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Abstract
During neural circuit development, attractive or repulsive guidance cue molecules direct

growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in

their morphology. The experimental power of in vitro neuronal cultures to assay this process

and its molecular mechanisms is well established, however, a method to rapidly find and

quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a

free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies

and measures many morphological parameters of GCs in 2D explant culture images. These

measurements are then subjected to principle component analysis and k-means clustering
to mathematically classify the GCs as “collapsed” or “extended”. The morphological parame-

ters measured for each GC are found to be significantly different between collapsed and

extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as

human observers. Application of a known collapse-inducing ligand results in significant

changes in all parameters, resulting in an increase in ‘collapsed’GCs determined by k-
means clustering, as expected. Our strategy provides a powerful tool for exploring the rela-

tionship between GCmorphology and guidance cue signaling, which in particular will greatly

facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or

any other experimental manipulation in the context of an in vitro axon guidance assay.

Introduction
Since the first identification and naming of growth cones (GCs) by Cajal, studies of the mor-
phology of these highly motile chemosensitive structures have done much to illuminate the
processes governing axon guidance [1]. In particular, in vitro neuronal cultures have provided
invaluable tools for studying how guidance cues connect neurons to their targets during devel-
opment and regeneration. These powerful techniques include those which probe long-term
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growth direction choice as well short-term responses such as pipette assays [2–5], microcontact
printed pattern assays [6], and collapse assays.

In the collapse assay, neurons are treated with a chemotropic agent, and the morphological
response of GCs is frequently quantified as the percentage of GCs classified as “collapsed”, gen-
erally defined as having a smaller area and fewer filopodia and/or lamellipodia, as opposed to
GCs classified as extended, which are larger and more complex [7–11]. This assay allows experi-
menters to take advantage of genetic or pharmacological manipulations in a highly temporally-
controlled manner, to examine chemorepulsive signaling [12–14]. To assess chemotropic
responses in a more quantitative fashion, it is also possible to use individual parameters such as
total area rather than classifying GCs as collapsed or extended. Regardless of the strategy for
quantification, the high degree of heterogeneity in GC shape generally makes it necessary to
sample large numbers, requiring labor-intensive high-throughput studies. Individual metrics,
meanwhile, are less biased and more amenable to automated analysis, but still depend on the
observer’s definition as to what (and howmuch) of a structure constitutes a growth cone. While
a number of algorithms can automatically or semi-automatically analyze features of neurons in
vitro, all focus on neuronal process complexity (such as dendritic tiling or tree arborization) or
axon outgrowth; to our knowledge, no freely available software currently exists which is capable
of automatically finding and performing a multidimensional analysis of GCs [15–21].

Aside from the aforementioned logistical difficulties, morphology-based strategies to study
GCs generally fail to attend to the complex and nuanced features of responses to chemotropic
cues. Classical human-scored collapse assays generally provide only the percentage of collapsed
GCs in an explant or dish, and are entirely dependent upon the experimenter’s criteria for "col-
lapse", precluding direct comparisons of results between individuals. On the other hand, by using
algorithms that measure single parameters such as GC area, the more complex features that would
be taken into account by a human observer are lost. In particular, questions regarding qualitative
differences in a growth cone’s short-term responses to distinct chemorepulsive cues–potentially
reflecting the specific molecular pathway connecting the ligand-receptor binding event and the
resulting cytoskeletal dynamics–are left unaddressed. Indeed, despite it being known that GCs are
capable of taking on a number of different shapes in response to different cues and contexts, both
in vivo and in vitro [11, 22–24], a proper analysis of whether subtle morphological differences in
GC response can be correlated to the intracellular signaling cascades elicited by specific cues has
not been performed, in part because the required automated tools have not been available

To facilitate high-throughput GC assays, we have developed Conographer, an algorithm
written entirely in the ImageJ macro language that automatically detects and measures GCs in
images of explanted or dissociated neurons, requiring only very simple immunohistochemical
stains on the tissue. With only 3 user-determined variables, Conographer can detect GCs in
images by analyzing the spatial frequencies and relative lengths of binary structures, and mea-
sure 10 different morphological parameters. While the algorithm’s strict definitions of a GC
cause it to generally find fewer than humans, this constraint leads to a rate of false positives that
is nearly identical to that of humans. Conographer is freely available, easy to use, and highly
amenable to modifications. In this report, we describe the function of Conographer and a strat-
egy to use its output data to mathematically assign collapse states to GCs, and demonstrate its
utility in measuring changes in GCmorphology brought about by Netrin-1 induced collapse.

Materials and Methods

Explant preparation and cultures, and collapse assay
Fertilized chick eggs (Couvoir Simetin, Mirabel, QC) were stored for a maximum of 1 week at
18°C, incubated at 38°C and staged according to standard protocols [25]. Explants of chick
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dorsal root ganglia (DRGs), or LMC neurons, were derived from Hamburger Hamilton Stage
26–27 embryos. Embryos were sacrificed by means of decapitation using forceps, which con-
forms to Canadian Council On Animal Care regulations. Spinal motor columns were identified
as lateral bulges along open-book spinal cords, with DRGs lying dorsally beneath their folds;
once removed from their embryos, the open book preparations were placed in Neurobasal
media (Invitrogen). Sharp tungsten needles (World Precision Instruments) were used to cut
these structures into smaller segments. 10–20 explants per treatment were then removed and
cultured on laminin-coated plates (Nunclon, 20 μg/ml Laminin, Sigma) for 18 hours at 37°C in
5% CO2 in culture media [Neurobasal (Invitrogen), B-27 supplement (1:50, GIBCO), 0.5 mM
L-Glutamate (Sigma-Aldrich), 25 mM L-Glutamine (GIBCO), and Penicillin-Streptomycin
(1:100, Wisent)]. For dissociated cultures, 10–20 DRG were collected, and dissociated by enzy-
matic digestion using 25% Trypsin for 10 mins at 37°C, prior to enzymatic quenching with cul-
ture media, and dissociation by trituration through a glass-polished Pasteur pipette.
Dissociated cultures were incubated for 48 hours. All cultures were fixed with 4% PFA (Fisher,
in PBS) solution and permeabilized with 0.5% Triton X-100 (Fisher, in PBS). Immunostaining
was performed by incubating plates with 1:1000 mouse Tuj1 (Covance) followed by a 1:1000
donkey anti-mouse secondary conjugated to AlexaFluor1 488 (Life Technologies), both at
room temperature for 1 hour each, with prior blocking by 1% bovine serum albumin (BSA;
Sigma Aldrich) in PBS with 0.5% Triton X-100 (Sigma Aldrich). To verify that Tuj1 immunos-
taining accurately reflected GC morphology, we performed co-staining using Phalloidin (Fig 1,
Life Technologies). For both collapsed (Fig 1A) and extended (Fig 1B) growth cones, over-
exposed Tuj1 labelling (green) filled the growth cone to a greater extent as phalloidin (red)
with little background, indicating that this treatment is suitable for detection and analysis of
growth cone morphology. For DRG collapse experiments, explants were treated for 30 minutes

Fig 1. Tuj1 staining accurately reflects growth conemorphology. Co-staining of both collapsed (A) and extended (B) GCs with Phalloidin (red) and Tuj1
(green) shows that over-exposure of the Tuj1 channel accurately reflects the morphology of growth cones, down to the level of individual filopodia
(arrowheads), with very a high signal-to-noise ratio. Scale bar in A represents 25μm.

doi:10.1371/journal.pone.0140959.g001
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with 1 μg/mL recombinant mouse Netrin-1 (R&D Systems) dissolved in motor neuron media,
prior to fixing at 37°; controls were treated with 1 μg/mL Fc dissolved in motor neuron media.
Samples were coverslipped and mounted with Mowiol (Millipore).

Imaging and Analysis
Images were acquired as tiled 20X composites using a Zeiss Axio Observer Z1 microscope with
a CSU-X1M dual cam 5000 spinning disk and the Zen 2012 image acquisition software. 5–10
explants were selected per plate at random and all plates were blinded. Statistics for the Finder
Evaluation were performed using Microsoft Excel for Mac 2011. Conographer was primarily
run on a PC running 64-bit Windows 8.1 Pro with Java 1.8 and ImageJ v1.49u as well as a Mac
running 10.7 OS X Lion, Java 8 for Mac OS X (update 45) and ImageJ 1.49u. Statistics in
Matlab (MathWorks) were performed on a Macbook Pro with 10.7 OS X Lion, with Matlab
2013.

The Conographer algorithm
The Conographer algorithm is divided into 4 main sections: pre-processing and segmentation,
spatial filtering, verification, and GC measuring. Conographer is designed to process RGB
color, grayscale, or (if the user intends to segment manually) binary TIFF images. Upon start-
up, after providing the paths for input images and output data, 3 randomly-selected images are
used to make a montage with which the user sets pre-processing and thresholding values. Pre-
processing options include Contrast Limited Adaptive Histogram Equalization (CLAHE) [26],
which enhances and effectively normalizes contrast across the image, and "Despeckle", which
applies a small blurring kernel to smooth over background noise. These are made available to
improve segmentation in poorer-quality images, but should be left at zero unless the image has
a particularly low signal-to-noise ratio; in these cases processing values should be incrementally
increased until an adequate binary image can be obtained, in order to minimize distortions to
the image. As the verification and measurements Conographer performs are carried out on the
post-processed image, these parameters and the thresholding value must be chosen carefully
(Fig 2B). After segmentation, the user provides 3 size related parameters, either by typing them
in or drawing them on the example image montage (Fig 2C blue): AxonWidth is the maxi-
mum diameter of an axon in the image; Axon Minimum is a cut-off length above which objects
are counted as axons and below which they are assumed to be GC processes or other structures
(Fig 2C green); and Axon Retained is the length of axon desired to be included in the GC mea-
surements (Fig 2C red). The user can also specify a size threshold, above which objects are
counted as explants and cell bodies, as well as the distance, from a cell body, that a GC must be
in order to be identified as such. Finally, if cell bodies are to be identified by a nuclear stain
such as DAPI instead of only size, which will generally be the preferred option for dissociated
cultures where soma sizes can be near that of GCs, the user is also prompted with another ran-
domly chosen montage of that stain’s channel, with which they can set its required threshold
and size. A text file of these settings is created at the end of this step, which can be loaded in for
later analysis to ensure consistency and preclude the need to repeat this initial step.

After the parameters are set, images are opened, pre-processed, and thresholded into binary
forms. The second step of the algorithm splits the image into high and low spatial frequency
binary masks via iterations of the “erosion” function (Fig 2D and 2E). In this section, all fore-
ground objects are divided into putative cell bodies, axons, GCs, and noise particles. In the low
spatial frequency image, putative explant cell bodies are identified based on their size or the
presence of the specified nuclear stain; everything else is removed (Fig 2D blue). Axons are
identified in the high-spatial frequency image as all objects smaller than the AxonWidth
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Fig 2. Conographer Description. A) A sample chick LMC explant with an overexposed anti-tubulin antibody stain. B) Basic preprocessing (Despeckling)
and thresholding to segment the image into foreground objects (black) and background (white). C) Zoom of 2 GCs used to set the user’s three spatial
parameters: Axon width (blue) corresponding to the expected upper bound width of an axon; Axon minimum (green) showing the minimum accepted length
for an axon, such that shorter objects are assumed to be filipodia or other structures instead; and Axon Retention (red), the length of axon desired to be
retained, measured retrogradely from the GC core branch point (or tip if there are no branches). D) The low spatial frequency image, created by eroding the

Automated Analysis of Growth Cone Morphology In Vitro

PLOSONE | DOI:10.1371/journal.pone.0140959 October 23, 2015 5 / 21



diameter and larger than the Axon Minimum length, thereby discounting all small noise parti-
cles and filopodia (Fig 2E red). The resulting putative axon segments are then processed via
binary Skeletonization, erosion, and dilation operations to remove branches and crossings (Fig
2F red), connect disparate parts (Fig 2G green), and erode their tips (Fig 2G blue). The built-in
Fiji “Skeletonize” function creates a single-pixel wide topological skeleton of every binary
object in the image, which consists of lines equidistant to the boundaries of the original shape.
Finally, this axon mask is combined with that containing cell bodies/explants and subtracted
from a binary copy of the original image, leaving only GCs and larger noise particles (Fig 2H
blue). Objects with caliper diameters (defined as the greatest distance between two points on
the object’s perimeter) below ½ of the Axon Minimum length are assumed to be noise particles
or artifacts of the axon process steps and are discarded, as are objects touching the image edge
(Fig 2H red). This section ends with the segmented image having been divided into 3 masks:
putative GCs, Somas and Axons (blue structures in Fig 2D, 2G, and 2H).

Presumptive GCs prior to the verification steps correspond to misidentified segments of
axons (such as varicosities or points in which multiple axons cross), large noise particles, or
genuine GCs. The former two are filtered out based on the number and size of axon contacts; 2
or more contacts indicates a varicosity or axon crossing, and zero contacts indicates a noise
particle (Fig 2I, red). Misidentified axon segments are added to the axon mask, and then each
object there is checked to ensure that it contacts an explant or cell body. Acceptable GCs,
which have only a single axon interface, have the ends of their connecting axons eroded until
only the user-specified Axon Retention length remains, or until the GC tip or central domain is
reached, defined by a broadening of the axon’s diameter above the user-specified AxonWidth.
As a final optional check, any GCs that fall within the specified distance from a cell body (Fig
2J green) are removed (Fig 2J red). Before the found GCs are measured, masks of the 3 struc-
ture classes are pseudocolored and saved as a stack, allowing users to visually asses the perfor-
mance of the algorithm and easily perform additional measurements on cell bodies or axons if
desired (Fig 2K). The binary GCs are then analyzed as described below. Scale bar in A repre-
sents 50μm.

GC Finding and Collapse Evaluation
Three human observers with prior experience analyzing collapse assays were given sets of 7 Fc-
treated DRG explant images and asked to create regions of interest (ROIs) in Fiji around every
GC that they would consider in a collapse assay. The observers were instructed to not include
GCs if: 1) any of their processes touched other structures, 2) they stemmed directly from

segmented version by the AxonWidth value to leave only objects of greater minimal diameters. In this case, the cell bodies of the explant are found as they
are large enough to meet the size criteria (blue) while everything else is removed (red); in a dissociated culture, somas would be found with the presence of a
nuclear stain such as DAPI instead. E-J) Conographer’s main steps: spatial frequency filtering to identify axons and cell bodies, axon processing to expose
putative GCs, and two verification steps to eliminate false positive axons and GCs. Discarded structures are colored red, those which are passed to the next
step blue, and green demarcates sub-steps not shown. E) The high spatial frequency image created by subtracting the low frequency image from the
segmented original (blue), consisting primarily of axons, thin GC processes, and noise; most of the latter two are removed with a size filter (red). F)
Remaining spindles are cleared from the axons, as are other branch points and small branches (below the Axon Minimum length), to assure that no GCs
remain on the image (red), leaving only uninterrupted stretches of putative axon (blue). G) Axons are dilated to connect disparate sections (green), and then
eroded to the blue objects. This tip erosion will expose GCs in the next step. H) The explant cell bodies and axons of steps (D) and (G) are subtracted from
the segmented original to expose noise particles, previously-unfound axon segments, and GCs. Another simple size filter removes very small structures, as
well as those contacting the image edge (red). I) First verification: Putative GCs are checked against the axons (green). Those with more than 1, 1
inappropriately large, or zero axon interfaces are assumed to be parts of axons or, in the latter, noise, and are discarded (red). Those with one appropriately
sized interface have that interface expanded until either the GC core or tip is reached, or the previously specified Axon Retention distance is reached. J)
Second verification: The area around the cell bodies is scanned to remove too-close GCs (red); this is important as growth-cone-like objects adjacent to the
cell bodies will not have been removed based on axon interfaces. K) The macro output: GCs (blue), Axons (green), and Cell Bodies (red).

doi:10.1371/journal.pone.0140959.g002
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converging axons, or 3) they were less than ~100um from their explants. The four sets of ROIs
(1 from Conographer, 3 from humans) were compared to each other with a custom Fiji macro,
which calculated the proximities of their centroids; if they were within the Axon Minimum dis-
tance of each other, the ROIs were counted as overlapping. Cases in which two or more
humans found a GC and Conographer did not were counted as false negatives, while cases in
which Conographer found a GC that no humans did were counted as false positives (Fig 3A
and 3B). Humans determined the collapse state of a GC by specific criteria; GCs with fewer
than 3 filopodia and no obvious lamellipodia were classified as collapsed, while all other GCs
were classified as extended. Additionally, we performed an experiment in which we dissociated
DRG neurons, and incubated them for 48h to allow outgrowth of neurons (Fig 3C). Conogra-
pher discarded debris not associated with DAPI-stained nuclei and found growth cones with a
similar size to the neuronal soma (Fig 3C).

Conographer Measurements
After isolating each verified GC (Fig 2K blue), Conographer performs the following measure-
ments. The GC Area and Perimeter are measured as the GC’s total count of pixels and pixels
on its edge, respectively (Fig 4A and 4B). Roundness and Circularity are calculated using the
equations below (Fig 4A and 4B). Roundness essentially measures the inverse of the aspect
ratio of the GC (Fig 4B); this measurement employs Fiji’s built in “Fit Ellipse” function to find
the maximum diameter of the GC, from which the denominator of the ratio is derived. Circu-
larity is measured as the GC area divided by that of a circle of the same perimeter as the GC
perimeter, such that a perfectly circular GC will have a value of 1, with progressively lower val-
ues as the perimeter increases relative to area. This therefore is more of a measure of complex-
ity; it would be possible for two GCs to have nearly identical Roundness values but different
Circularity values if both had the same overall shape but one had more invaginations. We have
included a description of the roundness parameter for completeness, as it is a measurement
that Conographer makes, but this parameter is not considered in the further analyses made in
this study, as it is less biologically relevant than circularity. Hull Area is defined as the area of a
convex hull around the GC, a polygon that connects the most distal points of the structure,
while Solidity is the ratio of its GC Area over the Hull Area (Fig 4C). Skeleton also approxi-
mates complexity by finding the total pixel count of the skeletonized GC, while Branches finds
the number of branch points by counting pixels in the skeleton which are bordering more than
two other pixels (Fig 4D). Thickness measures the “juiciness” of the GC by counting the num-
ber of erosions required to reduce its area to zero, such that a large GC with only thin filopodia
would have a far lower value than an equally large one with thick lamellipodia. Finally, Process
Index and Process Roundness measure the number of spaces between processes and their aver-
age roundness respectively, as a proxy for the number and shape of GC projections; these mea-
surements and those relating to the convex hull have been shown to be effective for estimating
process length [27].

Roundness ¼ 4� area
p�Majoraxis2

Circularity ¼ 4� p� area
perimeter2
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Fig 3. GC Finding Evaluation. A-B) Quantification of the Conographer’s (CG) GC-finding ability (yellow
outlines) relative to the 3 human observers (H1, H2, and H3; green outlines) in a 7-image dataset. All
observers found roughly the same number of GCs, (210, 268, 258, and 219 respectively). The blue portions
of the diagram correspond to its 93 false negatives—ROIs identified by at least two humans and not
Conographer–while the red portion corresponds to the 33 false positives found only by Conographer. By our
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K-means clustering and calculation of concordance
Measurements derived from Conographer are exported into MATLAB (Mathworks) and pro-
cessed as described. Z-scores are calculated using the formula below, which retains the variance
and distribution of the data, while reducing all parameters to the same unit-less scale. Principal
component analysis (PCA) is performed upon z-scores using the pca function in Matlab. Vari-
ables ranks are determined for each observer by either comparing means of GCs classified as
‘collapsed’ or ‘extended’, or by calculating the concordance between human and k-means clus-
tering based upon single parameters. K-means clustering is performed using the kmeans func-
tion in Matlab. Labeled training sets were obtained via the manual ‘extended’ or ‘collapsed’
classification of 317 binary DRG-derived GC images found by Conographer from Fc-treated

criteria the images contained 235 true GCs, of which Conographer found 177 total, while the humans found
an average of 218. C) In cultures of dissociated DRG neurons, Conographer identified growth cones (blue)
associated with DAPI-positive nuclei (red) by Tuj1-positive axons (green). Scale bars in A and C represent
50μm and 40μm respectively.

doi:10.1371/journal.pone.0140959.g003

Fig 4. Tenmeasurements comprehensively describe GCmorphology. A-C) Each panel contains a primary measurement and a derived ratiometric
measurement with its graphical representation. A) The total GC Area and Roundness, which is derived by dividing the GC area (multiplied by 4) by a circle
with the radius of the GC’s “major axis”. B) GC Perimeter, and Circularity, which is derived by dividing the GC area (multiplied by 4π) by the square product of
the GC’s perimeter. C) Hull Area, which measures the area of a convex hull around the GC to approximate its spread, and Solidity, which measures the
fraction of the convex hull covered by the GC. D-F) Non-ratiometric higher order measurements. D) Skeletonization, the total area of the skeletonized GC, as
performed by the FIJI ‘Skeletonize’ function, and Branches, a count of the number of the skeleton’s terminal branches (arrowheads), excluding the axon. E)
Thickness, which measures the number of binary erosions required to reduce the GC area to 0. F) Process Index, which approximates the number of
processes as a count of domains between the GC’s perimeter and that of the convex hull, and Process Roundness, the average Roundness of these
domains.

doi:10.1371/journal.pone.0140959.g004
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explants, by three observers. Concordance is determined as the percentage of GCs that are
identified as being in the same state by both ‘observers’, be they human or k-means clustering.
GCs at the edges of clusters are identified by finding the GCs with the highest Euclidian dis-
tance to the center of the cluster to which they do not belong. Because the k-means algorithm
uses a random seed to determine cluster centers, each cluster does not always correspond to
the same assignation (cluster 1 may be the collapse-associated cluster in one trial, cluster 2 in
the second), however the associated assignation of each can easily be found by looking at the
mean values of the cluster, as that with lower size and complexity-associated measurements
corresponds to collapse.

Z ¼ w� �w
s

Conographer Availability
A file containing Conographer can be downloaded from:

http://dx.doi.org/10.6084/m9.figshare.1565664

Results

Conographer accurately finds GCs
Firstly, to verify that over-exposed Tuj1 staining was suitable as a means of detecting the full
complexity of a growth cone, we performed Tuj1 staining as described above, and co-stained
with Phalloidin (Fig 1); overexposure of the Tuj1 channel accurately reflected the morphology
of GCs, while maintaining a high signal-to-noise ratio. To verify the ability of Conographer to
correctly identify GCs in images, we compared its performance to that of human observers.
Three independent human observers agreed on a definition of a GC and identified GCs in a set
of 7 images of explants of dorsal root ganglia (DRG) from HH St. 26–27 chick embryos that
were cultured for 18-24h and fixed. Conographer was then used to identify GCs in the same
images, and the results compared; these findings are shown in Fig 3. In terms of false positives,
quantified as ROIs found by only a single observer, Conographer performed nearly indistin-
guishably from humans, with 84.3% accuracy relative to an average of 87.7% ± 0.7%. It found
75.3% of the “true” GCs (defined as being identified by at least two humans), while humans
found 92.7% ± 0.6%.

Comparison of collapsed and extended GCs
Having verified Conographer as a useful tool to find GCs in images of cultured neurons, we veri-
fied the utility of each of the measured parameters of GC morphology. We examined 645 GCs
that were classified as either extended or collapsed by a single human observer, and compared
each parameter between extended and collapsed groups. Firstly we transformed each parameter
to a Z-score, as described above; this retains the variance and distribution of each parameter
and scales values to the same unit-less scale to allow for principal component analysis (PCA).
We then compared the means and distributions of each parameter in collapsed or extended
GCs (Fig 5A) using theWilcoxon rank-sum (ranksum in Matlab) and Kolmogorov-Smirnov
(KS; ks2 in Matlab) tests for significance. As expected, all examined parameters were highly sig-
nificantly different between collapsed and extended GCs by both tests (P<0.0001 in all cases,
Table 1), reflecting the clear morphological differences between collapsed and extended GCs.

We then aimed to determine if these parameters could be used to assign a GC as being col-
lapsed or extended in an automated, largely unbiased fashion. To determine which variables
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Fig 5. Comparison and assignation of growth cone collapse state. A) Distributions of Z-scores of the 10 Conographer-derived parameters in extended
(blue) and collapsed (red) GCs. B) Concordance between human observers (black dotted line) and K-means clustering based upon PCA (red), and
incorporation of multiple variables ranked by either their individual concordance (grey) or the difference between Z-score means (blue). C) Collapsed (red)
and extended (blue) GCs, as determined by a human, plotted upon the first 2 principal components (PCs) derived from Z-scores. D) Collapsed (red) and
extended (blue) GCs as determined by K-means clustering, plotted on the same axis as C; white-centred points indicate the GCs furthest from the centre of

Automated Analysis of Growth Cone Morphology In Vitro

PLOSONE | DOI:10.1371/journal.pone.0140959 October 23, 2015 11 / 21



are most important in the assignment of GC collapse state, we examined a dataset of 317 GCs
in which 3 independent observers had manually determined which GCs were collapsed and
extended. Firstly, we compared the collapse state (i.e. collapsed or extended) of each GC
between the three human observers, to determine how often humans agree with each other on
the collapse state of given GCs. On average, the three observers were 82.75 ± 1.11% concordant
with each other (Fig 5B, dotted line), and agreed unanimously on the identity of 83.91% of the
GCs. To determine how effectively parameters derived from Conographer could ascertain GC
collapse state in an unbiased fashion, we performed k-means clustering upon the 317 GCs for
which collapse state had already been assigned; we repeated this process thrice, once for each
observer’s collapse state assignment. After running the algorithm, clusters were associated with
either collapse or extension based on the mean values of parameters for each; for example, if
cluster 1 has lower area- and complexity-associated parameters but higher circularity, it to cor-
responds to collapse. Initially we performed clustering on only single variables and found a
wide range of concordance between k-means and individual human observers, from 61.19% to
85.8%; ranking these variables by concordance revealed that no two human observers ranked
parameters equally, suggesting that there is no hierarchy of Conographer parameters that
definitively indicates collapse. We then performed clustering on multiple parameters; k-means
clustering was performed 10 times for each observer, each time incorporating an extra parame-
ter ranked by either the mean difference between collapsed and extended GCs (Fig 5B, blue), or
the single-parameter clustering concordance described above (Fig 5B, grey). These analyses
revealed that classifications using k-means clustering were as concordant with those of a
human observer as a second human observer would be, suggesting that k-means clustering is a
valid technique to determine GC collapse state.

Given that the ranking of parameters by concordance varied between human observers, pre-
cluding the use of a single set for the clustering, we employed PCA as a means to incorporate
all of the parameters measured by Conographer into our analysis. Of the 17 parameters
recorded by Conographer, we selected the 10 most biologically-relevant parameters recorded
by Conographer for this and the following analyses: Area (GC size), Perimeter (a basic

the cluster to which they do not belong. E) 5 extended and collapsed growth cones, as determined by K-means clustering. F) Growth cones misidentified by
K-means clustering as either collapsed or extended.

doi:10.1371/journal.pone.0140959.g005

Table 1. Changes in parameters due to GC collapse.

KS RankSum

Area 5.82E-36 2.17E-40

Perim. 4.13E-34 9.51E-38

Circ. 1.12E-15 1.20E-19

Solidity 2.25E-11 4.81E-11

HullArea 1.50E-35 4.70E-38

Skeleton 2.37E-38 2.25E-40

Branches 3.11E-27 5.42E-32

Thickness 4.74E-24 4.90E-31

P.Index 9.09E-30 1.59E-35

P.Round. 6.41E-16 1.72E-15

KS = Kolmogorov-Smirnov

RankSum = Wilcoxon Rank-Sum (non-parametric) test

doi:10.1371/journal.pone.0140959.t001
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measurement of complexity), Circularity (a basic measurement of complexity), Solidity (how
much a GC fills the area of its filopodial spread), Hull Area (the size of the environment which
a GC can theoretically sample), Skeleton (a basic measurement of complexity), Branches (how
many branches a GC makes), Thickness (how much thicker the GC is compared to its skele-
ton), Process Index (indicating the number of filopodia), and Process Roundness (a measure of
the complexity of the GC periphery). The remaining parameters were generally rejected
because they measured similar features as another, simpler, parameter; for example, Process
Circularity was not used as it is a metric of the average complexity of each process domain, as it
is too similar to the Circularity measurement. Performing PCA followed by k-means clustering
with only the first 2 principal components resulted in classifications that matched
82.22 ± 5.41% with human observers, similar to the rates of concordance between humans.
Given the variability in the weight given to individual parameters by different humans, and
that PCA incorporates all of the Conographer parameters to some extent, we chose to use PCA
for all further analyses.

We plotted the identified by one human as being extended (blue) or collapsed (red) GCs by
the first two principal components (PC1, PC2, Fig 5C); it can be seen that collapsed GCs segre-
gate away from extended GCs. We then re-plotted this data, with the collapse state replaced by
cluster identity (Fig 5D); as can be seen in this graph, the plot is mostly similar to that derived
from a human observer (Fig 5C). To verify the accuracy of GC collapse state assignment, we
then examined the shapes of GCs belonging to each cluster by finding the GCs furthest from
each cluster center (Fig 5D, empty circles), and identifying the ROI from which these measure-
ments were derived; these GCs are shown in Fig 5E, and are clearly either extended or col-
lapsed. We next looked at GCs that were misidentified by the clustering procedure, to find that
humans unanimously agreed upon the collapse state for 83.91% of GCs, and that our clustering
analysis disagreed with only 8.65% of these assignments (Fig 5F).

Together, these analyses demonstrate that Conographer-derived parameters differ signifi-
cantly between collapsed and extended GCs. Additionally, analysis of these parameters based
upon PCA and k-means clustering can assign collapse state identity to GCs with a similar
degree of accuracy to humans.

Analysis of Netrin-1-induced GC collapse
Having determined that Conographer-derived parameters are different between collapsed and
extended GC, and useful in determining GC collapse state in a dataset with which collapse
state has been previously determined for every GC, we examined if this were still the case upon
the addition of a ligand with known collapsing activity. Netrin-1 is a secreted protein capable
of attracting and collapsing different types of growth cones depending on their Netrin-1 recep-
tor expression [28, 29]. Mutations in the gene encoding the repulsive Netrin-1 receptor Unc5c
result in disrupted DRG axon projections in mice in vivo and Netrin-1 treatment results in the
collapse of explanted DRG axons [30–32]. Thus, we expected to see an increase in the number
of collapsed-cluster-associated DRG GCs detected by Conographer following Netrin-1 treat-
ment. We cultured chick dorsal root ganglion (DRG) explants, as above, and treated them for
30 minutes with either Netrin-1, or Fc as a control. After treatment, we fixed, stained and
imaged the neurons as in the previous experiments. GCs were found and measured using Con-
ographer, then all measurements were pooled together for the purposes of calculating Z-scores.

Firstly, a dataset containing 621 growth cones derived from explants treated with either Fc
or Netrin-1 was examined by 3 blinded human observers; 52.7 ± 7.91% of Fc-treated GCs were
classified as collapsed, while 76.67 ± 3.72% of Netrin-1-treated GCs were classified as collapsed,
indicating a strong collapse response induced by Netrin-1. The relatively high baseline collapse
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in this assay is likely due to the absence of NGF or NT3 growth factors in the motor neuron
medium [33]. We then performed analysis of this dataset with Conographer; Fig 6A shows the
distributions of each measured parameter in response to Fc (dark grey) or Netrin-1 (light
grey). Performing Kolmogorov-Smirnov tests and Wilcoxon rank-sum tests revealed signifi-
cant differences between treatments (Table 2) indicating that even in the absence of a 100%
pure population of collapsed or extended GCs, Conographer-derived parameters are altered by
collapse-inducing treatments. We next performed PCA followed by k-means clustering upon
this dataset to automatically assign collapse identity to growth cones (Fig 6B). In Fc-treated
explants, 58.3% of GCs were assigned to cluster 1; these GCs were smaller, and less complex
than those in cluster 2 (Fig 6C), indicative of collapse. In Netrin-1-treated explants, the propor-
tion of GCs in cluster 1 (i.e. collapsed) was 79.3%, reflecting the increase in collapse brought
about by Netrin-1. Performing Conographer analysis upon a further 2842 GCs derived from
two repetitions of the experiment yielded similar results; GC collapse percentage increased in
the presence of Netrin-1 from 60.17±1.21% to 74.61±2.21% (p = 0.0046, Fig 6D). Together,
these results indicate that Netrin-1 treatment induces changes in Conographer-measured GC
parameters that are consistent with collapse, and that these are reflected by changes in GC col-
lapse as determined by PCA and k-means clustering as well as human observers.

Discussion

Conographer and k-means provide a more sophisticated collapse assay
The automated strategy of Conographer was developed to address key limitations of GC col-
lapse assays, namely the laboriousness of larger analyses and subjectivity of defining and classi-
fying GCs. Our algorithm provides a flexible and user-friendly tool for extracting GC
structures from 2D images based on a series of shape-related criteria, thereby also providing a
strict morphological definition. This standardization increases reproducibility and comparabil-
ity of results from analyses with the same size parameter settings, and thus could facilitate the
pooling of data between experiments, individuals, and even different laboratories. The inclu-
sion of optional additional parameters adds some flexibility, such as restricting an analysis to
neurons expressing a particular somatic marker in a dissociated culture, or investigating only
GCs that have undergone a certain distance of outgrowth away from their somas. Basic pre-
processing options are also provided, precluding the need for manual segmentation in images
with relatively clear and even signal intensities. The masks of cell bodies, axons, and GCs out-
put by Conographer allow visual assessments of its performance, and make each class of struc-
ture amenable to further analysis. If desired, there is also an option to save a “diagnostic mask”,
a montage that displays all the major processing steps of the algorithm on a given image, to
help users troubleshoot and optimize user parameters.

By reducing the dimensionality of the large output dataset with principal component analy-
sis and subsequent k-means clustering, it is possible to accurately, objectively and automatically
cluster GCs found by the Conographer into two or more clusters, and determine the percentage
of GCs in each treatment group that are part of each cluster, as in a traditional collapse assay.
Given that assaying concordance between humans and k-means clustering showed that each
human observer ranked each parameter differently, we performed PCA, which incorporates a
portion of each parameter into a new score, which can be used for clustering. Multivariate sta-
tistics-driven cluster analyses are employed frequently in genomics studies [34–36], and to a
lesser extent have also been used for morphological classifications such as this [37, 38]. How-
ever, to our knowledge our PCA-driven approach is unique in that it requires no a priori
assumptions or labeled “training set”; the clustering algorithm is capable of discriminating
between collapsed and extended GCs from the principal components alone.
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Fig 6. Conographer-derived parameters change during physiological collapse. A) Distributions of Z-scores of the 10 Conographer-derived parameters
in Fc- (dark grey) and Netrin-1-treated (light grey) GCs superimposed over distributions of extended (pale blue) and collapsed (pale red) GCs. B) Plotting of
GCs belonging to K-means derived clusters 1 (red) and 2 (blue) upon the first 2 principal components. C) Shapes of GCs belonging to clusters 1 (top) or 2
(bottom); cluster 1 GCs are simple, whereas growth cones belonging to cluster 2 are larger and more complex. D) Percentage of collapsed growth cones in
explants from each treatment, as assessed by Conographer-derived measurements, PCA and k-means clustering. GC collapse percentage increased in the
presence of Netrin-1 from 60.17±1.21% to 74.61±2.21% (p = 0.0046, Student’s two-tailed t-test). Scale bar in C represents 25μm.

doi:10.1371/journal.pone.0140959.g006
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Output masks and large datasets enable comprehensive analyses
Beyond its effectiveness in improving collapse assays, Conographer has the potential to facili-
tate a great number of other analyses in 2-dimensional explant and dissociated neural cultures.
In particular, by partitioning images of cells into masks of their soma and axons it can be used
to study the relationships of soma to their GCs. For example, to automate outgrowth assays in
which the distance GCs travel from explants are quantified, one could find the GC centroids
and the associated explant centroid, and then average the distance between them. If one were
studying axon branching, one could find the area of axons for a given image and relate that to
the number of associated GCs, to investigate how many GCs sprout per unit area of axon. Even
more powerfully, because regions of interest corresponding to GCs are saved, one can relate
the high-dimensional morphology measurements to molecules in additional channels. As an
example, to test how ephrin-induced Eph clustering affects GC collapse, one could run Cono-
grapher and use the output ROIs on the channel with the Eph stain to analyze fluorescence
intensity, then correlate this with changes in collapse-associated morphology parameters. The
two features could even be combined, for example, by staining for a nuclear factor and correlat-
ing its intensity with GC branching. For use in microprinted gradient, or microfluidic gradient
experiments, in which the angle of chemotropic cue gradient is known, one could examine
how the morphology of a GC relates to not only the angle of the gradient, but also the position
of the GC along a gradient [39]. Essentially, the modules of Conographer can facilitate nearly
any study of the relationship between cell body, axon, or GC morphology, and fluorescence in
each of these domains. By virtue of the entire algorithm being written in a clear modular form
in the ImageJ macro language, even users with limited programming experience can make
modifications such as these to automate otherwise laborious analyses.

Even without these modifications, the large datasets of GCs that Conographer is capable of
producing are amenable to a number of other statistical analyses. Firstly, to identify different
GC “modes” reflected in their morphologies, one could easily increase the number of clusters
to see how the distribution of GCs shifts between them with different treatments, and qualita-
tively describe each cluster with the 10 measurement means. Indeed, recent experimental anal-
yses have attempted subtler classifications, extending the dichotomy of collapse vs non-
collapse by including intermediate categories [40], and Conographer would be well-suited for
this kind of exploration. In this way, one could theoretically identify different functional cell

Table 2. Changes in parameters due to Netrin-1 treatment.

KS RankSum

Area 0.005341237 0.001266233

Perim. 1.64E-06 1.24E-06

Circ. 9.89E-05 8.35E-07

Solidity 9.73E-12 1.59E-15

HullArea 5.38E-07 2.72E-07

Skeleton 2.39E-08 1.70E-08

Branches 3.21E-08 9.47E-12

Thickness 0.034479029 0.014628886

P.Index 1.75E-07 9.55E-11

P.Round. 1.16E-12 9.24E-13

KS = Kolmogorov-Smirnov

RankSum = Wilcoxon Rank-Sum (non-parametric) test

doi:10.1371/journal.pone.0140959.t002
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types in a preparation of explants or dissociated cells in a completely unbiased way based on
the responses of their associated GCs, thus providing evidence for population-specific
responses. Beyond mathematical clustering, users can explore how individual parameters of
interest (such as GC branching) change in response to various treatments, as well as more
sophisticated factor analyses in which inferences can be made about underlying mechanisms
driving changes in multiple parameters. Finally, because binary masks of the GCs themselves
can be saved as well, one has the ability to build up arbitrarily large banks of GCs under a vari-
ety of conditions and treatments, permitting users to integrate results from multiple experi-
ments and perform morphological analyses on datasets of unprecedented size.

Conographer detects growth cone morphological changes induced by
an axon guidance ligand in vitro
The correct targeting of sensory afferents to the spinal cord during development is dependent
on Netrin-1:Unc5c signaling. In mice lacking either the ligand or its receptor, DRG axons aber-
rantly invade the spinal cord [30, 32]. The repulsive effects of Netrin-1 on chick and mouse
DRG axons have been confirmed in vitro [31, 32]. In this study, treatment of chick DRG
explants with Netrin-1 induced GC collapse as assessed by both human observers and Cono-
grapher. Whilst baseline collapse in our study may appear high, this is likely due to the absence
of growth factors in the culture medium, as it has been previously reported that in the absence
of NGF the rate of collapse in mouse DRG neurons is close to 80% [33]. Importantly, compari-
son to Lemons et al, [31], in which DRG GCs are treated with Netrin-1 to produce collapse,
gives results that are qualitatively similar. These discrepancies are most likely to be a result of
differing means of GC collapse assignation; in Lemons et al. it is the retraction or extension of
the axon over the timecourse of Netrin-1 treatment that determines GC collapse state. Addi-
tionally, differences between growth substrata, growth factor concentration in the culture
media, and the embryonic stage being examined will also contribute to differences in collapse
rate. It is worth noting that the percentage of collapsed growth cones in control experiments
can vary massively, with values from 10% [41] to 40% [42], to 80% [33], suggesting that more
standardized, reproducible analyses, such as those provide by Conographer, would be useful.

Comparing our results with previous experiments serves to illustrate how Conographer
facilitates higher-powered studies, as we were easily able to analyze samples containing thou-
sands of GCs, where the more laborious timelapse methodologies are constrained to GC num-
bers in the double digits. Conographer’s suite of parameters are able to detect collapse in a
more reproducible and quantitative manner than a subjective binary score by a human could
ever do. While a properly blinded human scoring of a collapse assay allows experimenters to
learn about a molecule’s repulsive properties, it fails to convey any information on GC charac-
teristics both at baseline and after treatment, and is unable to say anything about a molecule’s
effects on GCs at sub-collapsing concentrations, which often have powerful unexpected effects
[39, 43].

Beyond the binary collapse assignations, the multivariate dataset can provide quantifiable
information as to the morphological effects of experimental manipulations. In the case of
Netrin-1 treatment, there are clear changes in the distributions of the 10 parameters used for
the analysis which all seem to reflect its expected repulsive effect. In particular, striking changes
can be observed for parameters associated with the length, number, and complexity of pro-
cesses (Fig 6A, Circularity, Skeleton, Process Index, etc.), quantitatively demonstrating the
retraction of filopodia and reduction in central domain mass that are associated with repulsion.
This subtle characterization of the effects of Netrin-1 would be far more laborious for human
observers to detect.
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While a detailed analysis is outside the scope of this exposition, we envision Conographer
being employed to make such subtle morphological comparisons between treatments. For
example, in order to study the effect of a guidance cue on filopodia extension, one could com-
pare only GCs of similar total area and number of processes while using measurements such as
Skeleton, Hull Area, and Circularity as proxies for filopodia lengths. Conographer is also a per-
fectly suited tool for exploring, in a quantitatively rigorous way, a growth cone’s response to
multiple overlapping cues, a paradigm that is undoubtedly the next page in the field of axon
guidance research [44].

Method caveats
As with any automated image analysis, one of the greatest sources of difficulty lies in the initial
binary segmentation of the image into foreground and background. While sophisticated seg-
mentation algorithms that employ contour detection and other strategies do exist, we have
elected not to integrate them into Conographer. This was done in part to keep the algorithm
relatively simple (and therefore amenable to adjustments by users), and fast, by applying global
thresholds and basic contrast adjustments rather than individually segment each object, as
would be the case with contour detection. Thus, most Conographer errors can be attributed to
errors in segmentation, such as falsely attributing the disconnected end of an over-thresholded
axon as a collapsed GC or failing to include a thin process separated by the thresholding in
measurements. For this reason, it is of the utmost importance that care is taken to maximize
the signal-to-noise ratio and minimize fluctuations in signal intensity in the stained structures;
both of these concerns are addressed by use of the Tuj1 antibody, which gives excellent signal
to noise ratio. Background noise may slow the algorithm down as particles are initially mis-
identified as GCs, but will not interfere with the validity of the actual measurements as the vast
majority will be rejected in the verification steps. If global thresholding is distorting structures
in a set of images too much, or if signal intensities vary significantly between images, it is advis-
able to manually threshold such images or employ more sophisticated segmentation algorithms
before beginning analysis with Conographer.

Despite the possibility of segmentation errors, by overexposing the TUJ1 channel we were
able to obtain and clearly segment fine processes associated with GCs and recapitulate the
results of humans (Fig 1). Though GCs are generally thought to be identified by their high con-
centrations of F-actin, we were unable to use actin-staining phalloidin as a morphology
reporter because Conographer requires strong signals in axons, where the intensity is much
less. We elected not to build the algorithm around phalloidin in conjunction with another stain
that marks axons, as that would have necessitated compensating for unavoidable differences in
ratios of intensities between the two channels, and likely would create more variability in what
are identified as GCs. Additionally, by requiring only a single channel, a wide variety of genetic
and chemical tools can be used on living or fixed tissue, with all other channels free for addi-
tional stains. This being said, if a user is unable to find a way to clearly demarcate both axons
and GC processes with a single channel, multiple channels can be combined prior to running
Conographer.

Speed and accessibility
Whilst use of Conographer does require the experimenter to capture images, this can be largely
automated by use of microscopes with a motorized XY stage, with which the finding and mea-
surement of GCs can occur within ~15s per explant image; even this time-per-explant could be
reduced if Conographer is used in conjunction with high-throughput automated microscopy
systems. Even if users decide to forgo the k-means based analysis, we have included an ImageJ
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macro that allows rapid collapse state assignment by experimenters, by simply presenting
images of individual GCs and asking the user to classify them. Alternatively, users can also use
the measuring module of the Conographer on pre-identified binary images of any structure.
Conographer the measuring module, the GC finding module, and the macro to facilitate man-
ual sorting are all freely available at http://dx.doi.org/10.6084/m9.figshare.1565664 or by com-
municating with the authors.

Conclusion
In this study, we demonstrate the utility of the Conographer macro, which we have developed
to automatically detect and measure GCs in vitro. We have shown that Conographer finds GCs
with only a slight reduction in frequency, and with an insignificant number of false positives
relative to humans. In addition, we demonstrate that the 10 parameters employed during our
cluster analyses are distributed differently between collapsed and extended GCs, and that these
parameters can be used to classify GCs as extended or collapsed using a k-means clustering
method, with the same level of accuracy as human observers. Finally, we illustrate how the
parameters measured by the Conographer are changed by application of physiological col-
lapse-inducing ligands, resulting in measurable differences collapse state. Together, these
results demonstrate the potential of the Conographer as a powerful tool for the analysis of GCs
in vitro.
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