
Genomic Evidence for Formate Metabolism by Chloroflexi as
the Key to Unlocking Deep Carbon in Lost City Microbial
Ecosystems

Julia M. McGonigle,a Susan Q. Lang,b William J. Brazeltona

aSchool of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
bSchool of Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA

ABSTRACT The Lost City hydrothermal field on the Mid-Atlantic Ridge supports
dense microbial life on the lofty calcium carbonate chimney structures. The vent
field is fueled by chemical reactions between the ultramafic rock under the
chimneys and ambient seawater. These serpentinization reactions provide reduc-
ing power (as hydrogen gas) and organic compounds that can serve as microbial
food; the most abundant of these are methane and formate. Previous studies have
characterized the interior of the chimneys as a single-species biofilm inhabited by
the Lost City Methanosarcinales, but they also indicated that this methanogen is un-
able to metabolize formate. The new metagenomic results presented here indicate
that carbon cycling in these Lost City chimney biofilms could depend on the metab-
olism of formate by Chloroflexi populations. Additionally, we present evidence for
metabolically diverse, formate-utilizing Sulfurovum populations and new genomic
and phylogenetic insights into the unique Lost City Methanosarcinales.

IMPORTANCE Primitive forms of life may have originated around hydrothermal
vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fu-
eled by just rock and water, provides an analog for not only primitive ecosystems
but also potential extraterrestrial rock-powered ecosystems. The microscopic life cov-
ering the towering chimney structures at the Lost City has been previously docu-
mented, yet little is known about the carbon cycling in this ecosystem. These results
provide a better understanding of how carbon from the deep subsurface can fuel
rich microbial ecosystems on the seafloor.

KEYWORDS Chloroflexi, hydrothermal vents, metagenomics, methanogens,
serpentinization

The towering carbonate chimneys of the Lost City hydrothermal field protrude from
the Atlantis Massif, a dome of ultramafic rock uplifted from the mantle. These

chimneys differ from other deep-sea hydrothermal systems because they are driven
primarily by rock-water reactions, known as serpentinization, rather than magmatic
activity. The serpentinization reactions create high-pH fluids that mix with the sur-
rounding cold seawater to form the calcium carbonate structures. Serpentinite-hosted
systems are of astrobiological interest because they provide a source of energy for life
that does not require sunlight or vigorous magmatic activity (1). These systems are
thought to be present on icy worlds, such as Jupiter’s moon Europa and Saturn’s moon
Enceladus (2, 3).

The dense microbial biofilms of Lost City chimneys are fueled by the carbon and
energy released by serpentinization of the underlying ultramafic rock (4–8). The ser-
pentinization reactions provide high concentrations of hydrogen gas, methane, and
other simple organic compounds that serve as food and energy sources for microbes.
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The more extreme interiors of chimneys are anoxic and continually bathed in the warm
serpentinizing fluids. The temperatures of venting fluids can reach �95°C, and the pH
of the fluids can be as high as 11 (9). Previous studies have shown that these interiors
are dominated by a single archaeal phylotype, the Lost City Methanosarcinales (5). In
contrast, the chimney exteriors host a more complex microbial community, including
organisms involved in the oxidation of sulfur and methane (e.g., Methylomonas, Thio-
microspira). These organisms likely thrive in the mixing zones, where they can take
advantage of the cooling effect of the seawater and more efficient electron acceptors
(e.g., oxygen) but still access the products of serpentinization supplied by venting
fluids.

In general, little is known about the metabolic capabilities of Lost City organisms.
Our previous research has shown that much of the microbial biomass at Lost City is
derived from carbon that originated deep in the Earth’s subsurface (4, 10). In most
ecosystems, inorganic carbon (CO2) serves as the starting carbon source for primary
production. However, the Lost City fluids contain extremely low concentrations of
dissolved inorganic carbon (DIC) due to its reduction to hydrocarbons and its rapid
precipitation as calcium carbonate at a pH above �9 (11–13). The organic acid formate
has been proposed to be an alternative primary carbon source; it is present in high
concentrations in Lost City fluids (36 to 158 �M) and is expected to form abiotically in
serpentinizing fluids (4, 14, 15). In support of this, our previous experiments have shown
that the isotopic compositions of carbon (13C and 14C) in bacterial and archaeal lipids
resemble those of formate from the vent fluids (4).

Formate is unable to enter carbon fixation pathways directly and needs to be
converted to CO2 for autotrophic metabolism (16–19). The enzyme formate dehydro-
genase catalyzes the reversible oxidation of formate to CO2. Obtaining formate from
the environment requires active transport; therefore, any Lost City formate-utilizing
species would carry genes encoding a formate transporter and formate dehydrogenase.
This study identifies two formate-utilizing populations of the Lost City chimneys based
on metagenomic evidence, including the presence of formate transporters and formate
dehydrogenases. These formate-utilizing organisms may enable mantle-derived carbon
to become available to the other microbial inhabitants of Lost City chimneys that are
unable to use formate, such as the Methanosarcinales.

RESULTS AND DISCUSSION
Metagenomic assembly and binning. We performed shotgun paired-end se-

quencing of environmental DNA extracted from a sample of chimney material collected
at Marker 5 within the Lost City hydrothermal field. The metagenome consisted of
145,937,844 read pairs (after quality filtering), which were assembled into 730,351
contigs with an N50 of 2,518 bp and a maximum length of 250,900 bp. The assembled
contigs represent 62.47% of all read pairs in the metagenome. Each contig of
�1,000 bp was assigned a taxonomy by the PhyloPythiaS� program (20), and the
overall taxonomic composition of these contigs is shown in Fig. S1 in the supplemental
material. These results are consistent with those of previous studies that have described
the chimney biofilm communities as being dominated by Gammaproteobacteria, in-
cluding Thiotrichales and Methylococcales (6, 7, 21).

Contigs were binned into metagenome-assembled genomes (MAGs), only seven of
which initially contained �10% contamination and �18% completeness (Table S1)
after automated binning. None of these seven MAGs contained strong evidence for
formate utilization. Therefore, we manually explored the other MAGs with evidence of
formate metabolism.

Two types of formate transporters have been characterized. In formate-utilizing
methanogens, the gene fdhC is thought to be necessary for the transport of formate
into the cell (22). A different formate/nitrite transporter (focA) from the same FNT
protein family has been described in Escherichia coli (23). E. coli requires focA for
removal of the formate produced during mixed-acid fermentations, but the protein is
known to be bidirectional and can therefore bring formate or nitrite into the cell (24).

McGonigle et al. Applied and Environmental Microbiology

April 2020 Volume 86 Issue 8 e02583-19 aem.asm.org 2

https://aem.asm.org


In order to identify potential formate-using populations in our metagenomes, we
examined all bins containing fdhC or focA. We identified genes for five formate
transporters in the metagenome, three of which were found on contigs with evidence
of nitrite metabolism, but no other genes involved in formate metabolism. The genes
for the other two formate transporters were located on contigs with adjacent genes
involved in formate metabolism. Therefore, we manually refined these two MAGs, as
well as a third representing the Lost City Methanosarcinales phylotype (8, 12).

Sulfurovum. The Sulfurovum MAG was refined to be 95.9% complete and to have
2.19% contamination by examining the hierarchical clustering of contigs, as visualized
in the anvi’o platform, and by inspecting the taxonomic assignment (by the PhyloPy-
thiaS� method) of each contig. The fragments mapped to this MAG comprised 0.41%
of the total assembly coverage (Table S2). Of the three MAGs discussed here, the
Sulfurovum MAG contains the lowest number of protein-encoding genes (2,036), but
90% of these were annotated with a functional prediction. This MAG also has the
highest number of complete KEGG modules (25) (Data Set S1).

The Sulfurovum MAG includes formate dehydrogenase and formate transporter
genes, in addition to genes for a complete KEGG pathway for selenocompound
metabolism (ko00450), responsible for synthesizing L-selenocysteinyl-tRNA. The seleno-
cysteine residue is a key feature of the catalytic subunit in formate dehydrogenase
(FdhA) and is thought to be directly involved in proton transfer from formate (26).

The contig containing the formate transporter gene (fdhC) contains multiple for-
mate hydrogenlyase (FHL; hydrogenase-4 [Hyd-4] form) genes starting 1,653 bp away
(Fig. 1). Interestingly, the formate hydrogenlyase on this contig is homologous to the
Hyd-4 form, which is unaffected by alkaline pH (27). In E. coli, the bidirectional FHL
complex links formate oxidation to proton reduction and is operational during mixed-
acid fermentations (28). During these fermentations in E. coli, formate is formed by the
pyruvate formate-lyase enzyme and transported outside of the cell (29). It is unlikely
that the FHL complex is involved in mixed-acid fermentation by Sulfurovum because
the MAG did not contain genes for a pyruvate formate-lyase. Therefore, FdhC and the
FHL complex most likely bring in formate from the environment and carry out the
membrane-bound conversion of formate to CO2, which can then enter a carbon fixation
pathway.

Key genes for carbon fixation via the reductive tricarboxylic acid (TCA) cycle were
found in the Sulfurovum MAG: genes for pyruvate synthase (PFOR; heterodimer type),
ATP citrate lyase, 2-oxoglutarate reductase, and fumarate reductase (Fig. 2). In addition,
genes for gluconeogenesis are present, suggesting that fixed carbon can be stored as
glucose. It is unclear if Sulfurovum can run the TCA cycle in the forward direction for
heterotrophic growth. Succinate dehydrogenase genes are present in the MAG, but
there was no evidence for citrate synthase. Desulfobacter hydrogenophilus is known to
use ATP citrate lyase (instead of citrate synthase) in both the forward and the reverse
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FIG 1 The formate transporter (fdhC) contig in the Lost City Sulfurovum MAG. Relevant genes are reported here in the order that they are found on the contig.
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directions, and this may be possible for this Sulfurovum population as well (30).
Alternatively, instead of using a bidirectional TCA cycle to break down glucose reserves,
Sulfurovum may ferment it into lactate; indeed, the lactate dehydrogenase gene is
present in this MAG.

The Sulfurovum MAG contains genes for a complex electron transport chain, sug-
gesting a metabolically diverse lifestyle (Fig. 2). Complex I (NADH dehydrogenase) likely
serves as a versatile entry point for many catabolic reactions. We also found a sulfide:
quinone oxidoreductase (SQOR), indicating that Sulfurovum might use sulfide as an
electron donor. Evidence for an electron transport chain in this MAG includes the
presence of genes for three terminal electron acceptors: fumarate reductase, cyto-
chrome c oxidase (complex IV), and nitrate reductase.

This MAG also contains genes for a number of cofactor ABC transporters, including
those for tungstate (required for formate dehydrogenase activity), molybdate, iron,
thiamine, and zinc (26). We also found evidence of genes for transporters for macro-
nutrients, such as L-amino acids, branched-chain amino acids, phospholipids, and
phosphate.

In addition to these nutrient-acquiring transporters, the MAG contains the gene for
a transporter responsible for excreting capsular polysaccharides. After intracellular
construction, these molecules are exported to form a capsule around the cell which is
involved in both biofilm formation and environmental stress protection (31). We also
found a lipopolysaccharide export system, indicating that the Sulfurovum population at
Lost City builds an outer membrane like other characterized Sulfurovum species (32).

Sulfurovum lithotrophicum, the type species for the genus, was first isolated from
hydrothermal sediments off the coast of Okinawa, Japan (33). The genome for this
species closely resembles our Lost City Sulfurovum MAG. It contains genes for a reverse
TCA cycle and a sulfide:quinone oxidoreductase (SQOR) and can use O2 or NO3

� as an
electron acceptor (34). However, unlike our Sulfurovum MAG, this and most character-
ized Sulfurovum species are also able to oxidize sulfur (S0) or thiosulfate through the
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sulfur oxidation (SOX) system (35–37). Both Sulfurovum aggregans and Sulfurovum
lithotrophicum have been shown to use hydrogen, but not formate, as an electron
donor (36, 38).

The lack of genes for a SOX system and the presence of formate-metabolizing genes
in the Lost City Sulfurovum MAG are novel for the genus, although it is possible that
SOX genes were missed during binning. The genomic capability to scavenge amino
acids, form biofilms, and retain genetic flexibility for multiple electron acceptors
supports the possibility that this organism has a mixotrophic lifestyle capable of
adapting to a fluctuating environment with varying ratios of seawater and hydrother-
mal fluids. These results suggest that the Sulfurovum population is adapted to a
transition zone between the interior and the exterior of the chimneys.

Chloroflexi. After manual refining, the Chloroflexi MAG is estimated to be 70%
complete with 4.73% contamination. The mapped fragments made up 0.62% of the
metagenomic assembly (Table S2). Of the three MAGs discussed here, this MAG
contains the highest number of protein-encoding genes (3,936), but only 84% of these
were annotated with functional predictions. This bin also has the highest number of
incomplete KEGG modules (39) (Data Set 1).

The Chloroflexi MAG contains a focA formate transporter adjacent to a formate
dehydrogenase alpha subunit (fdhA) gene and three genes encoding the catalytic
subunit of NAD(H) dehydrogenase (nuoG, hoxF, hoxE) (Fig. 3). The beta subunit (fdhB)
was located together with fdhA on a different contig. As with the Sulfurovum MAG, the
Chloroflexi MAG contains genes for a complete KEGG pathway for selenocompound
metabolism, responsible for synthesizing L-selenocysteinyl-tRNA.

The Chloroflexi MAG contains genes for transporters for tungstate (required for
formate dehydrogenase activity), iron, and thiamine. As with Sulfurovum, the Chloroflexi
populations might scavenge macronutrients, as the MAG contains genes for the
following transporters: L-amino acids, branched-chain amino acids, phospholipids, and
phosphate. Because the MAG is estimated to be only 70% complete, it is likely that it
contains genes for additional transporters not identified in this study.

In addition to formate-utilizing genes, the Chloroflexi MAG contains genes for a
nearly complete reductive pentose phosphate cycle (Fig. 4). The MAG also includes
genes for a carboxysome-specific carbonic anhydrase, suggesting that this organism
uses a carboxysome to concentrate CO2 around ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCO) (40). Carboxysomes are used by many organisms when the
concentration of CO2 outside the cell is lower than the Km of RuBisCO (39). If this
Chloroflexi couples the carboxysome shell with the conversion of formate to CO2, it
could be an effective adaptation to the lack of CO2 in the chimney environment.

The one enzyme missing from the reductive pentose phosphate cycle in this MAG
is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is also involved in
glycolysis. Interestingly, thermophilic organisms use a distinct form of GAPDH to cope
with the heat instability of glyceraldehyde-3-phosphate (30, 41), so it is possible that
the Chloroflexi MAG contains the gene for an as yet unidentified variant of GAPDH.
Another adaptation of thermophilic growth is in the structure of fructose-bisphosphate
aldolase, an enzyme involved in gluconeogenesis (41). The gene for this enzyme is also
included in the Chloroflexi MAG and is most closely related to that of the thermophile
Caldilinea aerophila.
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The Chloroflexi MAG also contains the genes for an incomplete Wood-Ljungdahl
pathway. Typically, the presence of genes for this pathway in a bacterial genome
indicates that it is involved in carbon fixation during acetogenesis, but the lack of genes
for two key enzymes in this MAG casts doubt on that scenario. One of these missing
enzymes (methylene-tetrahydrofolate reductase [MTHFR]) is essential for acetogenesis.
The second missing enzyme is acetate kinase, which is involved in the last step of
acetate formation. While the absence of genes in an incomplete MAG must be
interpreted with caution, a similar partial Wood-Ljungdahl pathway has been described
in the dehalogenating Chloroflexi Dehalococcoides mccartyi (42). Although D. mccartyi is
missing MTHFR, the species is capable of de novo methionine biosynthesis through the
partial Wood-Ljungdahl pathway via the cleavage of acetyl coenzyme A (CoA) synthe-
tase (ACS). As the Lost City Chloroflexi MAG contains no genes for other pathways
for methionine biosynthesis, this organism, like D. mccartyi, may use the incomplete
Wood-Ljungdahl pathway for methionine biosynthesis rather than for carbon fixation.

The Chloroflexi MAG has genes for both glycolysis/gluconeogenesis pathways and a
forward TCA cycle. This suggests that the organism could store carbon fixed through
the reductive pentose phosphate pathway as glucose reserves and grow heterotroph-
ically when carbon is limited in the environment. Additional evidence for a flexible
mixotrophic lifestyle for this MAG includes genes for three carbohydrate transporters
(multiple sugar, ribose, and D-xylose transport systems), suggesting that this Chloroflexi
population is capable of metabolizing additional complex carbon sources.

Genomic evidence points to a modified structure of the NADH:quinone oxidoreduc-
tase (complex I) in this Chloroflexi population. An additional NuoM subunit is respon-
sible for translocating an extra proton per reaction cycle in these modified complexes
(43). The operon arrangement for these 2M complexes is unique to cultured Chloroflexi
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species (43). In particular, these species encode an additional nuoM2, located between
the nuoL and nuoM1 genes (as in nuoLM1M2N), and nuoBCDI are separated from the
operon with a fused nuoCD. These genomic features are consistent with two contigs in
our Chloroflexi MAG. The nuoM sequence, which forms a clade with the modified nuoM2

gene of Anaerolinea thermophila (Fig. S2), is surrounded by three nuo genes: nuoN; the
nuoM sequence, which forms a clade with the nuoM1 gene of Anaerolinea thermophila;
and nuoL (as in nuoLM1M2N). The nuoBCDI genes are found on a separate contig in the
MAG. The increased proton-pumping ability for the modified 2M complex I has been
proposed to be beneficial for energy conservation in alkaliphilic environments or
slow-growing organisms (43).

The other membrane-bound complexes encoded by the Chloroflexi MAG are also
consistent with an anaerobic, mixotrophic lifestyle (Fig. 4). Additional energy conser-
vation appears to be mediated by a modified NADH:quinone oxidoreductase (2M
complex I), succinate dehydrogenase (complex II), polysulfide reductase, cytochrome c
oxidase (complex IV), heterodisulfide reductase, and an F-type ATPase typical of
bacteria. Electrons could be donated by formate or carbohydrates, but the terminal
electron acceptor is unclear.

The MAG has the gene for cytochrome c oxidase (complex IV), which would indicate
oxygen as the terminal electron acceptor, but the lack of the gene for cytochrome
oxidoreductase, such as a cytochrome bc or b6f complex (complex III), is perplexing. The
genome of anaerobic Sulfurimonas gotlandica strain GD1 contains the gene encoding
cytochrome c oxidase, but the enzyme’s suspected function is to occasionally remove
inhibitory oxygen rather than to serve as a terminal electron acceptor (44). Further-
more, the Chloroflexi genus Anaerolineae is described to be obligately anaerobic, yet
many species contain genes for aerobic respiration in their genomes (45). Due to the
presence of genes encoding numerous oxygen-sensitive enzymes (aldehyde ferredoxin
oxidoreductase, the carbon monoxide dehydrogenase [CODH]/ACS complex, anaerobic
forms of glycerol-3-phosphate dehydrogenase, and sulfatase maturase) in the Chloro-
flexi MAG, it is likely that the cytochrome c oxidase’s role is to remove oxygen rather
than to serve in the last step of an aerobic respiratory chain. Alternatively, complex III
genes could be missing simply due to the incomplete nature of the MAG.

If complex III is missing, heterodisulfide reductase (Hdr) may be involved in electron
transfer from hydrogen (via ferredoxin reduced by hydrogenases) to cytochromes, as
proposed for other species (46, 47). This complex could work in tandem with cyto-
chrome c oxidase to remove intracellular oxygen. If oxygen is not the terminal electron
acceptor, then the presence of polysulfide reductase (Psr) indicates that polysulfide
compounds are the most likely terminal electron acceptors. The Chloroflexi polysulfide
reductase sequence has 40% identity with the Psr sequence from Thermus thermophi-
lus, which has been shown to use polysulfide as its terminal electron acceptor (48).

Considering the presence of multiple genes encoding oxygen-sensitive enzymes
and similarities to the genomes of anaerobic organisms, we propose that the Chloroflexi
population is an anaerobic population adapted to the interiors of Lost City chimneys,
where it would have access to abundant formate. By building biomass from formate,
Chloroflexi populations would convert mantle-derived carbon into organic matter that
could subsequently be utilized by other members of the community.

Methanosarcinales. The manually refined Methanosarcinales MAG was estimated to
be 84.87% complete with 5.26% contamination. The mapped fragments made up
4.41% of the entire assembly (Table S2). The MAG contained 2,324 protein-encoding
genes, only 77% of which could be assigned a predicted function. The Methanosarci-
nales MAG has 33 complete and 28 incomplete KEGG modules (Data Set S1).

We identified this MAG as the previously described Lost City Methanosarcinales
phylotype due to the taxonomic assignment of Methanosarcinales for all contigs and
the presence of nitrogenase reductase (nifH, nitrogen fixation) and methyl coenzyme M
reductase (mcrA, methanogenesis) gene sequences that matched those of previously
sequenced genes (8, 12) (Tables S3 and S4). In agreement with our previous analysis
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with a smaller data set, we found no evidence that the Methanosarcinales population
is able to utilize formate as a carbon source (4). Although novel, previously undiscov-
ered formate metabolism genes may exist, no archaeal formate dehydrogenase gene
sequences (fdhA, fdhB) or fdhC sequences affiliated with methanogens were detected
in the metagenome. The MAG does contain a genomic inventory that would allow the
Methanosarcinales to utilize CO2, acetate, and methanol for methanogenesis (Fig. 5).
The genes for transporters for tungstate and molybdate were also identified; these
metals are cofactors required for many of the enzymes in the methanogenic pathway.

The Methanosarcinales MAG provides new information on the phylogenetic status of
this species. Previous studies classified it within the order Methanosarcinales (5), but it
has never been maintained as a cultivated isolate, despite many attempts, and a more
specific phylogenetic classification has never been attempted. Its closest relatives have
been previously reported to include members of the Methanosarcinaceae and Metha-
nosaetaceae families (5, 7). These two families include the only species known to be
capable of methane production from acetate (49). Each group of methanogens has
distinct mechanisms for acetate activation and energy conservation. Acetate activation
in Methanosarcina proceeds via two enzymes: acetate kinase and phosphotransacety-
lase. Methanosaeta species, in contrast, use acetyl-CoA synthetase (ACS) for acetate
activation. The Lost City Methanosarcinales MAG includes genes for both ACS and
acetate kinase (but not the gene for phosphotransacetylase, perhaps due to the
incompleteness of the MAG), suggesting that it may be able to use both systems or a
hybrid system.

The energy conservation strategy of Lost City Methanosarcinales appears to be more
similar to that of Methanosaeta than to that of Methanosarcina. As in Methanosaeta,
the MAG contains no genes for Ech hydrogenase, the Rnf complex, or the
methanophenazine-reducing hydrogenase (Vho). Instead, the only gene for an energy-
conserving complex external to the methanogenesis pathway present in the Methano-
sarcinales MAG is that for F420H2 dehydrogenase, which is also employed by Methano-
saeta (49).
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Phylogenetic analyses of methanogenesis genes from this MAG suggest that it is
distinct from both Methanosaeta and Methanosarcina, perhaps forming a novel family
within the order Methanosarcinales (Fig. S3). In two of the gene trees, those for
formylmethanofuran-tetrahydromethanopterin formyltransferase and F420-dependent
N5,N10-methylene- tetrahydromethanopterin reductase (ftr and mer), the Lost City gene
was monophyletic with methylotrophic methanogens, such as Methanococcoides bur-
tonii. A third phylogeny, F420-dependent N5,N10-methylene-tetrahydromethanopterin
dehydrogenase (mtd), grouped the Lost City gene with hydrogenotrophic and formate-
utilizing Methanosarcinales, such as Methanothermococcus okinawensis. In a fourth
phylogeny, N5,N10-methenyl-tetrahydromethanopterin cyclohydrolase (mch), the Lost
City gene was distinct from all other known species.

No genomes of Methanosaeta contain genes for membrane-bound hydrogenases
that would allow H2 to serve as the electron donor (50–52). However, the Lost City MAG
contains five genes annotated as ferredoxin-dependent membrane-bound hydroge-
nase (Mbh). This complex is known to translocate protons with the formation or
cleavage of hydrogen gas, similar to the Ech hydrogenase found in many hydrog-
enotrophic methanogens (53). Therefore, the Lost City Methanosarcinales may be able
to use this enzyme for hydrogenotrophic methanogenesis. For hydrogenotrophic
growth, the Lost City Methanosarcinales would have to obtain CO2 from the chimney’s
carbonate minerals (for which there is no known mechanism) or from another member
of the community, such as the Sulfurovum or Chloroflexi populations described above.

The Methanosarcinales MAG contains the nifH, nifD, and nifK genes, encoding the
nitrogenase complex involved in nitrogen fixation. Previous work found low �15N
values of Lost City chimneys, indicative of biological nitrogen fixation (25). The con-
centrations of biologically available nitrogen are relatively low (�6 �M) in Lost City
fluids, but the concentrations of N2 resemble those in seawater (25). Therefore, the
densely populated biofilm communities of Lost City chimneys must be reliant on
nitrogen fixation, probably carried out at least in part by Methanosarcinales popula-
tions.

Conclusion. The biofilms growing on Lost City chimneys are unique ecosystems

where microbes must face the challenges of multiple extremes, including pHs of �10
and temperatures of up to at least 95°C. Our previous work demonstrated that the
microbial communities inhabiting the chimneys are fueled by carbon venting from
Earth’s mantle (4). The present study identifies the genomic potential of the Chloroflexi
and Sulfurovum populations to utilize formate, which may be required to make mantle-
derived carbon available to the rest of the chimney ecosystem.

The Lost City biofilms that inhabit the anoxic interiors of the chimneys have been
described as containing a single species, the Lost City Methanosarcinales phylotype
(4–8, 12). The single Methanosarcinales MAG reported here represents 4.41% of the
chimney metagenome, �5 times more abundant than the other MAGs reported here.
The Methanosarcinales phylotype has previously been shown to dominate the anoxic,
interior zones of Lost City chimneys (5, 6, 8), yet it appears to be unable to use one of
the most abundant carbon sources, formate. The Lost City Chloroflexi MAG, in contrast,
contains the genes required for using formate and may be able to provide biologically
available carbon to Methanosarcinales and other members of the biofilm community.
This is an apparent conundrum, as the Chloroflexi MAG is seven times less abundant
than the Methanosarcinales MAG in the chimney sample described here. One potential
explanation is that Chloroflexi species are highly active and able to rapidly cycle carbon
while maintaining a low abundance in the biofilm community. Alternatively, the
Chloroflexi population may be more abundant in subsurface habitats underlying the
chimneys, where formate is expected to be generated (4). Future research should test
these hypotheses by experimentally investigating how microbial activity in subsurface
environments can influence the food and energy available to the biofilm communities
of the chimneys.
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MATERIALS AND METHODS
Sample collection. Sample H08_080105_Bio5slurpB1 from Marker 5 was collected in 2005 during a

National Oceanic and Atmospheric Administration (NOAA) Ocean Explorer cruise with the ROV Hercules
aboard the R/V Ronald H. Brown. The sample was immediately placed in a sterile Whirl-Pak sample bag
upon arrival on deck and stored at �80°C until analysis. DNA was extracted from the samples according
to a previously published protocol (6). A previous metagenomic analysis of this sample has been
published (4), but the results presented here are from a different DNA extraction and a much deeper
metagenomic sequencing effort. All laboratory and bioinformatic protocols are available at https://doi
.org/10.5281/zenodo.3629892. Environmental DNA was extracted with a protocol modified from that
described previously (5, 7, 54). The chimney sample was thawed and homogenized with a sterile mortar
and pestle at room temperature, and 0.25-g subsamples were placed in a DNA extraction buffer
containing 0.1 M Tris, 0.1 M Na-EDTA, 0.1 M KH2PO4, 1.5 M NaCl, 0.8 M guanidium HCl, and 0.5% Triton
X-100. For lysis, samples were subjected to one freeze-thaw cycle, incubation at 65°C for 30 min, and
beating with 0.1-mm glass beads in a Mini-BeadBeater 16 (Biospec Products). Purification was performed
via extraction with phenol-chloroform-isoamyl alcohol, precipitation in 3 M sodium acetate and ethanol,
washing in Amicon 30K Ultra centrifugal filters, and a final cleanup with 2� SPRI beads (55). The DNA
concentration after purification was approximately 10 ng/�l, as measured with a Qubit fluorometer
(Thermo Fisher), with an A260/A230 ratio of 1.6 and an A260/A280 ratio of 1.8, as measured with a NanoDrop
spectrophotometer (Thermo Fisher).

Metagenome sequencing. A Qsonica Q800R sonicator was used to fragment the metagenomic DNA
to �500 to 700 bp. A metagenome library was constructed with 500 ng of fragmented DNA using a
NEBNext Ultra DNA library preparation kit for Illumina according to the manufacturer’s instructions.
Quality control and sequencing of the metagenomic libraries were conducted at the University of Utah
High-Throughput Genomics Core Facility. Libraries were evaluated for quality on a Bioanalyzer DNA 1000
chip (Agilent Technologies), and then paired-end sequencing (2 � 125 bp) was performed on an Illumina
HiSeq2500 platform with HiSeq (v4) chemistry. The library was multiplexed with one other library (from
a second Lost City chimney sample, results from which are not reported here) on one Illumina lane,
yielding 180 million read pairs (45 billion bases). Demultiplexing and conversion of the raw sequencing
base-call data were performed through the CASAVA (v1.8) pipeline.

Metagenomic analysis. Raw sequence data were processed by the W. J. Brazelton lab to trim
adapter sequences with BBDuk (part of the BBTools suite, v35.85 [56]), to remove artificial replicates, and
to trim the reads based on quality. Removal of replicates and quality trimming were performed with our
seq-qc package (https://github.com/Brazelton-Lab/seq-qc). Paired-end reads were assembled with the
MegaHit (v1.1.1) program, using kmers of 27 to 141. The Prodigal (v2.6.3) program was run in the
anonymous gene prediction mode to identify open reading frames. Functional annotation was per-
formed using the blastp function of the Diamond (v0.9.14) program with both the prokaryotes and
T10000 (addendum annotations) databases from KEGG (release 83.2) with an E value of 1e�6. Annota-
tions were selected by the highest-quality alignment, as determined by the bit score. Binning was
performed with the ABAWACA (v1.00) program (https://github.com/CK7/abawaca). Contig taxonomy
was assigned with PhyloPythiaS� (v1.4) software (20). Curation of bins was performed in the anvi’o (v4)
platform, using the default visualization of bins informed by tetranucleotide frequency as well as manual
inspection of the PhyloPythiaS� taxonomic assignment. The CheckM (v1.0.5) program was used to assess
bin quality (57). Completion of the KEGG modules and pathways was determined using the KEGG Mapper
online tool (https://www.genome.jp/kegg/mapper.html, accessed June 2019). Coverage was determined
through read mapping with the bowtie2 (v2.3.2) and bedtools (v2.25.0) genomecov programs (58, 59).
Reference proteins for phylogenetic trees were downloaded from NCBI GenBank in September 2019, and
descriptions of these proteins can be found in Table S5 in the supplemental material. The multiple-
sequence alignments were built with the MUSCLE (v3.8.31) program (60), and the phylogenies were
inferred with the RaxML (v8.2.0) program and the -f a option with 100 bootstrap replicates.

Data availability. All unassembled sequences related to this study are available at the NCBI
Sequence Read Archive (BioSample accession number SAMN13035994), and MAG assemblies have been
submitted to NCBI GenBank (BioSample accession numbers SAMN13172856 to SAMN13172858). All NCBI
data may be found under BioProject accession number PRJNA577730. All SRA metadata, supplementary
materials, and protocols are archived at https://doi.org/10.5281/zenodo.3629892. All custom software
and scripts are available at https://github.com/Brazelton-Lab.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.9 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.
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