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Abstract

T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and
attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a
significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T
cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the
generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted
antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at
least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different
mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell
selection for the prevention of autoimmunity and the establishment of immune surveillance.
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Introduction
Self/non-self discrimination is an inherent trait of func-
tional T cells. They recognize their targets by binding to
major histocompatibility complex (MHC) molecules and
to short peptides loaded on them via their T cell recep-
tor (TCR). The TCR is composed of two polypeptide
chains (α and β chains) that are composed of a con-
stant region and an antigen binding portion, namely the
variable region. The variable region of α and β chains
is constituted of V (variable) and J (joining) segments,
or V (variable), D (diversity), and J (joining) segments,
respectively [1]. To generate mature T cells, T cell progen-
itors originated in the bone marrow migrate to the thymic
cortex where the TCR is generated by random somatic
DNA rearrangement, known as the V (D) J recombina-
tion [2]. Each segment is represented by multiple copies
in the genome and will be assembled by “cut and paste”
DNA rearrangements where a pair of segments will be
joined after cutting out the intervening DNA. One seg-

*Correspondence: takaba-im@m.u-tokyo.ac.jp
Department of Immunology, Graduate School of Medicine and Faculty of
Medicine, The University of Tokyo, Tokyo, Japan

ment of each type is chosen from several, but sometimes
many possibilities for assembly in a process that is the
key behind antigen receptor diversity in mammal lympho-
cytes. Diversity is further amplified by adding or deleting
small numbers of nucleotides at the junctions between
the various segments [2]. This process explains the unlim-
ited repertoire of potential antigen binding specificities
encoded by a relatively small investment in germline
capacity. But this comes at the cost of inevitably gener-
ating self-reactive T cells capable of causing peripheral
tissue damage if not eliminated or controlled.
T cell tolerance is of particular importance, as it impacts

B cell tolerance as well, through the need of T cell help
in humoral responses [3]. Thus, failure of T cell tolerance
results in many different autoimmune diseases. Mecha-
nisms of T cell tolerance that occur in the thymus during
their maturation are referred to as “central tolerance”. And
additional tolerance mechanisms exist as complement,
acting on mature circulating T cells and are referred to as
“peripheral tolerance” [4].
In the thymic cortex, TCR expression on T cell pre-

cursors gives rise to CD4 and CD8 double-negative
progenitors that will give rise to a large number of CD4
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and CD8 double-positive (DP) thymocytes. The latter
interact with cortical thymic epithelial cells (cTECs) that
express self-antigens on MHC molecules. DP thymocytes
expressing nonfunctional TCRs die by neglect, while
those recognizing self-peptide–MHC complexes differ-
entiate to CD4 or CD8 single-positive (SP) thymocytes in
a process known as positive selection. CD8 and CD4 are
co-receptor molecules that bind to non-polymorphic sites
on MHC molecules restricting T cell specificity to MHC
class I or MHC class II molecules, respectively [5]. SP
thymocytes migrate to the thymic medulla, which serves
a crucial function for T cell central tolerance induction,
where they interact with self-peptide/MHC complexes
expressed on the surface of antigen-presenting cells.
SP thymocytes with high-affinity TCR for self-peptides
represent a potential threat to health, therefore receive a
lethal hit leading to their death by apoptosis in a process
known as negative selection [4]. Apoptosis is not the only
fate of autoreactive thymocytes, as a small fraction of
CD4+ SP thymocytes is converted into CD25+ Foxp3+
regulatory T cells (Tregs), a cell type with suppressor
activity that is required for the maintenance of immune
homeostasis [6–9].

Major antigen-presenting cells in the thymic
medulla
Once the SP thymocytes are in the thymic medulla, those
expressing self-reactive TCRs should be eliminated in a
process called “negative selection.” To this end, SP thymo-
cytesmust interact with self-antigens presented on the cell
surface of thymic antigen-presenting cells, in particular
medullary thymic epithelial cells (mTECs), and dendritic
cells (DCs).

Medullary thymic epithelial cells
mTECs produce a myriad of self-peptides known as
tissue-restricted antigens (TRAs) representing, collec-
tively, almost all peripheral transcripts, giving the medulla
its crucial tolerogenic role [10]. For a long time, the
consensus was that mTECs are divided to mTEClo and
mTEChi [11], based on the low or high expression of
MHC class II and CD80 and/or CD86 molecules, respec-
tively. mTEChi express the autoimmune regulator (Aire)
and are mature mTECs while mTEClo can be immature
or post-Aire mTECs, with the understanding that imma-
ture mTEClo give rise to mature mTEChi. The current
view however, is that mTEC cell subset is much more
heterogeneous with Podoplanin+ junctional TECs being
the precursor of mature mTEChi rather than mTEClo

expressing Ccl21, and Post-AiremTECs being divided into
two main subsets: Keratin-10+ mTECs and the recently
identified thymic tuft cells [12–15]. Among these mTEC
subsets, mTEChi expressing Aire and Fezf2 are considered
as the professional TRA-producing mTECs.

Dendritic cells
The constitutive ablation of DCs results in spontaneous
fatal autoimmunity [16], proving the importance of this
cell subset in central tolerance induction. DCs do not have
the ability to directly produce TRAs, they instead poten-
tiate T cell selection process by presenting the antigens
transferred to them from mTECs [17, 18], and present-
ing peripheral and blood-borne antigens [19–21]. Thymic
DCs are divided into 70% conventional DCs (cDCs) and
30% plasmacytoid DCs (pDCs). cDCs are further divided
into resident (Sirpα- CD8+) and migratory (Sirpα+ CD8-)
cDCs, representing 70% and 30% of them, respectively
[22]. pDCs are known to be poor antigen-presenting cells
[23], and are thought not to contribute much to the
thymic central tolerance. However, recent data challenged
the accuracy of that idea. An in vitro study showed a
role of thymic pDCs in Treg differentiation [24]. In vivo
studies demonstrated the efficiency of pDCs in captur-
ing peripheral soluble antigens and transporting them to
the thymus [25, 26]. Migratory cDCs transport periph-
eral self-antigens into the thymus, and also capture and
present blood-borne self-antigens. By contrast, resident
cDCs capture and present self-antigens mainly found in
the thymic microenvironment. Indeed, an in vitro study
showed that resident Sirpα- CD8+ cDCs have the high-
est cross-presentation capacity compared to Sirpα+ CD8-
migratory cDCs [27]. Recently, an additional subset of
thymic DCs was described and named transendothe-
lial DCs, owing to their localization in immediate prox-
imity to thymic microvessels. This subset was shown
to contribute to central tolerance by capturing blood-
borne macromolecules and transporting them to the
thymus [28].

Regulators of the promiscuous expression of TRAs
TRA expression regulated by Aire
The autoimmune regulator (Aire) gene was first described
as the gene in which mutations caused APECED (autoim-
mune polyendocrinopathy-candidiasis-ectodermal dys-
trophy) [29, 30], a devastating rare genetic disorder that
is characterized by a deregulated immune system. Auto-
somal recessive mutations in Aire gene cause the classi-
cal APECED, but some cases of APECED patients with
Aire autosomal dominant mutations were noted [31, 32].
Mice lacking Aire gene showed multiorgan autoimmu-
nity, importantly, these mice had reduced TRA expression
in mTECs, revealing Aire’s major role in thymic cen-
tral tolerance as a regulator of the ectopic expression of
TRAs [33, 34]. During the past 25 years, extensive stud-
ies were conducted to reveal the complex mechanisms of
Aire function [35], its binding partners [36], and the tran-
scriptional programs regulating its own expression [37].
It is now understood that AIRE interacts with an abun-
dance of proteins to exert its effect on a broad array of
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target genes. Aire contains SAND domain (Sp100, Aire,
NucP41/P75, Deaf- 1), a DNA-binding domain. However,
Aire’s SAND domain lacks the critical α-helical KDWK
binding module, making it unable to recognize DNA tar-
get sites [38–40]. Aire working as a homomultimer was
found to be recruited preferentially to inactive genes by
interacting with proteins and histone markers involved in
gene repression [41–47]. Thus, even thoughAire regulates
gene expression, it cannot be classified as a sequence-
specific transcription factor. On the transcriptional start-
ing sites of Aire-target genes, RNA polymerase II was
found to be already engaged, but is stalled and unable to
elongate the transcripts [48]. Aire then initiates a chain
of events to release the stalled RNA polymerase II by
recruiting the positive transcription elongation factor b
(P-TEFb) via Bromodomain-containing protein 4 (BRD4).
The transcriptional and epigenetic regulator BRD4 is able
to release P-TEFb from its inhibitory complex [48–51].

Therefore, Aire stimulates the elongation of transcrip-
tion. In addition, Aire interacts with DNA-PK, a mem-
ber of the DNA damage machinery which is linked to
transcriptional activation, but it’s still a debate whether
DNA-PK activates Aire or it’s another way of how Aire is
recruited to its target genes [40, 52–54]. Recently, local-
ization studies found that Aire binds and activates super-
enhancers, which are large clustered enhancer regions
responsible for the transcriptional regulation of important
cell-type-specific genes [55]. Aire drives TRA expres-
sion in a limited and scattered pattern (Fig. 1) and it
was shown that co-expressed genes, present in only a
subset of mTECs, clustered in the genome and showed
enhanced chromatin accessibility [22, 56–59]. Of note,
Aire-expressing mature mTECs (mTEChi) experience rad-
ical changes in chromatin accessibility upon differentia-
tion [60], which prepare the context for tissue-specific
gene activation by Aire in mTECs. Indeed, a recent study

Fig. 1 The expression pattern of TRAs in the mTECs by scRNA-seq analysis: a scRNA-seq analysis of thymic stromal cells. bMosaic expression pattern
of Aire-dependent TRA (top, Ins2). Broad expression of Fezf2-dependent TRAs (bottom, Muc1). c Fezf2-dependent TRAs are more highly expressed
in a mature mTEC than Aire-dependent TRAs
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showed that compromising the Brahma-associated factor
(BAF) ATP-dependent chromatin remodeling complex
changed the chromatin accessibility at different genome
regions, resulting in a crucial reduction of the ectopic
expression of Aire-dependent TRAs [60]. Aire functions
expand beyond the regulation of TRA expression, it is
involved in other processes in the thymus such as mTEC
differentiation and antigen presentation, these functions
are well reviewed by others [61, 62].

TRA expression regulated by Fezf2
Since the discovery of Aire, it has been reported that
almost 60% of TRAs are expressed in an Aire-independent
manner [10], indicating the existence of other regula-
tors of TRA expression in mTEC. In 2015, our research
team identified Fezf2 (Forebrain Embryonic Zinc Finger-
Like Protein 2), a transcription factor which is expressed
in human and mouse mTECs [63]. Although Aire is
selectively expressed in mature mTEChi, Fezf2 is mainly
expressed in mTEChi, but also expressed in other sub-
sets of mTECs. Microarray analysis of mTECs isolated
from Fezf2 deficient mice revealed downregulation of
Aire-independent TRA gene expression and mice defi-
cient in Fezf2 specifically in mTECs developed autoim-
mune disease-like symptoms with autoantibody produc-
tion and inflammatory cell infiltration into peripheral tis-
sues. Interestingly, the target organs of autoimmunity that
were observed in Aire-deficient and Fezf2-deficient mice
were different, indicating that the distinct TRA expression
in mTECs may be responsible for the difference in symp-
toms [63]. To identify genes regulated by Fezf2, RNA-
seq analysis of mTECs from Fezf2-deficient mice com-
pared to Aire-deficient and control mice was performed,
and the data was integrated with tissue-specificity scores
based on transcriptome data of various organs and cells
obtained from a public database (BioGPS) [64]. The inte-
grated analyses revealed differences in tissue specificity,
for instance: Fezf2-regulated TRAs were highly expressed
in the small intestine, but Aire-regulated TRAs were dom-
inantly expressed in the eye. While, as explained above,
genes regulated by Aire have inactive chromatin modi-
fications and are expressed in a scattered pattern in the
medulla, genes regulated by Fezf2 have active chromatin
modifications and are expressed in a broad pattern in the
medulla, in addition, Fezf2-induced genes are expressed
at a higher level than Aire-induced genes [64] (Fig. 1).
These observations indicate that the regulation of gene
expression by Fezf2 and Aire is different at the epigenetic
level.
Although several epigenetic regulators that interact

with Aire have been identified, not much is known
about the recently discovered TRA expression-regulator
Fezf2. Tomofuji et al. found the chromatin remodel-
ing molecule Chd4 to interact with Fezf2 following

comprehensive screening of Fezf2-interacting molecules
by immunoprecipitation-mass spectrometry and western
blotting. Chd4 is a significant component of the Nucle-
osome remodeling deacetylase (NuRD) complex, a vital
complex involved in regulating chromatin structure, indi-
cating that Fezf2, similar to Aire, acts on predefined
chromatin landscape. It was found that Fezf2 binds to
other components of the NuRD complex such as histone
deacetylase HDAC1/2 indicating that Fezf2 forms a NuRD
complex with Chd4 in mTECs and regulates gene expres-
sion [64]. RNA-seq analysis of Chd4-deficient mTECs
revealed that genes regulated by Fezf2 and Chad4 overlap.
ATAC-seq analysis showed that Fezf2 and Chd4 regu-
late chromatin accessibility in the same genomic regions
and are involved in gene expression, especially in the pro-
moter region. These results indicate that Fezf2 and Chd4
cooperatively regulate the chromatin structure near the
promoter and typical enhancer regions and control the
expression of a group of genes, including TRAs. Interest-
ingly, while Aire and Chd4 do not interact with each other,
RNA-seq analysis of Chd4-deficient mTECs revealed that
Chd4 controls some of the genes regulated by Aire.
ATAC-seq data demonstrated that both Chd4 and Aire
are involved in regulating chromatin accessibility in the
super-enhancer region as Chd4 preferentially regulates
the chromatin accessibility of super-enhancers reportedly
regulated by Aire [55]. In addition, genes whose expres-
sion was decreased by the inhibition of super-enhancer
activity by I-BET 151 coincided with those whose expres-
sion was decreased by the loss of Chd4. Furthermore,
using single-cell RNA-seq data, there was a co-expression
cluster of genes near the super-enhancer and genes whose
expression was regulated by Chd4 or Aire. However, Fezf2
does not induce TRA gene expression via super-enhancers
(Fig. 2). These results suggest that Chd4 and Aire coop-
eratively regulate the chromatin structure of the super-
enhancer region for specific TRA genes, even though they
do not interact directly. In sum, Chd4 acts on two different
transcriptional regulators, Fezf2 and Aire, and is involved
in the regulation of the expression of different gene sub-
sets. Of note, TEC-specific Chd4 deficient mice showed
autoimmunity symptoms with infiltration of T cells into
peripheral tissues and autoantibody production, reflect-
ing the abnormal expression of TRAs in mTECs which
impaired T cell selection. Along with the regulation of
TRA expression, Fezf2, so far, was found to affect the
number of mTECs and cytokine production, its implica-
tion in other roles needs to be further investigated [65].

Antigens recognized by T cells
Self-antigens in the development of Tregs
Treg generation is defective in Aire and Fezf2 deficient
mice, indicating that the thymic ectopic expression of self-
antigens by Aire and Fezf2 is imperative for Treg devel-
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Fig. 2 TRA expression mechanism by Fezf2 or Aire with Chd4 in mTECs in the thymus for immune homeostasis and surveillance: Super-enhancer
mediated TRA expression by Aire (right), typical-enhancer mediated TRA expression by Fezf2 which forms NURD complex with Chd4 on the
promoter regions (left). TRA-recognizing T cells differentiate into Treg cells or escape as autoreactive T cells from the thymus. Such T cells migrate to
the secondary lymphoid organs and are distributed in specific peripheral tissues for immune homeostasis or surveillance

opment [63, 66, 67]. In the thymic medulla, while positive
selection is driven by a low degree of TCR self-reactivity
and negative selection by a strong one, a strength of reac-
tivity in between will lead to clonal diversion of CD4+ SP
thymocytes to Tregs [68]. Treg generation in the thymus is
a two-step process, the first is TCR signaling-dependent,
leading to the development of Treg precursors: CD25+
Foxp3- and CD25- Foxp3lo. The second step is triggered
by cytokines, IL-2 or IL-15, that convert Treg precursors
to CD25+ Foxp3+ mature Tregs [69–73]. Treg develop-

ment from different precursors may indicate the hetero-
geneity of Tregs generated in the thymus. Mature Tregs
then migrate to peripheral lymphoid and non-lymphoid
tissues to fulfill their diverse roles [74, 75], and their
distribution depends on the recognition of their cog-
nate self-antigens. In addition, once Tregs are in a spe-
cific tissue, they adjust their transcriptomic profile [76].
More recently, single-cell RNA-seq revealed that Tregs are
actually primed for tissue-specific migration in lymphoid
organs [77–79]. Thus, Tregs are a heterogeneous subpop-
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ulation, and those with the same TCR specificity express
tissue-specific genes and migrate to their respective tis-
sue where they accumulate and adapt their transcriptional
phenotype [80, 81]. This is in alliance with the fact that in
the periphery, unlike conventional T cells, Tregs contin-
uously receive TCR signals and inducible ablation of the
TCR results in Treg cell dysfunction [82–84].

Self-antigens in autoimmune diseases
Several self-antigens have been identified to be targeted
in autoimmune diseases in human patients and rodent
models [85]. In many animal models of autoimmune
diseases, immunization with the related autoantigen or
transfer of autoreactive lymphocytes can induce the dis-
ease. For example, mouse immunization with myelin
oligodendrocyte glycoprotein (MOG) is very efficient to
induce the experimental autoimmune encephalomyeli-
tis (EAE) with clinical and pathological similarities to
multiple sclerosis (MS) [86, 87]. Peripheral blood lym-
phocytes from MS patients were reactive to MOG and
had a proliferative response, suggesting an important
role for cell reactivity against MOG in the pathogen-
esis of MS [87, 88]. Indeed, the transfer of MOG-
specific CD4+ T cells to naïve mice can induce EAE
[89]. Knowing that MOG is expressed in mouse and
human mTECs [90, 91], several studies proved that
MOG induces incomplete tolerance of CD4+T cells
with concomitant Treg induction and that public anti-
MOG T cell repertoires are selected for [92–94].
Meanwhile, loss of myelin proteolipid protein (Plp) or
insulin 2 (Ins2) leads to the decrease of Plp- or Ins2-
responsive Treg cells in the thymus, respectively [95, 96].
These studies suggest that autoreactive Tregs are agonis-
tically selected for upon interactions with self-antigens.
This mode of selection provides implications for the pro-
tective function of Treg cells in the periphery and for the
design of antigen-specific immunotherapy. Thus, further
studies to identify the cellular features (TRA peptide-
TCR-T cell gene profile) of self-reactive T cells including
Tregs may help to develop new immune treatments.

Tumor-associated antigens
For an effective anti-tumor response, the recognition of
tumor antigens is imperative. Some antigens expressed
abnormally by cancer cells, named tumor-associated anti-
gens (TAAs), are self-antigens that can be presented on
mTECs. Indeed, several antigens that are reported to
be TAAs were found to be expressed on mTECs, such
as Muc1 and CEA expressed in lung and breast cancer
respectively [56] and gp100, which is a melanoma antigen,
was found to be expressed inmTECs in anAire-dependent
manner [97]. The expression of TAAs on mTECs leads
to the elimination of tumor-reactive T cells and the gen-
eration of tumor-recognizing Tregs. The expression of

carcinoembryonic antigen (CEA) in mTECs impaired the
anti-tumor CD4+ T cell repertoire [98]. On the other
hand, a thymic-derived Treg population that is reactive
to an Aire-dependent prostate-associated self-antigen has
been reported to be enriched in the tumor microenvi-
ronment of oncogene-driven prostate cancer [99]. The
elimination of tumor-reactive T cells and the generation
of tumor-recognizing Tregs compromise the effectiveness
of anti-tumor responses. Accordingly, mTECs from Aire-
deficient mice show decreased expression of Trp1 (an
Aire-dependent self-antigen expressed in melanoma cells)
and an increased number of Trp1-responsive T cells, lead-
ing to an enhanced anti-tumor response [100]. Similarly,
the blockade of RANK signaling, which is important for
Aire expression, enhanced the survival in a melanoma
mouse model [101]. Interestingly, Fezf2 suppresses the
expression of some self-antigens among which are some
TAAs such as Mesothelin (Msln), which is known to be
overexpressed in several human cancers, implying the
possibility of the existence of a regulatory mechanism that
allows the generation of an antitumor immune defense
[63, 64]. One of the breakthroughs in cancer therapy in
recent years is immune checkpoint inhibitors that over-
come the unresponsiveness of the immune system to
tumor cells. However, there still are many patients who do
not respond to checkpoint therapy, and one of the reasons
for this is thought to be the immunosuppressive tumor
Tregs. Tregs interfere with cancer immune surveillance
by recognizing TAAs and suppressing antitumor immu-
nity. Although a lot of studies focus on the mechanism of
immunosuppressive molecules specifically expressed on
Tregs, little is known about the origin of tumor Tregs,
especially the identity of TAAs that induce Treg activity.
In the future, it is necessary to understand the molecular
mechanisms of the ontogeny of tumor antigen-responsive
T cells in the thymus.

Conclusions
In the thymic medulla, depending on the binding affinity
and avidity of the TCR and self-antigens, differentiating
T cells are eliminated by negative selection or converted
into Tregs to ensure immune homeostasis. Some well-
known self-antigens to be present in the thymic medulla
are detected as the target in autoimmune diseases and
cancers. This indicates that manipulating TRA presen-
tation in the thymus could be a therapeutic strategy for
autoimmune diseases and cancers. Two transcriptional
regulators, Fezf2 and Aire, function in concert to drive the
ectopic expression of TRAs in the human and mouse thy-
mus, not only regulating the amount of TRA gene expres-
sion per mTEC cell, but also altering its expression pattern
in the mTEC population as a whole. The expression lev-
els and patterns of the TRA genes, possibly involved in
the balance between Treg differentiation and autoreactive
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T cell leakage, need to be investigated in detail. Knowing
that any taken individual has autoreactive T cells, the cur-
rent consensus is that their presence in the periphery is
a “defect in the system,” and Tregs’ major role is to cover
up this loophole [102]. Based on some recent data demon-
strating active processes limiting TRA expression in the
thymus, this consensus might need to be revised. Fezf2,
considering its role in the induction of TRA gene expres-
sion, can suppress the expression of some TRAs as well
[63, 64]. In addition, Padonou et al. showed that inmTECs,
Aire-dependent TRA genes escape the splicing-related
factor Raver2, resulting in a low number of alternative
splicing events, suggesting an incomplete Aire-dependent
negative selection [103]. These observations could imply
that the generation of autoreactive T cells is a physiologi-
cal and beneficial process andmight be explained by a role
in immune surveillance and anti-tumor immunity. Hence,
their control by Tregs in the periphery is just a regulat-
ing mechanism to avoid a time/space irrelevant activation
of these autoreactive T cells. In summary, research on the
mechanisms of autoantigen expression and T cell selec-
tion in the thymus is not only important for basic research,
but is also expected to lead to the development of new
immunological diagnostic and therapeutic techniques in
the future.
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