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The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects
imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features
(mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied
a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine
with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different
kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the
most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and
its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear
discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in
a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of
imagined speech might contribute to the development of silent speech BCI systems.

1. Introduction

People communicate with each other by exchanging verbal
and visual expressions. However, paralyzed patients with
various neurological diseases such as amyotrophic lateral
sclerosis and cerebral ischemia have difficulties in daily
communications because they cannot control their body
voluntarily. In this context, brain-computer interface (BCI)
has been studied as a tool of communication for these types
of patients. BCI is a computer-aided control technology based
on brain activity data such as EEG, which is appropriate
for BCI systems because of its noninvasive nature and
convenience of recording [1, 2].

The classification of EEG signals recorded during the
motor imagery paradigm has been widely studied as a
BCI controller [3–5]. According to these studies, differ-
ent imagined tasks induce different EEG patterns on the
contralateral hemisphere mainly in mu (7.5–12.5Hz) and
beta (13–30Hz) frequency bands. Many researchers have

successfully constructed BCI systems based on the limb
movement imagination paradigm such as right hand, left
hand, and foot movement [5–7]. However, EEG signals
recorded during imagination of speech without any move-
ment of either mouth or tongue are still difficult to classify;
however, this topic has become an interesting issue for
researchers because speech imagination has high similarity to
real voice communication. For example, Deng et al. proposed
a method to classify imagined syllables, /ba/ and /ku/, in
three different rhythms using Hilbert spectrum methods,
and the classification results were significantly greater than
the chance level [8]. In addition, DaSalla et al. classified /a/
and /u/ as vowel speech imagery for EEG-based BCI [9].
Furthermore, a study to discriminate syllables embedded
in spoken and imagined words using an electrocorticogram
(ECoG) was conducted [10].

Obviously, for the BCI system, the use of optimized
classification algorithms that categorize a set of data into
different classes is essential, and these algorithms are usually
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• Syllable cue: vowels /a/, /e/, /i/, /o/, /u/ and mute are randomly presented.

• Beep: beep sound for preparation of listening the sound or covert vowel articulation.

• Speech Imagination: covert vowel articulation (to imagine the vowel).
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Figure 1: Schematic sequence of the experimental paradigm. Vowels /a/, /e/, /i/, /o/, /u/, and mute were randomly presented 1 s after the
beginning of each trial. After the third beep sound, the subject imagines the same vowel heard at the beginning of the trial. The EEG data
acquired during the speech imagination period were used for signal processing and classification in this study.

divided into five groups: linear classifiers, neural networks,
nonlinear Bayesian classifiers, nearest neighbor classifiers,
and combinations of classifiers [11]. For instance, various
algorithms for speech classification have been used, such
as k-nearest neighbor classifier (KNN) [12], support vector
machine (SVM) [9, 13], and linear discriminant analysis
(LDA) [8].

The extreme learningmachine (ELM) is a type of feedfor-
ward neural network for classification, proposed by Huang
et al. [14]. ELM has high speed and good generalization
performance compared to the classic gradient-based learning
algorithms. There is growing interest in the application of
ELM and its variants in the biomedical field, such as epileptic
EEG pattern recognition [15, 16], MRI study [17], and BCI
[18].

In this study, we measured the EEG activities of speech
imagination and attempted to classify those signals using the
ELM algorithm and its variants with kernels. In addition, we
compared the results to the support vector machine with a
radial basis function (SVM-R) kernel and linear discriminant
analysis (LDA). As far as we know, applications of ELM as a
classifier for EEG data of imagined speech have been rarely
studied. In the present study, we will examine the validity of
using ELM and its variants in the classification of imagined
speech and the possibility of our method for applications in
BCI systems based on silent speech.

2. Materials and Methods

2.1. Participants. Five healthy human participants (5 males;
mean age: 28.25 ± 2.71, range: 26–32) participated in this
study. All participants were native Koreans with normal
hearing and right-handedness. None of the participants had
any known neurological disorders or other significant health
problems. All participants gave written informed consent,

and the experimental protocol was approved by the Institu-
tional ReviewBoard (IRB) of theGwangju Institute of Science
and Technology (GIST). The approval process of the IRB
complies with the declaration of Helsinki.

2.2. Experimental Paradigm. Participants were seated in a
comfortable armchair and wore earphones (er-4p, Etymotic
research, Inc., IL 60007, United States of America) pro-
viding auditory stimuli. Five types of Korean syllables—
/a/, /e/, /i/, /o/, and /u/, as well as a mute (zero volume)
sound—were utilized in the experiment. Figure 1 describes
the overall experimental paradigm. At the beginning of
each trial, a beep sound was presented to prepare the
participants for perception of the target syllable. These six
auditory cues (including the mute sound) were recorded
using Goldwave software (GoldWave, Inc., St. John’s, New-
foundland, Canada), and the source audio was from
Oddcast’s online (http://www.oddcast.com/home/demos/tts/
tts example.php?sitepa). The five vowels and mute sound
were randomly presented. Another 1 s after the onset of the
target syllable, two beep sounds were given sequentially, with
a 300ms interval between them. After the two beep sounds,
participants were instructed to imagine the same syllable
heard at the beginning of the trial. The time for imagination
was 3 s for each trial. Participants performed 5 sessions, with
each session consisting of 10 trials for each syllable. Resting
times were given between sessions for 1min. Therefore, 50
trials were recorded for each syllable and themute sound, and
the total time for the experiment was approximately 10min.
All sessions were carried out in a day.

The experimental procedure was designed with e-Prime
2.0 software (Psychology Software Tools, Inc., Sharpsburg,
PA,USA). AHydroCel Geodesic SensorNet with 64 channels
and Net Amps 300 amplifiers (Electrical Geodesics, Inc.,

http://www.oddcast.com/home/demos/tts/tts_example.php?sitepa
http://www.oddcast.com/home/demos/tts/tts_example.php?sitepa
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Figure 2: Overall signal processing procedure for classification. First, each trial was divided into thirty blocks with a 0.2 s length and 0.1 s
overlap. Mean, variance, standard deviation, and skewness were extracted from all blocks and channels. Sequentially, sparse-regression-
model-based feature selection was employed to reduce the dimension of the features. All features were used as the input of the trained
classifier. Because each trial includes thirty blocks, thirty classifier outputs were acquired; therefore, the label of each trial was determined by
selecting the most frequent output of the thirty classifier outputs.

Eugene, OR, USA)were used to record the EEG signals, using
a 1000Hz sampling rate (Net Station version 4.5.6).

2.3. Data Processing and Classification Procedure

2.3.1. Preprocessing. First, we resampled the acquired EEG
data into 250Hz for fast preprocessing procedure. The EEG
data was bandpass filtered with 1–100Hz. Sequentially, an IIR
notch filter (Butterworth; order: 4; bandwidth: 59–61Hz) was
applied to remove the power line noise.

In general, EEG classification has problems in terms of
poor generalization performance and the overfitting phe-
nomenon because the number of samples is much smaller
than the dimension of the features. Therefore, to obtain
enough samples for learning and testing the classifier, we
divided each imagination trial for 3 s into 30 time segments
with a 0.2 s length and 0.1 s overlap. Therefore, we obtained
a total of 9000 segments = (6 (conditions) × 50 (trials per
each condition) × 30 segments) to learn and test the classifier.
We calculated the mean, variance, standard deviation, and
skewness from each segment to acquire the feature vector
for the classifier. The dimension of the feature vector is
240 (4 (types of features) × 60 (the number of channels)).
Additionally, to reduce the dimension of the feature vector,
we applied a feature selection algorithm based on the sparse
regression model. The selected set of features extracted from
all segments was employed to learn and test the classifier.
Because a trial consists of thirty segments, a trial has thirty
outputs of the classifier. Therefore, the label of the test trial
was determined by selecting themost frequent output among
the outputs of the thirty segments. The training and testing
of the classifier model are conducted using the segments
extracted only from training data and testing data, respec-
tively. Finally, to accurately estimate the classification perfor-
mance, we applied 10-fold cross-validation.The classification
accuracies of ELM, extreme learning machine with linear
function (ELM-L), extreme learning machine with radial
basis function (ELM-R), and SVM-R for all five subjects were
compared to select the optimal classifier to discriminate the

vowel imagination. The overall signal processing procedures
are briefly described in Figure 2.

2.3.2. Sparse-Regression-Model-Based Feature Selection. Tib-
shirani developed a sparse regression model known as the
Lasso estimate [19]. In this study, we employed the sparse
regression model to select the discriminative set of features
to classify the EEG responses to covert articulation. The
formula for selecting discriminative features based on the
sparse regression model can be described as follows:

z∗ = argmin
z

Fz − t22 + 𝜆 ‖𝑧‖1 , (1)

where ‖ ⋅ ‖𝑝 denotes the 𝑙𝑝-norm, z is a sparse vector to be
learned, and z∗ indicates an optimal sparse vector. t ∈ R𝑁𝑡×1

is a vector about the true class label for the number of training
samples,𝑁𝑡, and 𝜆 is a positive regularization parameter that
controls the sparsity of z. F is the matrix that consists of the
mean, variance, standard deviation, and skewness for each
channel

F = [f1, f2, . . . , f240] , (2)

where f𝑝 ∈ R𝑁𝑡×1 is the 𝑝th column vector of F. The coor-
dinate descent algorithm is adopted to solve the optimization
problem in (1) [20].

The column vectors in F corresponding to the zero entries
in z are excluded to form an optimized feature set, F̃, that is
of lower dimensionality than F.

2.3.3. Extreme Learning Machine. Conventional feedforward
neural networks require weights and biases for all layers
to be adjusted by the gradient-based learning algorithms.
However, the procedure for tuning the parameters of all
layers is very slow because it is repeated many times, and
its solutions easily fall into local optima. For this reason,
Huang et al. proposed ELM, which randomly assigns the
input weights and analytically calculates only the output
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weights. Therefore, the learning speed of ELM is much faster
than conventional learning algorithms and has outstanding
generalization performance [21–23]. If we assume the 𝑁𝑡
training samples {(v𝑘, l𝑘)}𝑁𝑡𝑘=1, where v𝑘 is an 𝑛-dimensional
feature vector, v𝑘 = [V𝑘,1, V𝑘,2, . . . , V𝑘,𝑛]𝑇, and l𝑘 is the true
labels, which consists of 𝑚-classes, l𝑘 = [𝑙𝑘1, 𝑙𝑘2, . . . , 𝑙𝑘𝑚]𝑇,
a standard SLFN with 𝑁ℎ hidden neurons and activation
function 𝑎(⋅) can be formulated as follows:

𝑁ℎ∑
𝑗=1

wℎ𝑗𝑎 (w𝑖𝑗 ⋅ v𝑘 + b𝑗) = o𝑘, 𝑘 = 1, . . . , 𝑁𝑡, (3)

where w𝑖𝑗 = [𝑤𝑖𝑗,1, 𝑤𝑖𝑗,2, . . . , 𝑤𝑖𝑗,𝑛]𝑇 is the weight vector for the
input layer between the 𝑗th hidden neuron and the input
neurons, wℎ𝑗 = [𝑤ℎ𝑗,1, 𝑤ℎ𝑗,2, . . . , 𝑤ℎ𝑗,𝑚]𝑇 is the weight vector for
the hidden layer between the 𝑗th hidden neuron and the
output neurons, o𝑘 = [𝑜𝑘,1, 𝑜𝑘,2, . . . , 𝑜𝑘,𝑚]𝑇 is the output vector
of the network, and b𝑗 is the bias of the 𝑗th hidden neuron.
The operator ⋅ indicates the inner product. We can now
reformulate the equation into matrix form as follows

AWℎ = O, (4)

where

A

=
[[[[
[

𝑎 (w𝑖1 ⋅ v1 + b1) ⋅ ⋅ ⋅ 𝑎 (w𝑖𝑁ℎ ⋅ v1 + b𝑁ℎ)
... ⋅ ⋅ ⋅ ...

𝑎 (w𝑖1 ⋅ v𝑁𝑡 + b1) ⋅ ⋅ ⋅ 𝑎 (w𝑖𝑁ℎ ⋅ v𝑁𝑡 + b𝑁ℎ)

]]]]
]𝑁𝑡×𝑁ℎ

,

Wℎ = [wℎ1 ⋅ ⋅ ⋅ wℎ𝑁ℎ]
𝑇

𝑁ℎ×𝑚
,

O = [o1 ⋅ ⋅ ⋅ o𝑁𝑡]𝑇𝑁𝑡×𝑚 ,

(5)

where matrix A is the output matrix of the hidden layer and
the operator 𝑇 indicates the transpose of the matrix. Because
the ELMalgorithm randomly selects the inputweightsw𝑖𝑗 and
biases b𝑗, we can find weights for the hidden layer, wℎ𝑗 , by
solving the following optimization problem:

min
wℎ𝑗

AWℎ − L
2 , (6)

where L is the matrix of true labels for training samples

L = (l1 ⋅ ⋅ ⋅ l𝑁𝑡)𝑇𝑁𝑡×𝑚 . (7)

The above problem is known as a linear system optimization
problem, and its unique least-squares solution with a mini-
mum norm is as follows:

Ŵℎ = A†L, (8)

where A† is the Moore–Penrose generalized inverse of the
matrix A. According to the analysis of Bartlett and Huang,

the ELM algorithms achieve not only the minimum square
training error but also the best generalization performance
on novel test samples [14, 24].

In this paper, the activation function 𝑎(⋅)was determined
to be a sigmoidal function, and the probability density
function for assigning the input weights and biases was set
to be a uniform distribution function.

3. Results and Discussion

3.1. Time-Frequency Analysis for Imagined Speech EEG Data.
We computed the time-frequency representation (TFR) of
imagined speech EEG data for every subject to identify
speech-related brain activities. TFR of each trial was cal-
culated using a Morlet wavelet and averaged over all trials.
Among the five subjects, we plotted TFRs of subjects 2
and 5 which showed notable patterns in gamma frequency.
As shown in Figure 3, much of the gamma band (30–
70Hz) powers of five vowel conditions (/a/, /e/, /i/, /o/, and
/u/) in the left temporal area are totally distinct and much
higher than those of the control condition (mute sound). In
addition, topographical head plot of subject 5 was presented
in Figure 4. Increased gamma activities were observed in both
temporal regions when the subject imagined vowels.

3.2. Classification Results. Figure 5 shows the classification
accuracies averaged over all pairwise classifications for five
subjects using ELM, ELM-L, ELM-R, SVM-R, and LDA. We
also conducted SVM and SVM with a linear kernel, but the
results of SVM and SVM with a linear kernel are excluded
because these classifiers could not be converged during many
iterations (100,000 times). All classification accuracies are
estimated by 10 × 10-fold cross-validation. In the cases of
subjects 1, 3, and 4, ELM-L shows the best classification
performance compared to the other four classifiers. However,
ELM-R shows the best classification accuracies in subjects
2 and 5. In the cases of all subjects, the classification
accuracies of ELM, ELM-L, and ELM-R are much better than
those of SVM-R, which are approximately the chance level
of 50%. To identify the best classifier to discriminate the
vowel imagination, we conducted paired 𝑡-tests between the
classification accuracies of ELM-R and those of the other
three classifiers. As a result, the classification performance of
ELM-R is significantly better than those of ELM (𝑝 < 0.01),
LDA (𝑝 < 0.01), and SVM-R (𝑝 < 0.01). However, there is no
significant difference between the classification accuracies of
ELM-R and ELM-L (𝑝 = 0.46).

Table 1 describes the classification accuracies of subject
2, which shows the highest overall accuracies among all
subjects, after 10 × 10-fold cross-validation, for all pairwise
combinations. In almost all pairwise combinations, ELM-
R has better classification performance than the other four
classifiers for subject 2. The most discriminative pairwise
combination for subject 2 is vowels /a/ and /i/, which shows
100% classification accuracy using ELM-R for subject 2.

Table 2 contains the results of ELM-R for the pairwise
combinations and shows the top five classification perfor-
mances for each subject. There is no pairwise combination
to be selected from all subjects; however, /a/ versus mute and
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temporal areas when the subject imagined vowels. Time interval for the analysis is 0–3 sec.

/i/ versus mute are selected from four subjects, and /a/ versus
/i/ is selected from three subjects.

Table 3 indicates the confusion matrix for all pairwise
combinations and subjects using ELM, ELM-L, ELM-R,
SVM-R, and LDA. In terms of sensitivity and specificity,
ELM-L is the best classifier for our EEG data. Although
SVM-R shows higher specificity than those of the other three
classifiers in this table, SVM-R classified almost all conditions
as positive and resulted in poor sensitivity; therefore, the high
specificity of the SVM-R is possibly invalid. Thus, SVM-R
might be an unsuitable classifier for our study.

3.3. Discussion. Overall, ELM, ELM-L, and ELM-R showed
better performance than the SVM-R and LDA algorithms in
this study. In several previous studies, ELM achieved similar
or better classification accuracy rates with much less training
time compared to other algorithms using EEG data [16, 25–
27]. However, we could not find studies on classification of
imagined speech using ELM algorithms. Deng et al. reported
classification rates using LDA for imagined speech with
72.67% of the highest accuracy, but the average results were
not much better than the chance level [8]. DaSalla et al. using
SVM showed approximately 82% of the best accuracy and
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Figure 5: Averaged classification accuracies over all pairwise classification using a support vector machine with a radial basis function kernel
(SVM-R), extreme learning machine (ELM), extreme learning machine with a linear kernel (ELM-L), and extreme learning machine with a
radial basis function kernel (ELM-R) for all five subjects.

Table 2: Classification accuracies in% employing ELM-R for the pairwise combinations, which shows the top five classification performances
for each subject. Classification accuracies are expressed as mean and associated standard deviation.

Subjects

S1 86.47 ± 1.07 81.21 ± 1.03 80.01 ± 3.73 73.35 ± 3.17 72.44 ± 1.71
(/a/ versus /i/) (/a/ versus mute) (/a/ versus /u/) (/a/ versus /e/) (/i/ versus /o/)

S2 99.02 ± 0.76 99.30 ± 0.14 98.22 ± 0.22 95.14 ± 1.03 93.01 ± 0.73
(/a/ versus /i/) (/i/ versus mute) (/i/ versus /o/) (/a/ versus mute) (/o/ versus mute)

S3 92.08 ± 1.08 90.19 ± 0.63 89.15 ± 1.37 87.27 ± 0.71 70.38 ± 1.38
(/e/ versus mute) (/i/ versus mute) (/u/ versus mute) (/o/ versus mute) (/a/ versus /i/)

S4 93.33 ± 0.31 92.27 ± 1.03 92.24 ± 2.13 91.12 ± 0.54 90.05 ± 1.83
(/i/ versus mute) (/u/ versus mute) (/a/ versus mute) (/e/ versus mute) (/o/ versus mute)

S5 96.32 ± 2.31 94.01 ± 0.17 92.29 ± 1.14 90.07 ± 0.58 88.06 ± 1.23
(/e/ versus mute) (/i/ versus mute) (/o/ versus mute) (/a/ versus mute) (/u/ versus mute)

73% of the average result overall [9], whereas Huang et al.
reported that ELM tends to have a much higher learning
speed and comparable generalization performance in binary
classification [21]. In another study, Huang argued that ELM
has fewer optimization constraints owing to its special sepa-
rability feature and results in simpler implementation, faster
learning, and better generalization performance [23]. Thus,
our results showed consistent characterswith others’ previous
research using ELM and even similar or better classification
results for imagined speech compared to other research using
different algorithms. Recently, ELM algorithms have been
extensively applied in many other medical and biomedical
studies [28–31]. More detailed information about ELM can
be found in a recent review [32].

In this study, each trial was divided into the thirty time
segments of 0.2 s in length and a 0.1 s overlap. Each time
segment was considered as a sample for training the classifier,
and the final label of the test sample was determined by
selecting the most frequent output (see Figure 2). We also
compared the classification accuracy of our method with
those of a conventional method that does not divide the trials
into multiple time segments. As a result, our method showed
superior performance in terms of classification accuracy to

the conventional method. In our opinion, by dividing the
trials, some effects such as increasing number of trials for
classifier training might occur, and each time segment with
a 0.2 s length is likely to retain enough information for
discrimination of EEG vowel imagination. Generally, EEG
classification has problems in terms of poor generalization
performance and the overfitting phenomenon because of
the deficiency of the number of samples for the classifier.
Therefore, an increased number of samples by dividing
trials could mitigate the aforementioned problems. However,
further analyses are required to prove our assumptions in
subsequent studies.

To reduce the dimension of the feature vector, we
employed a feature selection algorithm based on the sparse
regression model. In the sparse-regression-model-based fea-
ture selection algorithm, the regularization parameter, 𝜆, of
equation (1) must be carefully selected because 𝜆 determines
the dimension of the optimized feature parameter. For
example, when the selected 𝜆 is too large, the algorithm
excludes discriminative features from an optimal feature set,
F̃. However, when users set 𝜆 too small, redundant features
are not excluded from an optimal feature set F̃. Therefore,
the optimal value for 𝜆 was selected by cross-validation on
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Figure 6: Effects of varying the regularization parameter on the classification accuracies obtained by ELM-R with sparse-regression-model-
based feature selection for subject 2. The parameter value giving the highest accuracy is highlighted with a red circle.

the training session in our study. For example, the change
of classification accuracy caused by varying 𝜆 for subject 1 is
illustrated in Figure 6. In the case of /a/ and /i/ using ELM-
R, the best classification accuracy reached a plateau at 𝜆 =
0.08 and declined after 0.14. However, the optimal values of 𝜆
are totally different among the pairwise combinations and all
subjects.

Furthermore, our optimized results were achieved in the
gamma frequency band (30–70Hz). We also tested the other
frequency ranges, such as beta (13–30Hz), alpha (8–13Hz),
and, theta (4–8Hz); however, the classification rates of those
bands were not much better than the chance level in every
subject and pairwise combination of syllables. In addition,
the results of our TFR and topographical analysis (Figures
3 and 4) could support some relationship between gamma
activities and imagined speech processing. As far as we know,
in the EEG classification of imagined speech, there have been
only a few studies that examined the differences between
multiple frequency bands including gamma frequency [33,
34]. Therefore, our study might be the first report that the
gamma frequency band could play an important role as
features for the EEG classification of imagined speech. More-
over, several studies using ECoG reported quite good results
in the gamma frequency for imagined speech classification
[35, 36], and these findings are consistent with our results.
However, several studies have been conducted that suggested
the role of gamma frequency band for speech processing
in neurophysiological perspectives [37–39]. However, those
studies usually used intracranial recordings and focused on
the analysis for the high gamma (70–150Hz) frequency band.
Thus, suggesting a relevance between those results and our
classification study is not easy. However, a certain relation
between some information in low gamma frequencies as a
feature for classification and its implication from a neuro-
physiological view will be specified in future studies.

Currently, communication systems with various BCI
technologies have been developed for disabled people [40].
For instance, the P300 speller is one of the most widely
researched BCI technologies to decode verbal thoughts from
EEG [41]. Despite many efforts toward better and faster
performance, the P300 speller is still insufficient for use
in normal conversation [42, 43], whereas, independent of

the P300 component, efforts toward extraction and analysis
of EEG or ECoG induced by imagined speech have been
conducted [44, 45]. In this context, our results of high
performance from the application of ELM and its variants
have potential to advance BCI research using silent speech
communication. However, the pairwise combinations with
the highest accuracies (see Table 2) differed in each subject.
After experiment, each participant reported different patterns
of vowel discrimination. For example, one subject reported
that he could not discriminate /e/ from /i/, and the other
subject reported the other pair was not easy to distinguish.
Although those reports were not exactly matched to the
results of classification, these discrepancies of subjective
sensory perception might be related to process of imagining
speech and classification results. Besides, we have not tried
multiclass classification in this study, yet some attempts
in multiclass classification of imagined speech have been
performed by others [8, 46, 47]. These issues related to
intersubject variability and multiclass systems should be
considered for our future study to developmore practical and
generalized BCI systems using silent speech.

4. Conclusions

In the present study, we used classification algorithms for
EEG data of imagined speech. Particularly, we compared
ELM and its variants to SVM-R and LDA algorithms and
observed that ELM and its variants showed better perfor-
mance than other algorithms with our data. These results
might lead to the development of silent speech BCI systems.
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