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Abstract.—The statistical basis of maximum likelihood (ML), its robustness, and the fact that it appears to suffer less from
biases lead to it being one of the most popular methods for tree reconstruction. Despite its popularity, very few analytical
solutions for ML exist, so biases suffered by ML are not well understood. One possible bias is long branch attraction (LBA),
a regularly cited term generally used to describe a propensity for long branches to be joined together in estimated trees.
Although initially mentioned in connection with inconsistency of parsimony, LBA has been claimed to affect all major
phylogenetic reconstruction methods, including ML. Despite the widespread use of this term in the literature, exactly what
LBA is and what may be causing it is poorly understood, even for simple evolutionary models and small model trees. Studies
looking at LBA have focused on the effect of two long branches on tree reconstruction. However, to understand the effect of
two long branches it is also important to understand the effect of just one long branch. If ML struggles to reconstruct one
long branch, then this may have an impact on LBA. In this study, we look at the effect of one long branch on three-taxon
tree reconstruction. We show that, counterintuitively, long branches are preferentially placed at the tips of the tree. This
can be understood through the use of analytical solutions to the ML equation and distance matrix methods. We go on to
look at the placement of two long branches on four-taxon trees, showing that there is no attraction between long branches,
but that for extreme branch lengths long branches are joined together disproportionally often. These results illustrate that
even small model trees are still interesting to help understand how ML phylogenetic reconstruction works, and that LBA is
a complicated phenomenon that deserves further study. [analytic solutions; long branch attraction; maximum likelihood;
simulation.]

Amongst the methods for phylogenetic tree
reconstruction from molecular sequence data, maximum
likelihood (ML) is one of the most popular due to its
statistical basis, robustness, and the fact that it appears
to suffer less from biases. Additionally, ML is known to
be a consistent method if the assumed model is correct
(Chang 1996; Rogers 1997), meaning that as the amount
of data tends to infinity the probability of obtaining the
correct tree tends to one. Consistency, however, is not
informative about performance of a method with finite
data, and with finite data ML can struggle, particularly
if long branches are present on the tree. The reasons for
this are unknown. ML with the correct model should
be able to deal with parallel substitutions and multiple
substitutions at sites (Chang 1996), phenomena that
occur when branches are long, but despite this it has
been reported to be biased toward trees with long
branches placed together (Huelsenbeck 1995).

One of the reasons that biases in ML reconstruction
(e.g., issues caused by long branches) are not well
understood is that very few analytical solutions for
ML exist, and the solutions that do exist are for small
trees and simple models. This means that ML tree
reconstruction is generally carried out using numerical
maximization and heuristics. Yang (2000) derived a set
of analytic solutions for a three-taxon tree using two-
state characters. Since then further analytic solutions for
three-taxon trees with two-state or four-state characters,
and four-taxon trees with two-state characters have been
derived (Chor et al. 2001, 2006a, 2006b; Chor and Snir

2004, 2007). All of these studies consider trees with a
molecular clock, meaning that biases caused by long-tip
branches cannot be studied, as it is not possible to have
short tip branches joined to long-tip branches. Further,
analytical solutions are required to fully understand long
branch biases.

Long branches represent a large amount of
evolutionary change for which there are only a
few observations. Various effects of long branches on
tree reconstruction have been reported, starting with
Felsenstein (1978). Felsenstein studied a four-taxon tree
with two long branches (P) and three short branches
(Q) (Fig. 1). He proved that with two-state characters
there are combinations of P and Q for which parsimony
reconstruction is inconsistent. This region of branch
length space is now widely called the Felsenstein zone
(Huelsenbeck and Hillis 1993). Since Felsenstein’s paper,
conditions for inconsistency of parsimony have been
extended to any number of character states and five
different parameters for branch lengths instead of two
(Zharkikh and Li 1992; Schulmeister 2004). Larger trees
have also been examined, with further inconsistency
conditions found (Kim 1996).

Following Felsenstein’s early work on inconsistency it
became widely accepted that such problems were due to
“attraction” amongst long branches. It also became clear
that these problems may not be restricted to parsimony
only. Numerous simulation studies tested whether the
accuracy of other tree reconstruction methods is affected
by the presence of two long branches (Huelsenbeck and
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FIGURE 1. Tree used by Felsenstein to show that parsimony could
be inconsistent. The short branch length is Q and the long branch
length is P.

Hillis 1993; Kuhner and Felsenstein 1994; Gaut and Lewis
1995; Huelsenbeck 1995). One of the most thorough
studies was carried out by Huelsenbeck (1995). Using the
same tree as Felsenstein, but with four-state characters,
he tested the consistency, efficiency, and robustness of
26 reconstruction methods. This showed that under
model misspecification all methods could suffer from
inconsistency, and that long branch effects seem to be
more of a problem with shorter sequences. It also showed
that the presence of long branches does seem to affect
ML, although the effects were not as strong as for the
other methods investigated.

The term “Long Branch Attraction” (LBA) has become
widely used to describe long branches being incorrectly
placed together on a phylogenetic tree. However, LBA
is not well defined and statistical inconsistency, model
violation, and claims that certain methods are unable
to deal with parallelism and convergence have been
variously cited as both definitions and explanations
(Philippe and Laurent 1998; Sanderson et al. 2000;
Anderson and Swofford 2004). Initial studies on LBA
were theoretical, with data obtained by simulation.
However, after the coining of the term LBA by Hendy
and Penny (1989), there was interest in whether it could
affect real data. Conclusive biological evidence has been
difficult to find because the true tree is never known
for real data. However, the publication of a number
of papers proposing that LBA can affect real data
(Huelsenbeck 1997, 1998) led to LBA being frequently
cited as the reason for unexpected phylogenetic results
(Stiller and Hall 1999; Sanderson et al. 2000; Philippe
and Germot 2000; Wiens and Hollingsworth 2000; Qiu
et al. 2001; Omilian and Taylor 2001; Dacks et al. 2002;
Stefanović et al. 2004; Wilcox et al. 2004; Inagaki et al.
2004; Fares et al. 2006; Barros et al. 2008; Dabert et al.
2010; Bodilis et al. 2011). Methods to detect LBA have
also been widely discussed and include: finding two long
branches together; showing a better method does not
place the long branches together; showing the branches
are long enough to attract by simulation; breaking up
a long branch; and removing one of the long branches
and reconstructing the tree to see if the other long
branch moves (Huelsenbeck 1997; Bergsten 2005). There
is, however, no method that can guarantee a particular
topology has been caused by LBA.

In addition to being poorly defined and difficult
to locate, the reasons for assuming problems to arise
from interactions between multiple long branches, or for
naming LBA an “attraction”, are not clear. “Attraction”

implies that there is an interaction between long
branches and that this interaction causes them to be
placed closer together. However, this has never been
proven and indeed our knowledge of the problems
engendered by long branches is incomplete. In this
article, we aim for a greater understanding of the
behavior of ML tree inference in the presence of
individual long branches. We then extend our analysis to
the case of two long branches, looking for any additional
effects related to their interaction. To do this we need to
distinguish between difficulty in placing long branches
and attraction between long branches. If an attraction
were to exist then its effects could be interpreted, and
hence measured, in different ways. We will define two
such ways as “long branch joining” (LBJ) where long
branches are incorrectly joined together on a tree, and
“long branch closeness” (LBC) where long branches are
closer together on the reconstructed topology than on the
true topology. Knowledge of whether either of these two
phenomena occur will lead to a greater understanding
of the effects of long branches on tree reconstruction.
We will focus on ML with the correct model, which
is consistent. We find this more approachable than
looking at model misspecification: with the wrong
model anything could happen, but under the correct
model ML is expected to perform well.

In this article, we start by looking at the placement of
one long branch by ML. This is important because correct
placement of a branch between two nodes is necessary
for all tree reconstruction. We use a three-taxon tree
as it is the simplest possible tree for reconstruction yet
gives interesting and counterintuitive results. Placement
of long branches is assessed by simulations followed
by ML tree reconstruction for the simulated data sets.
The distribution of placement of long branches is then
studied using analyses of both ML and distance matrix
(DM) equations for three-taxon trees. This gives insight
into why long branches may cause problems for tree
reconstruction, and allows for partial analytical solutions
of the four-state character, three-taxon tree without a
molecular clock. We then use knowledge about the
placement of one long branch to look at the effect of
two long branches. Four-taxon trees are used, as the
three possible topologies are the simplest that allow us
to investigate both LBC and LBJ phenomena. We test for
the existence of both LBC and LBJ, allowing us to split
any potential “attraction” into two parts and see which
occur. This reveals the complexity of the problem and
highlights that further work will be necessary to fully
understand it.

METHODS

Evolutionary Models and Trees
This article considers nucleotide sequences evolved

under Jukes Cantor (JC) evolution (Jukes and Cantor
1969; Yang 2006). This is both the simplest model and
shows the properties of ML estimation on which we
wish to concentrate. Sequences are simulated without
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FIGURE 2. Unrooted three-taxon tree with the five possible site
patterns when considering JC evolution, where x, y, and z are any
three different nucleotides.

insertions or deletions so no alignment of the sequences
is necessary. It is assumed that each site in the alignment
evolves independently and at the same rate. Data at
different sites are thus assumed to be independent
and identically distributed. Therefore, the order of
the sites does not matter, just the counts of each
possible nucleotide pattern. Unrooted trees are used
throughout this article as JC is reversible and no
molecular clock is assumed; hence a rooted tree cannot
be found.

For an unrooted three-taxon tree (Fig. 2) there are
43 =64 possible combinations of the nucleotides at
a site over the three taxa. These combinations are
called site patterns. In the JC model, each nucleotide
has equal base frequency and mutation rate, meaning
that many of these site patterns have the same
probability of occurring. In fact it does not matter which
nucleotides are present for different taxa, just whether
the nucleotides are different for the different taxa. This
means that the site patterns can be reduced to just five
patterns of interest, P={xxx,xxy,xyx,yxx,xyz}, where
x, y, and z are any three different nucleotides. The
pattern xxx thus represents four possible nucleotide
combinations (AAA, CCC, GGG, and TTT), and the
remaining patterns represent 12, 12, 12, and 24 nucleotide
combinations, respectively. Data can then be represented
as counts of these five different patterns from a sequence
alignment. For an alignment of length n, these counts
will be written as nr for each pattern r∈P, and

∑

r∈P
nr =n.

For a four-taxon tree there are 256 possible site patterns,
which can be reduced to 15 patterns of interest for JC
evolution.

Maximum Likelihood
To look for analytical solutions, the likelihood

function was derived for a three-taxon tree using
standard methods (Yang 2006). This derivation is shown
in the Supplementary Methods available on Dryad
(http://dx.doi.org/10.5061/dryad.rp7qv).

ML tree reconstruction was also conducted using
the baseml program from the PAML package (Yang
2007). As we investigate small trees we can perform
a heuristic search for the ML branch lengths for each
topology individually and then compare to find the ML
tree. Use of a heuristic search means that results may

be dependent on the starting values used for branch
lengths. Additionally the presence of long branches
makes the search more difficult. To improve our ability
to find ML values, baseml was run from five different
starting points for each analysis, and the ML tree was
chosen as the tree with the highest likelihood from
these runs. To check that five runs was enough we have
assessed how often the results would change if only
four runs were carried out. The changes were minimal,
even for long branch lengths. Baseml was modified to
help it find the ML tree when the likelihood was very
flat, and to make sure restrictions on branch lengths
did not stop it from finding the ML tree. Details on
how to make these modifications can be found in the
PAML documentation. If runs of baseml found trees
with different long branch lengths but a very similar
likelihood, we hypothesized that the ML tree in fact
had an infinite branch length. This was then tested by
analytically calculating the likelihood of the tree with
an infinite branch length and comparing it with the
likelihoods from baseml. A higher analytical likelihood
was taken as confirmation that the branch was infinitely
long. In this case there is no information about where the
branch should be placed on the tree, so any placement
made by baseml would be artifactual. Therefore, for
these trees the branch in question was recorded as being
of infinite length and having no meaningful position on
the tree.

To test our procedures for artifacts, phylogenetic
inferences were repeated using PhyML (Guindon et al.
2010). Our modified version of baseml invariably found
either the same tree as PhyML or a tree with a higher
likelihood, increasing our confidence in baseml’s ML
estimates for the analyses needed in this article. Since
baseml and PhyML are optimized for different tasks
in phylogenetic inference, we do not draw any broader
conclusions about the merits of the two programs.

DM Equations
DM methods for inferring phylogenetic trees are

based on computing pairwise distances and using some
criterion to fit these distances to a tree (Yang 2006).
Although we do not study performance of DM methods
in this article, we find it useful to draw on some of
these ideas to help understand the performance of ML
methods. Under the JC model, the pairwise distance is
Dij =− 3

4 log(1− 4
3 Uij), where Uij is the fraction of bases

that differ between the two taxa i and j (Yang 2006). For
each pair of taxa, Uij can be written as a sum of pattern
counts divided by the sequence length; for example,
between taxa A and B of Figure 2, UAB = (nxyz +nxyx +
nyxx)/n. If Uij ≥0.75, then the distance between the two
taxa is infinite, so for a finite data set there is a maximum
distance between two taxa that can be measured before
the two taxa are estimated to be infinitely far apart.

There are a variety of methods that can be used to
fit pairwise distance measures to a tree (Yang 2006).

http://dx.doi.org/10.5061/dryad.rp7qv
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On an unrooted three-taxon tree minimum evolution,
neighbor-joining and both weighted and unweighted
least squares methods result in the same branch lengths,
as the distances can be exactly fit to the tree. For trees
with more taxa it is often not possible to fit the distances
exactly, so the different methods may give different
results. Here, the branch lengths are

dA = (DAB +DAC −DBC)
2

dB = (DAB +DBC −DAC)
2

dC = (DAC +DBC −DAB)
2

(1)

These calculations can result in negative branch lengths
which are not biologically meaningful. Some software,
therefore, require a positivity constraint to guarantee
results that are meaningful in a phylogenetic context.

Simulations
For three-taxon trees simulations were run under JC

evolution producing 5000 data sets of 300 bp sequences,
unless otherwise stated. This is a realistic sequence
length for a small protein, and allows us to look at how
ML works for limited data. For four-taxon trees sequence
length was increased to 1000 bp due to the use of two long
branches. All simulations were conducted using evolver
from the PAML package (Yang 2007).

RESULTS AND DISCUSSION

One Long Branch on Three-Species Trees
ML inference.—To explore the placement of one long
branch on a tree we simulated data from a three-taxon
unrooted tree (Fig. 2) with a long branch, and constructed
and examined trees inferred from this simulated data.
The three-taxon case is used as it is the simplest possible;
there is only one topology so the only inference question
is the branch lengths. Six different branch lengths were
used for dC (dC =0.1,0.5,1,1.25,1.5,2). So that we could
concentrate on the placement of the long branch, dA and
dB were set to 0.1 to make the distance from A to B easy
to estimate (Supplementary Fig. 1 available on Dryad;
http://dx.doi.org/10.5061/dryad.rp7qv). Estimation of
dC also behaves as expected, getting harder as dC
increases (Supplementary Fig. 2 available on Dryad;
http://dx.doi.org/10.5061/dryad.rp7qv). Unexpected
results come from looking at the position of where the
branch to C joins the A–B path (Fig. 3). The placement
of C is measured as a fraction along the A–B path. If
C is placed on one end of the A–B path, so that the
branch to A has length 0 (dA =0), then C is measured
as being at 0 on the A–B path; if C is placed on the
other end, and dB =0, then C is measured at 1. Trees with
inferred infinite branch lengths are not included in these
plots.

When dC is of the same length as the other branches
(dC =0.1) then tree reconstruction is accurate and C

is distributed around its original position. As dC
increases the distribution spreads over the A–B path and,
counterintuitively, starts to accumulate at the edges of
the A–B path and in the centre. For long dC, we expected
the placement of C to be uniform over the A–B path,
reflecting the lack of information about the relationship
between C and the other taxa, and that if there was a peak
it would be gradual and centered. This was not seen here.

Note that for these simulations dA and dB were
kept constant. The same effect is seen for other values
of dA and dB, although the precise values of dC
needed for the effect to become apparent depends
on dA and dB (results not shown). The effect is also
present for all finite values of n; as n increases the
effect is less for any given combination of dA, dB,
and dC but it can again be made to appear by
increasing dC. Supplementary Figure 5 (available on
Dryad; http://dx.doi.org/10.5061/dryad.rp7qv) shows
the proportion of data sets giving trees with branch
lengths of zero for increasing dC lengths and different
sequence lengths. For a longer sequence length (n=1000)
the proportion of data sets giving trees with branch
lengths of zero for a given value of dC is lower than for
n=300; for a shorter sequence length (n=100) it is higher.
ML is, however, consistent under the correct model so for
any finite dA, dB, and dC, as n→∞ the estimates will tend
toward the correct values and the effect will disappear.

Faced with the counterintuitive results of Figure 3,
our next goal is to explain these distributions. First,
we concentrate on the feature that when dC is large
many of the reconstructed trees have dA =0 or dB =0. To
understand this we need to know the features of data sets
that cause trees with zero branch lengths. We use DM
methods as an initial approach, followed by an analysis
of the ML equations. Combining these two approaches
allows us to find maxima for the ML equations with zero
or infinite branch lengths, and predict quite accurately
when these will be global maxima. This means that for
a given data set we can predict if the tree will have a
zero or infinite branch length; for trees where we predict
this we can also derive the branch lengths of the other
branches.

DM analysis.—The simulated data sets were analyzed
using DM methods because DM equations can be easy
to interpret and may give intuition into the behavior
shown in Figure 3. Equation 1 gives the branch lengths
of the three-taxon tree obtained using DM methods. One
of the branch lengths is zero or negative if the triangle
inequality is violated and one of the following conditions
holds:

DBC ≥DAB +DAC DAC ≥DAB +DBC DAB ≥DAC +DBC
(2)

To use these conditions as predictors for ML results
we calculate pairwise distances for each data set from its
pattern count data (as explained in “Methods” section)
and check if the inequalities given above hold. If one of
the inequalities holds, then one of the branch lengths

http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
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FIGURE 3. Distributions of the location of the branch leading to C on the A–B path for trees simulated with dC =0.1,0.5,1,1.25,1.5,2. For each
value of dC, 5000 data sets were run; those that produced a tree with a predicted infinite branch length are not plotted: this corresponds to 0, 0,
0, 0, 1, and 92 data sets, respectively. The distributions of dC and dA +dB along with plots of the position of C against dC and dA +dB are shown
in Supplementary Figures 1–4 available on Dryad; http://dx.doi.org/10.5061/dryad.rp7qv.

is less than or equal to zero for the DM method and
we predict that the branch length will be zero for ML.
Figure 4 shows a version of Figure 3 where the data sets
with predicted zero branch lengths are plotted in gray
and the remaining data sets are in black. This shows that
the accuracy of the conditions is high. Accuracy will be
more fully examined later.

Some inferred trees have infinite branch lengths,
making placement of taxon C impossible. Therefore,
we are also interested in identifying trees with infinite
branch lengths from DM analyses. Pairwise distances
are infinite if Uij ≥0.75 (see “Methods” section). If
exactly one pairwise distance is infinite, then one of
the conditions shown above (Equation 2) holds. This
means that with DM methods there will be one negative
branch length and two infinite branches (Equation 1).
By comparing this with ML results we find that this
corresponds to cases where the ML tree has one zero
branch length, and finite lengths for the other branches.
This can therefore be included as a case where a zero

branch length is predicted if one of the conditions above
(Equation 2) holds.

If two pairwise distances are infinite, for example DAC
and DBC, then there can be no knowledge about the
placement of one of the taxa, here C, so the length of
its branch will be infinite. So for any taxon X, if the
other two taxa are Y and Z, then we would expect the
branch to X to be infinite if DYX and DZX are infinite.
If three pairwise distances are infinite then there can be
no knowledge of the relationship of any of the taxa so at
least two of the branch lengths should be infinite. This
gives conditions for infinite branches, which again can
be used as predictors for ML results. All predictors are
shown in Table 1.

The accuracy of these DM-based predictors of ML
behavior was tested using simulation, comparing ML
results with predictions made from the count data. We
simulated 5000 data sets from the tree in Figure 2 with
dC =0.1,0.5,1,1.25,1.5,2 and dA =dB =0.05,0.1,0.2,0.3.
The values for dA and dB were again chosen to exhibit

http://dx.doi.org/10.5061/dryad.rp7qv
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FIGURE 4. Stacked histogram showing distributions of the location of the branch leading to C on the A–B path for trees with dC =
0.1,0.5,1,1.25,1.5,2. The distributions are the same as in Figure 3, but have been split so trees predicted to have zero branch lengths are colored
in gray, and the remaining trees are in black. Incorrect predictions are those that are gray but not located at 0 or 1 on the x-axis, or black and
located at 0 or 1.

TABLE 1. Predictions for branch lengths of the ML tree using
pairwise distances

Conditions Prediction

DBC ≥DAB +DAC (incl. DBC =∞) dA =0
DAC ≥DAB +DBC (incl. DAC =∞) dB =0
DAB ≥DAC +DBC (incl. DAB =∞) dC =0
DAB =∞ & DAC =∞ dA =∞
DAB =∞ & DBC =∞ dB =∞
DAC =∞ & DBC =∞ dC =∞
DAB =∞ & DAC =∞ & DBC =∞ At least two of the branch

lengths are infinite

a range of lengths where estimation would be relatively
easy. In these simulations, the DM conditions for infinite
branch lengths matched ML with 100% accuracy. The
accuracy for the zero branch length DM conditions is
shown in Figure 5. These conditions are at least 95%
accurate for all simulations apart from dA =dB =0.3
where they remain more than 90% accurate.

Zero-length branches can be explained by noting
that with long branch lengths we frequently get data
that suggest |DBC −DAC|≥DAB. This occurs because
estimates of DBC and DAC have high variance if dC
is large. This then leads to inference of a zero branch
length.

The good prediction accuracy suggests that the
DM conditions are closely related to ML inference.
The next section attempts to derive analytic ML
solutions that would give perfect understanding of our
counterintuitive findings.

ML analysis.—To derive branch lengths we need to find
the global maximum of the likelihood equation. One
approach to do this is to find all of the local maxima
and compare their values to find the greatest. We have
not been able to achieve this due to the complexity of
the ML equations. However, we have been able to find
all the local maxima with zero or infinite branch lengths.
We can then compare the likelihoods to find the greatest,
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FIGURE 5. The accuracy of DM conditions for predicting zero
branch lengths on ML trees for different long branch lengths. Four
different lengths of A–B have been used, with dA =dB throughout.
Accuracy is defined as the proportion of true results, i.e., the number
of true positives and true negatives divided by the total number of
results.

and using the DM results we can then predict when this
result is the global maximum. This allows us to predict
not only if there is a zero or infinite branch length, but
also the other branch lengths on the tree.

The ML equation for a three-taxon tree is a function of
the five pattern counts and the three branch lengths (see
Supplementary Methods, Equation 1 available on Dryad;
http://dx.doi.org/10.5061/dryad.rp7qv). Our aim is to
find the three optimal branch lengths for a given set of
pattern counts. The solution space of the ML equation is
therefore a 3D region with each dimension representing
a branch length. Branch lengths are restricted to be non
negative, so the boundaries of the region occur when one
or more of the branches are either zero or infinite. The
space representing all solutions with any zero or infinite
branch lengths is, therefore, the surface of a convex
polyhedron that has been made compact (i.e., closed and
bounded) by the addition of points at infinity, from now
on described as a cube, giving 26 regions (8 points, 12
lines, and 6 planes) to investigate. Figure 6 illustrates
this as a cube where finite boundaries have been drawn
to represent ∞ for ease of understanding. The interior of
the region represents all cases, where each of dA, dB, and
dC is positive and finite.

To solve for local maxima of the likelihood function
at the boundaries, we restrict the ML equations to
each of the points, lines, or planes on the surface
of the cube and solve for maxima in each region.
Standard methods were used to solve for maxima
(Luenberger 1984); the derivations of all of the
possible maxima on boundaries are shown in the
Supplementary Methods (available on Dryad; http://
dx.doi.org/10.5061/dryad.rp7qv). Because we have not

FIGURE 6. The solution space of the ML equation is an infinitely
bounded convex polyhedron. One point (black), one line (blue), one
surface plane (yellow), the interior plane dA =dB (red), and three lines
where two variables are at ∞ (dotted line) are highlighted; when the
ML equation is restricted to regions such as these analytical solutions
can be found for local maxima.

found a solution for all maxima in the interior of the cube
we cannot in general determine whether each maximum
will be a local or global maximum; to do this we would
have to compare the likelihood values of all the maxima,
including any in the interior. However, in some special
cases we are able to determine the global maximum, and
these are detailed in Table 2. The rest of the local maxima
are detailed in Table 3.

These results correspond to the peaks at the edge of
the distributions shown in Figure 3, but they do not
account for the peak in the middle of the distribution,
or the gap around it (clearest when dC =1.5 or 2). To
explain this we need to consider the red plane, dA =dB,
in Figure 6. If we require dA =dB, then it is possible to find
an optimum which corresponds to nxyx =nyxx. As two of
the branch lengths are equal this tree is now equivalent to
a three-taxon tree with a molecular clock, so the branch
lengths can be derived from the solution given in Chor
et al. (2006a). Examining our ML simulations shows that
all of the data sets in the peak in the middle of the
plots have nxyx =nyxx, and that if nxyx =nyxx then the
branch to C either falls exactly in the middle or on the
edges of the A–B path (Supplementary Fig. 6 available on
Dryad; (http://dx.doi.org/10.5061/dryad.rp7qv)). This
corresponds to the optimum at dA =dB being either a
maximum or a minimum. In comparison, if nyxx and nxyx
differ then there are a variety of places where this branch
can be placed. From this it can be deduced that the gap
seen on the distribution is due to the fact that if the data
are symmetric then C can either be placed in the middle
or on the edge, whereas when data are not symmetric
there are many more options for placement of C.

http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
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TABLE 2. Global maxima of the ML equations on the boundaries of the solution space

Conditions (dA,dB,dC) Likelihood value

nxxx =n (0,0,0) −nlog(4)

nxyz =nxyx =nyxx =0 nxxx ≤n/4 (0,0,∞) −nlog(16)
nxxx >n/4 (0,0,- 3

4 log( 4nxxx−n
3n )) nxxx log( nxxx

4n )+(n−nxxx)log( n−nxxx
12n )

nxyz =nyxx =nxxy =0 nxxx ≤n/4 (0,∞,0) −nlog(16)
nxxx >n/4 (0,- 3

4 log( 4nxxx−n
3n ),0) nxxx log( nxxx

4n )+(n−nxxx)log( n−nxxx
12n )

nxyz =nxxy =nxyx =0 nxxx ≤n/4 (∞,0,0) −nlog(16)
nxxx >n/4 (- 3

4 log( 4nxxx−n
3n ),0,0) nxxx log( nxxx

4n )+(n−nxxx)log( n−nxxx
12n )

All results shown so far are for the JC model. Studies
on real data generally use a more complicated model
such as the general time-reversible (GTR) model
(Tavaré 1986). The simulations and tree reconstructions
described above have been repeated using the GTR
model with realistic parameters (Murphy et al.
2001) (Supplementary Fig. 7 available on Dryad;
http://dx.doi.org/10.5061/dryad.rp7qv). Again for
long branch lengths many trees have zero branch
lengths. However, there is no sharp peak and gap in the
middle of the A–B path; we conclude that this is caused
by the symmetric nature of the JC model, which is not
present in the GTR model.

Combined ML and DM analysis.—Combining our ML
and DM analyses allows us to gain a more complete
understanding of the distributions in Figure 3. DM
analysis has allowed us to predict whether the tree will
have an infinite or zero branch length; in these cases, ML
analysis can be used to derive the other branch lengths
of the tree. Therefore, a possible workflow is as follows
(Fig. 7): first, check for the known global maxima. If
none of these is found, then DM analysis can be used
to predict whether the tree has a zero or infinite branch
length (to the described accuracy in Fig. 5). If a zero or
infinite branch length is predicted, then the relevant ML
solution can be used to find it. Otherwise a numerical
optimization program must be used to find the global
maximum.

Conclusions.—Combining our analyses, Figure 3 can
now largely be explained. This explanation can be
used to split the results into separate subsets, as in
Figure 4. The conditions given can be used to predict
which subset a new data set will belong to (Fig. 7).
An intuitive explanation can also be constructed for
the trees with zero-length branches. By comparison
with DM methods we can see that trees would be
reconstructed with negative branch lengths. However,
ML tree reconstruction does not permit negative branch
lengths and hence trees are instead given zero branch
lengths in these cases. These negative branch lengths
are obtained because of the high variance involved in
estimating long branch lengths.

We further analyzed whether the variance involved
in estimating long branches could explain this

phenomenon. For distance methods it is possible to
estimate the variance of the estimates of dA, dB, and
dC as a function of the sequence length and the three
branch lengths (see Supplementary Methods available
on Dryad; http://dx.doi.org/10.5061/dryad.rp7qv). We
are most interested in the first two of these, as these
are the ones most often inferred as zero. If we assume
that dA is normally distributed, then it is possible to
estimate the proportion of times that dA is inferred to
be less than or equal to zero. The same analysis can be
repeated for dB, comparing the estimated proportions
with the proportion of times that either DM or ML
methods inferred that dA or dB was zero (Table 4). These
predictions are close to the values for both DM and ML,
and are slightly closer to the DM values. This is expected
as they are derived from the variance of the distance
estimates. The predictions tend to be slightly smaller
than the proportions found in the simulations. This
could be because of the approximations in the derivation
of the variance (see Supplementary Methods available
on Dryad; http://dx.doi.org/10.5061/dryad.rp7qv), or
alternatively it could indicate that the distribution is not
quite normal. This would not be surprising as, although
the counts of differences between sequences may well
be normally distributed, the JC distance involves a
subsequent logarithmic transformation.

In summary, analysis of the variance of individual
branch length estimates is able to give a good prediction
of the frequency of occurrence of zero-length branches,
suggesting that this could be an important explanatory
factor.

Two Long Branches
LBA is normally discussed when an (unexpected)

topology with two long branches grouped together is
obtained following tree reconstruction. This means LBA
is generally only considered for trees with two long
branches where there are multiple different possible
topologies. To allow analysis of these situations, we now
focus on four-taxon trees with two long branches. Two
different forms of LBA have already been defined: LBC
and LBJ. These will now be investigated to gain an insight
into what any “attraction” might be.

http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
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Find the ML solution

with infinite-length

branch(es) from Table 3

Find the ML solution

with one zero-length

branch from Table 3

Infinite- or zero-
length branches

(Table 1)?

Known ML solution

FIGURE 7. Workflow for using the ML and DM results to find the
ML solution for a three-taxon tree.

LBC.—LBC is defined as long branches being closer
together on the constructed topology than on the true
topology. To investigate this we simulated four-taxon
data sets from the tree in Figure 8a and applied ML to
reconstruct the two three-taxon trees in Figure 8b, and
the best four-taxon tree (one of Fig. 8c–f). This allows us to
assess how the placement of a long branch is affected by
the presence of another long branch. On the three-taxon
trees only one long branch is present so no attraction
could have occurred.

If there were an attraction then we would expect the
long branches (Y and Z) to be closer on the four-taxon
tree than on the three-taxon tree. To investigate this
the relative position of Y and Z on the inferred trees

TABLE 4. Proportion of trees with zero branch lengths for different
methods

dC Predicted Found using DM Found using ML

0.1 0 0 0
0.5 0.0002 0 0
1 0.0224 0.0262 0.0264
1.25 0.0842 0.0998 0.1034
1.5 0.1996 0.2192 0.2202
2 0.4930 0.5064 0.5220

has been calculated. To find the relative position on
the three-taxon trees the position of the branches to Y
and Z are calculated as fractions along the W–X path of
their respective trees, as previously; the relative position,
x, is then the difference between these two fractions
(Fig. 8b). For each four-taxon tree the positions are again
calculated for Y and Z as fractions for each topology and
the relative position y is recorded (Fig. 8c–f). For topology
8d and 8f, y=0 is recorded as the branches to Y and Z
fall in the same place on the W–X path. All simulations
were performed as described in “Simulations” section.
The length of the W–X path is kept constant at 0.1 with
Y and Z evenly spaced between W and X.

Figure 8g shows distributions of the relative position
of Y and Z for the three-taxon trees (x-axis) against
that for the four-taxon tree (y-axis) when the length
of the branches to Y and Z is 1.5. The points are
colored according to the topology of the inferred ML
four-taxon tree. Also indicated is the line x=y; points
on this line have the same relative position on the
three- and four-taxon trees. If topology 8c, the correct
topology, underwent LBC then the black points would
lie below this line. Similarly, the points for topology 8e,
a wrong topology with the long branches not joined to
one another, would lie above this line. As can be seen
these points are not distributed as would be expected
for LBC; in fact there is a small asymmetry in the
opposite direction to that which would be expected
under LBC. This shows that the branches do not get
closer together; if anything they get slightly further apart.
This asymmetry becomes significant (binomial, P<0.05)
for topology 8c once the long branches are of length 1.5.
For topology 8e this asymmetry is significant (binomial,
P<0.05) earlier, at a branch length of 0.75. For topologies
8c and 8e the positions of Y on the three-taxon tree
are also very similar to their positions on the four-
taxon tree (Supplementary Fig. 8 available on Dryad;
http://dx.doi.org/10.5061/dryad.rp7qv; correlations of
0.96 and 0.97, respectively). The equivalent can be shown
for the position of Z (results not shown). These results
clearly show that for topologies 8c and 8e there is no
attraction and no LBC occurs. This is the case for any Y
and Z lengths (results not shown). We have also explored
the possibility that instead of long branches becoming
closer together, short branches become closer together.
This can be analyzed analogously to LBC, and it can
be shown that there is also no short branch closeness
(results not shown).

http://dx.doi.org/10.5061/dryad.rp7qv
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FIGURE 8. a) The four-taxon tree used for simulations. The path between W and X is always of length 0.1 with Y and Z evenly spaced along
it. The simulated data are used to construct the ML three-taxon trees (W,X,Y) and (W,X,Z), b), and the ML four-taxon tree (one of c–f). Distances
x and y, as indicated in b–f, measure the inferred distance between the branches to taxa Y and Z. g) The relative position of Y and Z on the
W–X path on the three-taxon trees (x-axis) versus that on the optimal four-taxon tree (y-axis). Lengths of 1.5 are used for branches to Y and Z;
equivalent results are seen for other lengths. h) The proportions of different topologies obtained for different lengths of Y and Z.

LBJ.—LBJ is defined as long branches being incorrectly
joined to one another on a tree. To investigate this we
measured the proportion of different ML topologies for
different long branch lengths (Fig. 8h). For short branch
lengths the results are as expected with the majority of
the data sets having the correct topology. As the long
branch length increases the proportion of the correct
topology (8c) decreases, and the proportions of the other

topologies increase, with the topology with the long
branches placed together (8d) increasing in proportion
more than topology 8e. For branch lengths longer than
2 topology 8d continues to increase, whereas topology
8e starts to decrease. Finally topology 8d levels off at
∼60% of the trees with all the other topologies levelling
off at ∼13%. This shows that for very long branch lengths
there is a strong bias toward placing the long branches
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together and that for infinite branch lengths instead of
getting each topology chosen randomly, topology 8d
would be chosen over half of the time. This shows that
LBJ is occurring.

The details of these results are dependent on both
sequence length and the length of the W–X path. If
sequence length is increased then longer branch lengths
are required to see the patterns shown here: however,
with long-enough branch lengths they will still occur.
However, for any length of branch to Y and Z, if sequence
length is increased enough then the correct topology
will be reached 100% of the time, as ML phylogenetic
inference is consistent. The final proportions of the
topologies are dependent on the length of the W–X path;
however, the existence of the bias is not removed by
changing the W–X path length.

As with the three-taxon tree problem, the simulations
and tree reconstructions shown above have been
repeated using the GTR model with realistic parameters
(Murphy et al. 2001) (Supplementary Fig. 9 available on
Dryad; http://dx.doi.org/10.5061/dryad.rp7qv). Again
LBC does not occur (results not shown) but for long
branch lengths LBJ does occur. However, longer branch
lengths are required for LBJ to occur with GTR than
with JC. This is probably because, although on average
the bases are mutating at the same rates, in the GTR
model some rates will be slower than average, and some
faster. This means that saturation will not be reached
by all sites at the same time, so at long branch lengths
there will still be information about the tree in some of
the sites. Connecting this with the concept of effective
sequence length (Nasrallah et al. 2011), the length of an
“ideal” sequence required to get the same behavior as
a real sequence, indicates that effective sequence length
may be model dependent. It is important to note that
the comparison of GTR and JC does not tell us which
model would perform better if there were any model
misspecification, as would likely be the case in the
majority of empirical studies.

We find the extent of the phenomenon of LBJ
surprising. It is important to note that when two
quantities can tend to infinity, the order in which limits
to infinity are taken can be important. The extent of LBJ
is affected by both the sequence length and the long
branch length, and the outcome is controlled by the order
in which these approach infinity. If we take Pn,L(T′) to
be the probability that ML recovers tree T′ (any tree,
including T) from n sites generated on T, where L is the
long branch length, then if we take sequence length to
infinity first we obtain:

lim
L→∞ lim

n→∞Pn,L(T)=1

If instead we reverse the order of the limits then we
obtain:

lim
n→∞ lim

L→∞Pn,L(T)=c<1

(If limits are taken simultaneously then Pn,L(T)
converges to c<1 unless n grows exponentially faster

than L, in which case Pn,L(T) converges to 1 (Martyn
and Steel 2012)). This convergence to a value <1 is
what we are seeing in Figure 8h, where for long
branch lengths the correct tree is only obtained ∼13%
of the time. To understand this phenomenon it would
be useful to obtain bounds on c. It is possible to
show that, in the limits, the probability of obtaining
topology 8c and topology 8e is the same, and hence
c≤1/2 (see Supplementary Methods available on Dryad;
http://dx.doi.org/10.5061/dryad.rp7qv). This is still
much larger than the 13% seen in our simulation. We
have not been able to obtain tighter bounds for c. If this
were possible then it could significantly improve our
understanding of LBJ.

Conclusions.—The addition of an extra taxon to a tree
increases the number of possible wrong trees which
could be inferred, and stochastic error means that they
will be inferred sometimes. We have shown that when
long branches are not joined to one another they do
not appear to attract, so there is no LBC. However,
the proportion of time long branches join is dependent
on branch length, and biases toward trees with long
branches placed together get worse as branch lengths
increase. These results show that LBJ does happen and is
related to the existence of long branches, but it is caused
neither by inconsistency or attraction. LBJ may be a better
term than LBA.

CONCLUSIONS

We have shown that placing one long branch
is difficult for ML, even with the correct model.
Counterintuitively, there is a bias toward the tips of the
three-taxon tree. Application of DM and ML equations
has led to insights as to why this bias exists, as well as
predictions and ML solutions for trees with zero and
infinite branch lengths.

LBA has been analyzed for small trees and two distinct
analyzable phenomena distinguished: LBC and LBJ. LBC
is defined as long branches being closer together on
the constructed topology than on the true topology.
LBJ is defined as long branches being incorrectly joined
together on a tree. It has been shown that LBC does not
exist on four-taxon trees, and that the long branches do
not interact with each other when they are not placed
together on a tree. However, LBJ does exist and is the
same effect as found previously (Huelsenbeck and Hillis
1993). As LBC does not exist, the phrase LBA, which
has come to be used for this effect, does not seem
appropriate. The reason for LBJ is still an open question.

The results shown here have been obtained with
long branch lengths and limited amounts of data,
which raises the question of whether we are likely
to see any of these effects in real data. It is difficult
to make direct comparisons from the results shown
here to papers citing LBA because real data will not
conform to a specific evolutionary model, and is likely
to be significantly more complicated than the model

http://dx.doi.org/10.5061/dryad.rp7qv
http://dx.doi.org/10.5061/dryad.rp7qv
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examined here. Additionally, empirical studies all use
more than three taxa. The effects described in this
article were seen for single long branches as short as 1
(expected substitution per site), well within the bounds
of many existing studies. For the cases with two long
branches, LBJ only becomes a real problem when the
long branches are of length 2 or greater. For these lengths
it would be difficult to align the sequences. However, real
sequences have much more complicated evolution than
that assumed here, and there is no way of dismissing LBJ
as a possible problem for real data.

Previously a large number of tests for LBA have been
suggested. Our results indicate that these tests may
not all be appropriate. For example, one such method
is based on removing one of the long branches and
then repeating the reconstruction. If the long branch
maintains its original position then this was taken to
indicate LBA had not taken place (Pol and Siddall
2001). However, we have shown that even one long
branch is not necessarily expected to be placed correctly,
suggesting this test may not be enough. Another method
proposes detection of LBA by comparing results using
a phylogenetic inference method that suffers less from
LBA (Huelsenbeck 1997), but our finding that even ML
can suffer from LBA without model misspecification
indicates that care should be taken to ensure methods
shown to be robust to LBA are used.

Our study shows that even one long branch may be
placed incorrectly and in an unexpected way by ML
on problems as simple as three- or four-taxon trees
with a correctly specified substitution model. Although
not in itself informative about behavior on larger trees,
this gives cause for concern when analyzing trees with
even one very long branch, and highlights the fact that
investigations involving larger trees are needed. There is
still a lot that we do not understand about simple models
on small trees.
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Stefanović S., Rice D.W., Palmer J.D. 2004. Long branch attraction, taxon
sampling, and the earliest angiosperms: Amborella or monocots?
BMC Evol. Biol. 4:35.

Stiller J.W., Hall B.D. 1999. Long-branch attraction and the rDNA model
of early eukaryotic evolution. Mol. Biol. and Evol. 16:1270–1279.

Tavaré S. 1986. Some probabilistic and statistical problems in the
analysis of DNA sequences. Lect. Math. Life Sci. 17:57–86.

Wiens J.J., Hollingsworth B.D. 2000. War of the Iguanas: conflicting
molecular and morphological phylogenies and long-branch
attraction in iguanid lizards. Syst. Biol. 49:143–159.

Wilcox T.P., García de León F.J., Hendrickson D.A., Hillis D.M. 2004.
Convergence among cave catfishes: long-branch attraction and a
Bayesian relative rates test. Mol. Phylogenet. and Evol. 31:1101–1113.

Yang Z. 2000. Complexity of the simplest phylogenetic estimation
problem. Proc. R. Soc. Lond. B 267:109–116.

Yang Z. 2006. Computational Molecular Evolution. Oxford (UK):
Oxford University Press.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood.
Mol. Biol. and Evol. 24:1586–1591.

Zharkikh A., Li W.H. 1992. Statistical properties of bootstrap estimation
of phylogenetic variability from nucleotide sequences. I. Four taxa
with a molecular clock. Mol. Biol. and Evol. 9:1119–1147.


	Maximum Likelihood Inference of Small Trees in the Presence of Long Branches
	CONCLUSIONS
	SUPPLEMENTARY MATERIAL
	FUNDING
	ACKNOWLEDGMENTS


