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Microglia are the resident immune cells of the central nervous system (CNS). It is well
established that microglia are activated and polarized to acquire different inflammatory
phenotypes, either pro-inflammatory or anti-inflammatory phenotypes, which act as a
critical component in the neuroinflammation following intracerebral hemorrhage (ICH).
Microglia produce pro-inflammatory mediators at the early stages after ICH onset, anti-
inflammatory microglia with neuroprotective effects appear to be suppressed. Previous
research found that driving microglia towards an anti-inflammatory phenotype could
restrict inflammation and engulf cellular debris. The principal objective of this review is to
analyze the phenotypes and dynamic profiles of microglia as well as their shift in functional
response following ICH. The results may further the understanding of the body’s self-
regulatory functions involving microglia following ICH. On this basis, suggestions for future
clinical development and research are provided.
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INTRODUCTION

Microglia constitute 5% to 10% of adult brain cells and form the largest group of immune cells in the
CNS (1). The primary source of microglia is yolk sac erythromyeloid precursors (EMPs) that migrate
into the brain rudiment during embryo development (2). Under physiological conditions, microglia
self-renew for the entire lifespan of the organism and interact with numerous other cells in the brain,
such as astrocytes, neurons, and oligodendrocytes (3). Mounting evidence suggests that microglia, as
brain resident immune cells, play an essential role in maintaining normal brain function. When
pathologic changes disrupt homeostasis in the brain, microglia are activated to exert regulatory effects
(4). Microglia are highly diverse, and their phenotype depends on the context and type of stressor or
pathology (5). Specifically, during the different periods after intracerebral hemorrhage (ICH),
microglia may polarize to produce pro-inflammatory mediators or acquire a more anti-
inflammatory phenotype, which has a decisive influence on ICH progression (Figure 1) (6).

Pathological analysis of microglial activity during ICH has revealed that microglia induce potent
immune responses after extravasation of blood into the brain (7). The strong inflammatory response
in microglia is caused by the rapid accumulation of blood-derived products (e.g., hemoglobin, heme,
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and iron) after ICH (8), which can directly damage the brain
parenchyma, and a sustained microglia-mediated inflammatory
response results in neurologic deterioration (9). Interestingly,
Chang et al. (10) have experimentally proven that as early as 1 to
1.5 h after ICH, microglia respond to hemorrhagic injury and
exhibit a protective alternative activation phenotype.

The role of microglia following ICH is complex, and the
entirely different action of different phenotypes of microglia
plays an essential role in the development of cerebral
inflammatory injury and recovery of the brain after ICH
(Figure 2). Besides, the neuroprotective effect of microglia may
serve as promising targets for ICH treatment. For example, the
primary role of activated microglia is to phagocytose the
hematoma, thereby reducing ICH-induced brain swelling and
neuronal loss and improving neurological deficits (11).
Microglial depletion can lead to more severe brain swelling,
neuronal loss, and functional defects following ICH (12).

The dual role of reactive microglia in inflammation processes
has a biphasic influence on the brain, which acts as a double‐edged
offensive and defensive sword in brain injury. This paper reviews
recent empirical studies on microglial activity following ICH to
identify the most critical factors that influence this process, offering
a fresh perspective for developing novel therapeutic strategies.
THE DUAL ROLE OF MICROGLIA AFTER
ICH

The Effects of Microglia on the Blood-
Brain Barrier Following ICH
Destruction of the blood-brain barrier (BBB) and consequent
brain edema is the most common secondary causes of life-
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threatening events after ICH (13). One recent study by Chen
et al. showed that microglia-derived TNF-amediates endothelial
necroptosis contributing to blood-brain-barrier disruption (14).
Besides, activated microglia cause an imbalance between
endogenous vasodilators and vasoconstrictors, further leading
to edema formation after ICH (15).

Anti-inflammatory actions of microglia may mediate BBB
protection and neural repair by producing anti-inflammatory
cytokines, extracellular matrix proteins, glucocorticoids, and
other substances (16). As signaling via IL-4 and IL-10 can induce
an anti-inflammatory phenotype ofmicroglia, it can be targeted for
ICH treatment through modulating BBB physiology (17).
The Functions of Microglia in Secondary
Brain Damage Following ICH
Intracranial hematoma is a crucial factor contributing to brain
injury after ICH.Mechanical damage is induced in adjacent tissues
due to compressionanddissection. Simultaneously, iron,heme, and
cytotoxic hemoglobin can be passively released due to the lysis of
erythrocytes adjacent to the hematoma (18). Microglial
phagocytosis of hematoma occurs before erythrocytes lysis to
protect the brain (19, 20). This process can be regulated by
alternative activation of microglia via activating the CCR4/ERK/
Nrf2 pathway and peroxisome proliferator-activated receptor g
(PPAR-g) (21–23) (Figure 3).

There is ample evidence thatmicroglial activation is essential for
secondary damage to the brain after ICH (24). For example,
microglia also produce pro-inflammatory factors (TNF-a, IL-1b,
I L - 6 ) and chemok ine s (CXCL2 ) , wh i ch p romote
neuroinflammation (25, 26). Besides, the absorption of
hematoma may also trigger a series of inflammatory reactions
leading to primary and secondary brain damage (27).
FIGURE 1 | The induction of microglial polarization by several transcription factors. Activation of high mobility histone 1 (HMG1) and Toll-like receptor (TLR) 2 or
TLR4 promotes the pro-inflammatory phenotypic polarization of microglia. Interferon-gamma (IFN-g) promotes the pro-inflammatory phenotypic polarization of
microglia through the signaling sensors signal transducer and activator of transcription (STAT) 1 and Janus kinase (JAK). This series of processes involves the
nuclear factor kappa B (NF-kB) signaling pathway. On the other hand, STAT6 accumulates under the action of IL-4 and is responsible for the transcription of M2
phenotype-related genes. The sphingosine-1-phosphate (S1P) receptor signaling pathway downregulates the expression of pro-inflammatory cytokines and
enhances anti-inflammatory responses following intracerebral hemorrhage.
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MICROGLIAL POLARIZATION
FOLLOWING ICH

Although the terminology of “microglia polarization” is still widely
used in the literature, most commonly in the M1 and M2
Frontiers in Immunology | www.frontiersin.org 3
phenotypes. Complex high-content experiment and multi-omics
technologies, including transcriptomic, epigenomic, and
proteomics, have found novel microglia polarization states
beyond the standard M1/M2 dichotomy, which leads to a fierce
debate in microglial M1/M2 polarization in recent years (28).
FIGURE 2 | Microglial activation and polarization following ICH. The polarization of microglia in response to stimulation with erythrocyte lysates after ICH can be
broadly classified into two categories. 1) pro-inflammatory microglia elevate the levels of ROS, interleukin-6 (IL-6), interleukin-1b (IL-1b), and tumor necrosis factor-a
(TNF-a), hence enhancing the pro-inflammatory and destructive effects of ICH on the brain. 2) anti-inflammatory microglia, on the contrary, mainly exert
neuroprotective effects, including actions related to nerve repair and anti-inflammatory effects, through phagocytosis of lysates, which are always associated with
higher expression of IL-10, IL-4, insulin-like growth factor-1 (IGF-1), brain-derived neurotrophic factor (BDNF), and transforming growth factor-b (TGF-b). In recent
years, an increasing number of studies have revealed that microglia can also be polarized into neuroprotective and neurodestructive phenotypes, such as disease-
associated microglia (DAM) and triggering receptor expressed on myeloid cells 2 (TREM2) phenotypes, which remain to be further investigated.
FIGURE 3 | Potential intervention strategies targeting the microglial phenotypic shift following ICH. Interventions that induce the polarization of pro-inflammatory
microglia towards the anti-inflammatory phenotype exert beneficial effects following ICH. For example, fisetin mediates the NFkB pathway, and liver X receptor (LXR)-
mediated JAK, liposome-mediated adenosine monophosphate-activated protein kinase (AMPK), and methylprednisolone sodium succinate (MPSS)-mediated TLR4
inhibit M1 microglia. While lithium salt mediates glycogen synthase kinase-3beta (GSK-3b) expression, simvastatin and monascin mediate peroxisome proliferator-
activated receptor gamma (PPARg) levels, fimasartan mediates caspase-1 levels, and minocycline upregulates matrix metalloproteinase 12 (MMP-12) expression.
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As early as 2013, Chiu and colleagues utilized flow cytometry
and deep RNA sequencing of acutely isolated spinal cord
microglia. The study aimed to prove that microglial reactions
must be interpreted in light of the tissue in which the activating
stimulus is present (29). However, the M1/M2 model is not a
pure phenomenon in vivo, as previously proven by Butovsky, by
profiling CNS cells with an MG400 microglial chip (30), which
ignores the crucial concept demonstrated by Chiu et al. (30).
Besides, transcriptionally distinguishable subpopulations of
microglia that appear to be a transcriptional continuum of the
local population of microglia can be detected during homeostasis
(31, 32), representing a transcriptional basis for the microglia
phenotype diversity (33).

Single-cell RNA-sequence analysis of microglia suggested
converged expression of M1 and M2 markers due to the
influence of disease-related inflammatory processes (34).
Furthermore, precise categorization of different microglia or
monocyte subtypes based on specific types and stages of
pathology or their relation to specific tissue injury types is also
possible (35). In conclusion, a precise definition of microglial
polarization has proven elusive, and the description of M1 or M2
phenotypes is an oversimplification of the complex biology
of microglia.

In a recent transcriptional single-cell study, Keren-Shaul et al.
found that microglial phenotypes other than the M1/M2
phenotypes exist. For example, a new subpopulation named
disease-associated microglia (DAM) has been discovered
through genome-wide transcriptomic analyses of microglia
under different disease conditions. Although the gene profile of
DAM and M1 microglia partially overlapped, the molecular
signatures have shown apparent differences (36). Interestingly,
DAM also exhibits anti-inflammatory/phagocytic and pro-
inflammatory profiles (37). Activation of DAM depends on
triggering receptors expressed on myeloid cells 2 (TREM2), a
receptor located mainly on the surface of microglia. TREM2
promotes the phagocytosis of apoptotic neurons producing tiny
quantities of pro-inflammatory cytokines (38). Research has also
shown that TREM2 is activated in perihematomal areas, which
improved attenuated neuroinflammation and neuronal
apoptosis after ICH (39). Besides, according to a study done by
Gao et al. in 2019, CEBPa, IRF1, and LXRb are likely regulators
of pro-inflammatory and anti-inflammatory DAM states. Based
on emerging findings, it is possible to conclude that DAM
represents a switch that substantially alters microglial function
(40). While the DAM concept has been widely used in
neurodegenerative diseases such as Alzheimer’s disease rather
than ICH, it is clear that microglia is in a constant flux state and
exquisitely sensitive to their environment.

Many studies have investigated the spatially and temporally
restricted subsets of microglia during development and disease,
further identifying the distinct molecular hallmarks and diverse
cellular kinetics using massively parallel single-cell analysis and
computational modeling (32, 41). For example, using single-cell
RNA sequencing from human cerebral cortex samples, Olah
et al. confirm the presence of four microglial subsets and
elucidate the significance of subsets, such as the association
Frontiers in Immunology | www.frontiersin.org 4
with Alzheimer’s disease (AD) (42). More recently, Ochocka
et al. demonstrate cellular and functional heterogeneity of
microglia using flow cytometry and scRNAseq. In this
experiment, multiple microglial clusters were obtained, and
gene expression profiles underlying a specific cluster could
reflect different functions. Hom-MG and activated microglia
(Act-MG) were identified, which shows the distinct spatial
distribution in experimental gliomas (43). Furthermore, an
environment-dependent transcriptional network specifying
microglia-specific programs have been developed, which
identified substantial subsets of microglia associate with
neurodegenerative and behavioral diseases (44).

In summary, microglia are activated by various pathologic
events or changes in brain homeostasis, which are highly diverse
and depend on the context and type of stressor or pathology. The
complicated functional roles of microglia support the existence
of distinct pro-inflammatory and anti-inflammatory functional
states following ICH. The significance of defining microglial
subtypes is to identify novel microglial functional conditions;
determine the impact of molecules on microglia types, and
discover ways to mediate functions in healthy physiology or
disease (45). During the ICH progress, most investigators
continue to use the expression of M1/M2 markers and
microglia polarization as a surrogate for a genuine mechanistic
understanding of how microglial function changes (46).
Therefore, it would be interesting to identify the regulators and
influencing factors that contribute to the polarization of
microglia towards a neuroprotective or neurodestructive
phenotype, which may shed new light on the pathogenetic role
of microglia following ICH.

Endogenous Mechanisms of Microglia
Much of the literature has emphasized the autoregulation of
microglia during ICH progress. For example, studies by Wu et al.
showed that soluble epoxide hydrolase expression is upregulated
in microglia after ICH, which causes neuroinflammatory
responses by degrading anti-inflammatory epoxyeicosatrienoic
acid (47). Other studies have provided further evidence that
microglial recruitment is associated with TWIK-related K+
channel 1 (TREK-1), which also triggers the secretion of pro-
inflammatory factors such as IL-1b and TNF-a as well as cell
adhesion molecules following ICH (48). Besides, low-density
LRP1 in the neurovascular unit interacts with Mac-1 expressed
by microglia to promote tPA-mediated activation of platelet-
derived growth factor-cc (PDGF-cc). Activation of potential
PDGF-cc and PDGF receptor-a signals can increase the
permeability of the blood-brain barrier and deterioration
following ICH (13).

Microglia have similarly been shown to be involved in anti-
inflammatory and phagocytic effects on the hematoma,
contributing to neurologic recovery after ICH. The correlation
b e twe en r e gu l a t o r y T l ympho cy t e s (T r e g s ) and
neuroinflammatory response after ICH has been defined. In vitro
experiments have demonstrated that Tregs modulate microglia
polarization toward the anti-inflammation phenotype through
the IL-10/GSK3b/PTEN axis in this regulatory process (49, 50).
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The Regulatory Effect of miRNAs
As gene expression is regulated through genetic and epigenetic
regulatory networks, there is growing evidence that miRNAs play
essential roles in the microglial effects after ICH (51). For
example, miRNA-7 (miR-7) can inhibit the expression of Toll-
like receptor 4 (TLR4) and provoke a secondary microglia-
mediated inflammatory response after ICH (52). Further studies
have confirmed that agents that target TLR4 and miR-7, such
as ligustilide (LIG) and senkyunolide H (SH), can exert
neuroprotective effects against ICH by inhibiting Prx1/TLR4/
NF-kB signaling via activation of microglia and astrocytes (53).

Recent studies have found that inhibition of miRNA-222
suppresses microglia-mediated inflammatory responses and
improves neurological functions in a preclinical mouse model
of ICH. Integrin subunit b8 (ITGB8) was identified as a directly
negatively regulated target of miR−222 in microglial cells,
leading to the attenuation of inflammation and apoptosis (54).
Besides, miR-132 enhances the cholinergic blockade of the
inflammatory response by targeting acetylcholinesterase
(AChE), which also inhibits the activation of pro-inflammatory
microglia and provides protection against neuronal death caused
by ischemia (55).

Furthermore, as the critical factors in autophagy, miRNAs
negatively regulate gene expression and autophagic activity of
microglia. For example, miRNA-144 targets mTOR by directly
interactingwith 3′untranslated regions (UTRs), whichare involved
in hemoglobin-mediated activation of microglial autophagy and
inflammatory responses (56). The specific function of autophagy is
dualistic and has been difficult to assess whether it has harmful or
beneficial effects following ICH thus far. Despite many studies
demonstrated that autophagy could enhance the protection of
endoplasmic reticulum stress and reducing oxidative damage
after ICH via clearing up the cell rubbish and oxidative-stress
products (57, 58), recent studies showed autophagy positively
regulates inflammation following ICH (59, 60).

Regulation of Microglia Function by Intracellular
Signaling Following ICH
Anti-inflammatory microglia functions are accomplished by
combining various signaling pathways that compose a complex
network involved in multiple biological processes. Exploring the
network of biological signaling pathways and its molecular basis
contributes to novel interventions targeting signaling pathways
that block the pathological progression of ICH (Figure 3).

The Roles of the AMPK Pathway and AdipoR1 in
Microglia Function Following ICH
It has been demonstrated that adenosine monophosphate-
activated protein kinase (AMPK) can drive the phenotypic
shift from a pro-inflammatory state to an anti-inflammatory
state (61). The expression of endogenous C1q/TNF-related
protein 9 (CTRP9), an upstream trigger of the AMPK
signaling pathway and an agonist of AdipoR1, is increased
after ICH in animal models of long-term neurobehavior,
peaking at 24 h after ICH. Further experiments have
confirmed that the expression of AdipoR1 and p-AMPK can
Frontiers in Immunology | www.frontiersin.org 5
reduce the expression of inflammatory cytokines after ICH (62).
Besides, the activation of MC4R also alleviates neurological
deficits through the AMPK pathway following ICH, and
interventions target ing MC4R, such as RO27-3225
administration, have been proven to be effective in animal
experiments (63).

The Roles of the JNK Pathway in Microglia Function
Following ICH
As mentioned above, Treg cells inhibit microglia-mediated
inflammatory responses and improve neurological function in
vivo, mainly by activate NF-kB through the JNK pathway (49,
64). There are controversies regarding the role of the JNK
signaling pathway following ICH, which has received increased
attention in the clinic in recent years. For example, the synthesis
of the liver X receptor (LXR) agonist TO901317 was shown to
exert specific effects in an ICH model by inhibiting JNK
signaling. The hyperbaric oxygen preconditioning (HBOP)
model of ICH has demonstrated the potential relevance
between JNK phosphorylation and the immunological activity
of anti-inflammatory microglia (65). As current practical
limitations include drug side effects, uncertainties regarding
efficacy, surgical injuries, and complications, there are no
standardized clinical interventions for ICH except intracranial
pressure-lowering therapies. Therefore, hyperbaric oxygen
therapy provides a feasible alternative intervention with mild
adverse effects against ICH, and the mechanism of HBOP in ICH
needs further exploration and verification.

The Impact of the Toll-like Receptor 4 (TLR-4)
Pathway on Microglia Function
Toll-like receptor 4 (TLR4) plays a crucial role in the innate
immune response. It can be concluded that loss of TLR4 reduces
the recruitment of pro-inflammatory microglia and markedly
alleviates inflammation around the hematoma in the animal
model (66). Further studies have shown that TLR4 also inhibits
the phagocytosis of microglia on the surface of red blood cells,
resulting in hematoma absorption delay and severe neurological
deficits in ICH patients (67). TLR4-mediated autophagy of
microglial activation contributes to secondary brain injury and
brain recovery and inflammatory damage following ICH (68).

The role of TLR4 in secondary brain damage following ICH
has been elaborated in detail, and therapeutic strategies targeting
TLR4 are relatively well-developed. Therefore, TLR4 remains a
promising target for inhibiting undesired microglial responses,
and interventions targeting TLR4-related pathways may
represent future candidates for ICH therapy.

Regulation of Microglia Function by
Extracellular Signals Following ICH
As the regulatory effects of intracellular signaling pathways on
microglia after ICH have been discussed, the final section of this
paper addresses how extracellular signaling regulators influence
microglial morphology and function. Compared with
intracellular signals, extracellular signals are more complicated
and vulnerable to disruption, which means they have the
May 2021 | Volume 12 | Article 675660
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potential to be translated into clinically effective targeted
therapies for ICH.

Interventions Targeting Microglia Functions for ICH
Interleukins
The interleukins (ILs) level is intimately associated with the
development and progression of ICH, which may be achieved by
modulation of microglia functions. For example, activation of the
IL-4/transcription 6 (STAT6) axis improved long-term
functional recovery in a mouse model of ICH (69). Conversely,
expression of IL-15 exacerbates brain injury following ICH by
mediate the crosstalk between microglia and astrocytes (70).

Besides, antibodies against IL-17A can prevent ICH-induced
expression of TNF-a, IL-1b, and IL-6 and inhibit microglial
activation (71). Further examination revealed that IL-17A
promotes autophagy in pro-inflammatory microglia, thus
maintaining the body’s normal immune response and
alleviating brain edema after ICH (60). Notably, recent studies
have found that intraventricular infusion of IL-33 can alleviate
neurological deficits following ICH by promoting the
transformation of pro-inflammatory microglia (72).
Deferroxamine (DFA) can also inhibit the activation of pro-
inflammatory microglia by downregulating IL-1b and TNF
expression, reducing secondary brain insult following ICH.

Nuclear Factor-kB
Evidence has suggested that NF-kB translocates to the nucleus,
and pro-inflammatory mediators (NO, TNF-a, and IL-6) are
produced following inflammatory response after ICH. These
results suggest that combined targeting of NF-kB signaling
pathway inhibi t ion may be a more effect ive ant i-
neuroinflammatory strategy following ICH (53).

Regulation of NF-kB activity may also have promising clinical
benefits following ICH. Analysis of thrombin toxicity in vitro
shows that has thrombin release after ICH led to the increased
expression of NF-kB in microglia (73, 74). Treatment modalities
disrupting this harmful process, such as miR-181c mimic
therapy, are expected to regulate thrombin-driven
inflammation after cerebral hemorrhage (75).

Glycogen Synthase Kinase-3b
It is widely acknowledged that glycogen synthase kinase-3beta
(GSK-3b) exerts a potent pro-inflammatory effect following ICH
(76). Studies have shown that the hematoma volume is significantly
decreased by GSK-3b inhibition after ICH due to enhanced
microglia-mediated phagocytosis (77). Consistently, the GSK-3b
inhibitor 6-bromoindirubin-3′-oxime (BIO) has been shown to
relieve inflammationbyblockingGSK-3bTyr216phosphorylation/
activation following ICH. BIO may exert a protective effect against
ICH by increasing the number of anti-inflammatory microglia
through inactivating GSK-3b (78).

It is interesting to note that the molecular mechanism by
which lithium salt can treat ICH in clinical practice has already
been elucidated. Recently, it has been shown that LiCl treatment
decreased the death of mature oligodendrocytes (OLGs) in ICH
mice, which may be regulated by the LiCl-induced inhibition of
glycogen synthase kinase-3b (GSK-3b) (79).
Frontiers in Immunology | www.frontiersin.org 6
Peroxisome Proliferator-Activated Receptor Gamma
(PPAR-g)
The phagocytic activity of microglia is required to remove the
hematoma after ICH; however, the pro-inflammatory mediators
and free radicals released as a result of microglial activation and
phagocytosis are toxic to neighboring cells and lead to secondary
brain damage following ICH (80). ICH mouse model
demonstrated that peroxisome proliferator-activated receptor
gamma (PPAR-g) prevents LPS‐induced pro-inflammatory
microglial activation while facilitating microglial polarization
towards the anti-inflammatory phenotype (81). Besides,
PPAR-g promotes phagocytosis in a timely and effective
manner, limiting the toxic effects of hemolysis by facilitating
hematoma clearance following ICH (82).

Studies have demonstrated that PPAR-g activation is imperative
for enhancing thephagocytic abilityof anti-inflammatorymicroglia
by CD36 (18). Furthermore, 15(S)-hydroxyeicosatetraenoic acid,
an exogenous PPAR-g agonist, improves functional recovery
following ICH and exerts neuroprotective effects (83).

Based on in-depth basic research, PPAR-g agonists have been
widely used in clinical treatment. For example, the neuroprotective
effects of statins following ICH through PPAR-g activation and
enhancement of microglia-induced erythrocyte phagocytosis have
been established (84). Besides, monascin, as a novel dual agonist of
PPAR-g and Nrf2, facilitates microglial phagocytosis of the
hematoma and exerts neuroprotective effects following ICH
(85, 86).

Caspase Family
Caspase-mediated cascades play an essential role in mediating
anti-inflammatory microglial death (87). For example, AC-
YVAD-CMK can alleviate brain edema by inhibiting the
activation of pro-caspase-1 and downregulating the expression
of inflammation-related factors, which is accompanied by
decreasing activated microglia at 24 h post-ICH (88).

Clinical studies have found that fimasartan (an angiotensin II
receptor blocker) significantly reduces the activation of the
caspase-1 pathway after ICH (89), suggesting that it is effective
in ICH by regulating caspase-1–mediated microglial autophagy.

Matrix Metalloproteinases (MMPs)
The first serious discussions of MMP-12, which is harmful and
contributes to secondary damage after ICH, emerged in 2005
(90). Subsequent studies found that MMP-9 binds to injured
neurons in culture, activates pro-inflammatory microglia, and
exerts neurotoxic effects after ICH (91). Based on this, further
research proposed that inhibition of MMP-9 improves prognosis
following ICH (92).

MMP-mediated microglial activation has become a potential
therapeutic target for ICH. For example, minocycline, a widely
available drug that alleviates brain damage, effectively reduces
early upregulation of MMP-12 expression (93, 94)and induces
anti-inflammation microglial polarization, which reduces the
levels of inflammatory cytokines and the number of microglia
surrounding the hematoma after ICH (86). It should be noted
that although the molecular mechanism is unclear, MMP-12
expression and microglial infiltration around the hematoma are
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significantly reduced after stem cell transplantation following
ICH (95, 96).

Iron Chelators
Iron overload is a significant cause of brain damage because iron
toxicity contributes to pro-inflammatory microglial activation
following collagenase-induced ICH. Therefore, reducing the
accumulation of iron can moderately improve the outcomes
after ICH (97). As an iron chelator, minocycline can reduce free
iron and iron handling protein levels, thus prevent neuronal
death (98). Besides, VK-28, a brain-permeable iron chelator, is
superior to and less toxic than DFA following ICH (99, 100).

The evidence from observational studies shows that microglia
function is controlled by complex regulatory networks (Table 1),
an understanding of which is critical for elucidating phenotypic
and genotypic variations in microglia and developing therapeutic
interventions for ICH (Figure 4).
POTENTIAL THERAPEUTIC STRATEGIES
TARGETING MICROGLIA FUNCTION
AFTER ICH

Exploring the regulatory mechanism of microgl ia l
immunophenotype changes may help identify the hematoma
Frontiers in Immunology | www.frontiersin.org 7
scavenging mechanism and a precise therapeutic target for ICH.
The multi-omics technologies have made significant
achievements in the research of microglial activation (101).
The application of systematic multi-omics approaches to
precision medicine and systems biology has great potential to
improve the care of patients with ICH. Notably, the target gene
identified by multi-omics studies can potentially be used for drug
repositioning in ICH, which is approved to be cheaper, quicker,
and effective (102).
CONCLUSION

This review aimed to objectively discuss and assess the role of
microglia in regulating neuronal injury after ICH. The findings
indicate that pro-inflammatory or anti-inflammatory microglia
have divergent effects, which have significant implications for
understanding microglia function via intracellular and
extracellular signal-regulated pathways. Besides, this review
provides the first comprehensive assessment of cellular and
molecular mechanisms and pathways responsible for regulating
microglia, including an in-depth analysis of signaling pathways
strongly associated with microgl ia fol lowing ICH.
Notwithstanding the relatively limited number of reliable clinical
trials and the lack of molecular genetic studies on the phenotypic
change of microglia, this work offers valuable insights into a novel
TABLE 1 | Potential interventions for microglia polarization after intracerebral hemorrhage.

Phenotype Activating signals (events) Markers (events) Result Purpose

Pro-inflammatory
microglia

JNK (TO901317, HBOP -)GSK-3b (Lithium, BIO -)
miR-222 (Fisetin -) TLR4 (Ligustilide, Senkyunolide H,
MPSS, Eupatilin -)miR-124 TREK-1

MMP (Minocycline, sinomenine -) Caspase-1 (AC-
YVAD-CMK, Fimasartan -) TNF-aIL-1bNF-kB
(ITGB8, Andrographolide -) IL-6 IL-1

Pro-inflammation Neurological
deficit

Anti-inflammatory
microglia

TregsAMPK (CTRP9, AdipoR1 +)IL-33 TGF-bIL-10 (Atorvastatin +)Tregs MC4R (RO27-
3225 +)

Phagocytosis Anti-
inflammation

Neurological
recovery
May 2
021 | Volume 12 | A
FIGURE 4 | Summary of interventions for ICH targeting microglial polarization. Available intervention strategies are labeled blue.
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therapeutic strategy for ICH that targets microglia. Further
research on interventions associated with microglial physiology
is an essential next step in confirming a framework for assessing
the feasibility of the novel therapy mentioned above.
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