reinfused to the patient. ZFN editing of both CCR5
alleles in HSCs should generate CD4+ T cells resistant to HIV-
1. Limited success has been achieved, but not a cure (Tebas
et al., 2014). Additional genome editing strategies have been
proposed to delete or disable the HIV-1 provirus, including other
ZFNs, transcription activator-like effector nucleases (TALENs),
or engineered endonucleases (Aubert et al., 2011; Qu et al.,
2013; Ebina et al., 2015; De Silva Feelixge et al., 2016; Karpinski
et al., 2016). However, ZFNs and other endonucleases require
significant engineering to target specific DNA sequences and edit
only a single site.

The most adaptable strategy recently applied to proviral
genome editing is CRISPR/Cas9. This genome editor consists
of a Cas9 endonuclease from bacteria that generates a DSB at
a sequence specific site (Cho et al., 2013; Cong et al., 2013).
The DSB is directed by a 20 nucleotide guide RNA (gRNA)
fused to a scaffold RNA (Figure 2A). Cas9 in complex with the
fusion RNA will recognize the target DNA sequence with a 3′
protospacer adjacent motif (PAM) that is not encoded in the
gRNA. Streptococcus pyogenes Cas9 (SpCas9) recognizes a 5′-
NGG-3′ PAM and S. aureus Cas9 (SaCas9) PAM is 5′-NNGRRT-
3′. The target DNA is cleaved 3 base pairs (bp) away from the
PAM within the gRNA target sequence. Cas9 induced DSBs are
often repaired by NHEJ. CRISPR/Cas9 gRNA engineering to
specific DNA sequences is facile, simplifying designer therapy.
In addition, CRISPR/Cas9 allows targeting of multiple sites
simultaneously with gRNAs. The choice of SpCas9 or SaCas9 is
based on the size limit of the delivery technology, as the SpCas9
gene is 4.1 kb and SaCas9 is 3.1 kb, as well as the target site
PAM. There are more possible SpCas9 target sites throughout
the HIV-1 genome compared to SaCas9 (Figure 2B). Although
CRISPR/Cas9 genome editing has been suggested as a method
for disabling HIV-1 proviral genomes, empirical validation of the
approach has assayed editing in latent cell lines and replicating
HIV-1 infection in cell lines. Analysis of CRISPR/Cas9 proviral
editing in a replicating HIV-1 infection allowed the identification
of mutations leading to resistance (Wang et al., 2016b,d; Yoder
and Bundschuh, 2016). Few reports have employed primary
human CD4+ T cells (Liao et al., 2015; Kaminski et al., 2016b).

CRISPR/CAS9 GENOME EDITING
APPROACHES TO DISABLE HIV-1

CRISPR/Cas9 genome editing of the provirus has employed
two strategies. One exciting concept targeted the long terminal
repeats (LTRs) present at each end of the provirus (Ebina et al.,
2013; Dampier et al., 2014; Hu et al., 2014; Kaminski et al.,
2016a,b; Yin C. et al., 2016; Yin C. et al., 2017; Bella et al., 2018).
The LTRs are perfect repeats. Generating DSBs in both LTRs
with a single gRNA could conceivably delete the interior of the
provirus leaving a single LTR remnant (Figure 2B). Some studies
reported that deletion of the ∼8.5 kb provirus occurred, but
other groups did not see this result (Yoder and Bundschuh, 2016;
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FIGURE 2 | CRISPR/Cas9 gRNAs targeting the HIV-1 provirus. (A) Cartoon of Cas9 cleavage of target DNA. The Cas9 protein (gray) binds the target DNA (black
lines) and gRNA (yellow line). The PAM signal (green line) is adjacent to the gRNA homology region. Cas9 generates a DSB 3 bp 5′ of the PAM. DNA repair by NHEJ
may insert or delete nucleotides (red lines) at the cleavage site. As an example, the sequence of a gRNA targeting the HIV-1 TAR element is shown with the PAM
signal 5′-GGG-3′ (green highlight). The observed repair products included insertion of a single nucleotide at the cleavage site (red A) (Yoder and Bundschuh, 2016).
(B) The possible S. aureus or S. pyogenes gRNAs throughout the proviral genome of the laboratory strain HXB2 for Cas9 are shown (black) relative to a scale map of
the HIV-1 genome. Previously reported S. aureus gRNAs are shown in blue, S. pyogenes gRNAs in red. Features of the HIV-1 genome are indicated by boxes.
Differences between the possible gRNAs and reported gRNAs are due to strain differences.

Mefferd et al., 2018). This apparent discrepancy can be reconciled
by a model where large CRISPR/Cas9 generated deletions occur
at relatively low frequencies (Canver et al., 2014; Byrne et al.,
2015). Genomic deletions of similar size were observed with
frequency <15% in human induced pluripotent stem cells or
<25% in murine erythroleukemia cells (Canver et al., 2014; Byrne
et al., 2015). CRISPR gRNAs targeting the LTRs may delete the
provirus, but with low efficiency.

Other groups disabled the provirus via NHEJ indels (Liao
et al., 2015; Zhu et al., 2015; Ueda et al., 2016; Wang et al.,
2016b,a,d; Yoder and Bundschuh, 2016; Mefferd et al., 2018;
Ophinni et al., 2018; Roychoudhury et al., 2018). Sites throughout
the HIV-1 genome have been targeted with SpCas9 and SaCas9,
although the empirically tested gRNAs are not an exhaustive list
(Figure 2B). The gRNAs display variable efficiencies in reducing
HIV-1 expression or replication. There is no mechanism to
predict the efficiency of the gRNAs. HIV-1 is known to develop
resistance to drug monotherapy and a single gRNA was no
exception (Ueda et al., 2016; Wang et al., 2016b,d; Yoder and
Bundschuh, 2016). HIV-1 strains with resistance to a single gRNA

were shown to develop by either mutagenic reverse transcription
or NHEJ. A single indel at the repair junction proved sufficient to
prevent further CRISPR/Cas9 editing.

The time to develop resistance varied between CRISPR
gRNAs and suggested differences in DSB/indel genetic fitness
throughout the viral genome. Strains resistant to gRNAs targeting
non-coding and non-structured regions of the LTR developed
the fastest, suggesting these regions are genetically robust and
tolerant of indels (Wang et al., 2016a,b,d; Yoder and Bundschuh,
2016). However, non-protein coding regions that form the
important TAR RNA stem loop are empirically better targets
(Yoder and Bundschuh, 2016; Mefferd et al., 2018). There are
several possible SpCas9 gRNA targets within TAR displaying
variable efficiencies; some TAR gRNAs are able to delay HIV-
1 replication for several days and one TAR gRNA appeared to
eliminate replication (Yoder and Bundschuh, 2016; Mefferd et al.,
2018). Many studies of HIV-1 genome editing by CRISPR/Cas9
did evaluate resistance. While it is logical that protein coding
regions do not tolerate single bp indels and might be the best
targets for genome editing, there is evidence that 3 bp indels
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can form and preserve the protein reading frame (Wang et al.,
2016a; Yoder and Bundschuh, 2016). Such genetic changes might
not disrupt a viral protein to the point of a null phenotype and
prevent HIV-1 replication.

More recently the provirus was targeted with multiple gRNAs
simultaneously (Wang et al., 2016a; Yin C. et al., 2017; Bella
et al., 2018; Ophinni et al., 2018; Roychoudhury et al., 2018;
Wang Q. et al., 2018). This approach has abrogated replication
of HIV-1 laboratory strains in cell lines. However, it has not
been possible to deliver multiple gRNAs with Cas9 in a single
vector, which is a significant limitation. In bacteria, CRISPR
gRNAs are multiplexed and separated by direct repeat sequences,
which are cleaved to form a complex with Cas9. Single transcript
multiplexing of gRNAs in mammalian cells requires an additional
system for processing to single gRNAs, such as the P. aeruginosa
Csy4 RNA nuclease (Sternberg et al., 2012; Kurata et al.,
2018). Current strategies for multiplexing gRNAs in mammalian
cells require transfection of multiple plasmids, transduction of
multiple vectors, or expression from multiple independent RNA
pol III promoters. Two to seven gRNAs driven by U6, H1, and/or
7SK promoters in a single CRISPR/Cas9 delivery vector have
been described (Kabadi et al., 2014; Sakuma et al., 2014; Merienne
et al., 2017; Petris et al., 2017). Delivery of CRISPR/Cas9 with
relatively few gRNAs in a single vector is a limitation that will
have to be overcome.

CHALLENGES OF GENOME EDITING
THE HIV-1 PROVIRUS

Multiplexing of CRISPR gRNAs will likely be required for
effective HIV-1 genome editing, but it is not clear how many
or which proviral sites should be targeted. One criteria is the
sequence conservation of the target site. The site must also
be efficiently cleaved by Cas9. However, these criteria are not
sufficient. For example, the sequence surrounding the HIV-
1 TATA box, required for all HIV-1 transcription, is well
conserved among subtype B isolates (Yoder and Bundschuh,
2016). This region is efficiently cleaved by Cas9 and repaired
with indels. HIV-1 resistance to a gRNA targeting this conserved
site develops rapidly indicating that the HIV-1 TATA box is not
genetically fragile and not a useful target (Yoder and Bundschuh,
2016). Other studies have shown that combination of strongly
suppressive gRNAs is superior to combinations including weakly
suppressive gRNAs (Lebbink et al., 2017). There has been no
large scale direct comparison of CRISPR gRNAs targeting sites
throughout the HIV-1 provirus. CRISPR/Cas9 gRNA targets
highly efficient for preventing HIV-1 replication have been
identified, but an empirically determined DSB genetic fitness map
of the HIV-1 provirus would indicate the most genetically fragile
sites and the best targets for genome editing (Wang et al., 2016a;
Lebbink et al., 2017; Mefferd et al., 2018; Yoder, 2018).

The number of CRISPR/Cas9 gRNAs required to edit the HIV-
1 provirus in patients will depend on the quasispecies sequence
diversity. Two groups have investigated potential CRISPR gRNA
targets in HIV-1 and their sequence conservation within patient
quasispecies (Dampier et al., 2014; Roychoudhury et al., 2018).

The first study sequenced HIV-1 quasispecies from peripheral
blood mononuclear cells (PBMCs) of 6 patients, including two
time points 11 months apart from 2 patients (Dampier et al.,
2014). Of these 8 samples, a panel of ≤10 gRNAs targeting
the LTR of all quasispecies could be engineered for 4 samples.
Interestingly, a gRNA panel targeting all quasispecies of one
patient could not be designed for the first time point, but
was possible at the second. In a second study, CRISPR gRNAs
targeting the pol gene were compared to deep sequencing of
HIV-1 quasispecies from PBMCs of 4 patients (Roychoudhury
et al., 2018). The gRNA targeted sites displayed <87% sequence
conservation within each patient. The authors caution that rare
quasispecies not efficiently cleaved may prevent a functional cure.
Indeed, if targets are cleaved and repaired without a frameshift
(±3 bp indels preserving the reading frame), the provirus may
remain competent for replication (Yoder and Bundschuh, 2016).
Together, these studies suggest that patient samples must be
sequenced to identify quasispecies targets immediately prior
to design of a CRISPR regimen consisting of several gRNAs.
However, comparison of HIV-1 proviral sequences from PBMCs
and lymph nodes or cerebral spinal fluid (CSF) suggests that
these quasispecies populations are distinct (Haddad et al., 2000;
Fourati et al., 2014). Thus, the feasibility of effectively purging all
latent HIV-1 proviruses with sequence specific genome editing is
unclear.

The goal of eliminating all HIV-1 replication competent
proviruses is based on the notion that a single provirus can
lead to viral rebound. However, there is recent evidence from
post-treatment controllers (PTCs) that this assumption is not
necessarily true (Saez-Cirion et al., 2013; Sharaf et al., 2018).
Post-treatment control has been defined as an HIV-1 viral
load of <400 copies/ml for at least 24 weeks following ART
interruption (ATI) (Sharaf et al., 2018). PTCs are rare, but
have been identified in several patient groups as well as among
patients who began ART in either acute or chronic phase of
infection (Perkins et al., 2017). A recent study comparing the
proviral sequences of PTCs and non-controllers (NCs) found
that total number of proviruses is lower in PTCs prior to ATI
(Sharaf et al., 2018). This “total” number of proviruses included
both intact and defective proviruses, where defective proviruses
are always a significant majority (Bruner et al., 2016; Pollack
et al., 2017; Sharaf et al., 2018). Intuitively, only the intact
proviral sequences would contribute to viral rebound and a
NC phenotype; indeed, the number of observed intact proviral
sequences was less in PTCs (PTCs: 0.04/106 PBMCs; NC: 0.28/106

PBMCs, p < 0.05) (Sharaf et al., 2018). Interestingly, the number
of proviruses did not increase in PTCs after ATI, unlike in
NCs. It is conceivable that a genome editing based reduction
of the intact replication competent proviral load could lead to
a PTC phenotype. In this scenario patients harbor defective
proviral sequences, but do not require ART. A counter argument
is that defective proviruses express viral mRNAs and antigens
recognized by the immune system (Pollack et al., 2017; Sharaf
et al., 2018). Depending on the gRNA target site, CRISPR/Cas9
edited proviruses may express HIV-1 RNAs. The relative
accumulation of cell associated HIV-1 RNAs are known to predict
the timing to viral rebound following ATI (Li et al., 2016).
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Whether significantly decreasing the intact proviral reservoir will
be sufficient for a PTC phenotype is unknown, but may become
apparent with additional study of proviral genomes present in
PTCs before and during ATI. Similarly, the effects of increasing
the defective proviral reservoir on patient biology are difficult to
predict.

A significant question regarding genome editing as a
treatment strategy for HIV-1, as well as many other diseases,
concerns the delivery to target cells. Among the hurdles to
overcome are the scarcity of cells harboring a latent HIV-
1 provirus and the lack of a unique cell surface marker
(Siliciano et al., 2003; Crooks et al., 2015; Badia et al.,
2018). If a latency specific cell surface marker is identified,
then it may be possible to deliver CRISPR/Cas9 via viral
vectors. While adeno-associated vector particles are attractive
due to their low immunogenicity, they are not known to
infect CD4+ T cells, the major reservoir cell type. Lentiviral
vector particles may be an attractive delivery method since
they are readily pseudotyped and may encode ∼8.5 kb of
genetic cargo. Alternatively, HSCs could be engineered with
an inducible CRISPR/Cas9 ex vivo to populate the immune
system with anti-retroviral defense. Indeed, CRISPR/Cas9
introduced to cells before HIV-1 infection was shown to
protect cells (Liao et al., 2015). While transfection of plasmids
or nucleofection of purified complexes of recombinant Cas9
protein complexed with synthetic gRNA and scaffold RNA
are efficient delivery mechanisms in cell culture, it is difficult
to imagine these methods translating to in vivo delivery.
Alternative delivery technologies, such as Sendai virus vectors,
are in development (Park et al., 2016, reviewed in Lino et al.,
2018).

The safety of any genome editing technology is a concern
due to potential off-target editing. Several engineered SpCas9
variants specifically reduce off-target editing (Kleinstiver et al.,
2016; Slaymaker et al., 2016; Chen et al., 2017). These variants are
likely to be more clinically useful. Other recent studies suggested
that CRISPR/Cas9 genome editing could select for cells with
p53 mutations, a key driver of oncogenesis (Haapaniemi et al.,
2018; Ihry et al., 2018). Similarly concerning were observations
of off-target editing in human stem cells resulting from single
nucleotide variants in the genome (Yang et al., 2014). Yet studies
of rhesus monkeys, edited as embryos, discovered no off-target
editing in functional genome regions (Chen et al., 2015; Wang
S. et al., 2018). Similarly, large sequencing of genome edited
mice, sheep, and goats has revealed very low off-target editing

frequencies (Iyer et al., 2018; Li et al., 2018; Wang X. et al., 2018).
Further studies, particularly with the engineered Cas9 variants,
will be required to fully assess the rates of off-target editing in
human primary cells.

An additional challenge is the limited animal models of HIV-1
disease. The possible immunogenicity of any foreign protein to
a patient or animal may play a significant role in the success
of the therapy (Crudele and Chamberlain, 2018). Several of
these challenges, particularly complications due to the possible
immunogenicity of Cas9, may be overcome in development of
therapeutics for other diseases, such as diabetes (Wang et al.,
2015, 2016c; Yin H. et al., 2016; Ratiu et al., 2017; Yin H. et al.,
2017).

CONCLUDING REMARKS

Instead of viewing genome editing of the HIV-1 provirus as
a single cure therapy, this technology may be an additional
approach in a combination therapy. For example, CRISPR/Cas9
vectors could be administered during continued ART.
Alternatively, studies of CRISPR genome editing of the provirus
in combination with siRNA have shown that these technologies
may be additive in preventing HIV-1 replication in cell lines
(Zhao et al., 2017). It is unlikely that any CRISPR/Cas9 gRNA
regimen can be devised to target all quasispecies in a patient.
However, additional investigation of PTCs may provide evidence
that the intact proviral load can be decreased below a threshold
that prevents viral rebound in the absence of ART. This is a highly
speculative concept, but the possibility that a genome editing
therapy could play a role in a functional cure of HIV-1 infection
remains tantalizing.
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