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An SEI autonomous model with logistic growth rate and its corresponding nonautonomous model are investigated. For the
autonomous case, we give the attractive regions of equilibria and perform some numerical simulations. Basic demographic
reproduction number 𝑅𝑑 is obtained. Moreover, only the basic reproduction number 𝑅0 cannot ensure the existence of the positive
equilibrium, which needs additional condition 𝑅𝑑 > 𝑅1. For the nonautonomous case, by introducing the basic reproduction
number defined by the spectral radius, we study the uniform persistence and extinction of the disease.The results show that for the
periodic system the basic reproduction number is more accurate than the average reproduction number.

1. Introduction

Bernoulli was the first person to use mathematical method
to evaluate the effectiveness of inoculation for smallpox [1–
6]. Then in 1906, Hawer studied the regular occurrence
of measles by a discrete-time model. Moreover, Ross [3,
4] adopted the continuous model to study the dynamics
of malaria between mosquitoes and humans in 1916 and
1917. In 1927, Kermack and McKendrick [5, 6] extended
the above works and established the threshold theory. So
far, mathematical models have gotten great development
and have been used to study population dynamics, ecology,
and epidemic, which can be classified in terms of different
aspects. From the aspect of the incidence of infectious
diseases, there are bilinear incidence, standard incidence,
saturating incidence, and so on. According to the type of
demographic import, the constant import, the exponential
import, and the logistic growth import are the most common
forms. The simple exponential growth models can provide

an adequate approximation to population growth for the
initial period. If no predation or intraspecific competition
for populations is included, the population can continue to
increase. However, it is impossible to grow immoderately due
to the intraspecific competition for environmental resources
such as food and habitat. So, for this case, logistic model is
more reasonable and realistic which has been adopted and
studied [7–18].Moreover, due to its rich dynamics, the logistic
models have been applied to many fields. Fujikawa et al. [9]
applied the logistic model to show Escherichia coli growth.
Invernizzi and Terpin [14] used a generalized logistic model
to describe photosynthetic growth and predict biomass pro-
duction. Min et al. [15] used logistic dynamics model to
describe coalmining cities’ economic growthmechanism and
sustainable development.There is a good fit in simulating the
coalmining cities’ growth and development track based on
resource development cycle. Banaszak et al. [17] investigated
logisticmodels in flexiblemanufacturing, and Brianzoni et al.
[18] studied a business-cycle model with logistic population
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growth. Muroya [13] investigated discrete models of non-
autonomous logistic equations. As a result, this paper builds
an SEI ordinary differential model with the logistic growth
rate and the standard incidence.

For general epidemic models, we mainly study their
threshold dynamics, that is, the basic reproduction number
which determines whether the disease can invade the suscep-
tible population successfully. However, for the system with
logistic growth rate, besides the basic reproduction number,
the qualitative dynamics are controlled by a demographic
threshold 𝑅𝑑 which has a similar meaning and is called as
the basic demographic reproduction number. If 𝑅𝑑 > 1,
the population grows; that is, a critical mass of individuals
for the disease to spread may be supported. If 𝑅𝑑 < 1,
the population will not survive; that is, not enough mass of
individuals may be supported for the disease to spread. For
this case, the dynamical behavior of disease will be decided
by two thresholds 𝑅0 and 𝑅𝑑.

It is well known that many diseases exhibit seasonal
fluctuations, such as whooping cough, measles, influenza,
polio, chickenpox, mumps, and rabies [19–22]. Seasonally
effective contact rate [22–26], periodic changing in the birth
rate [27], and vaccination program [28] are often regarded
as sources of periodicity. Seasonally effective contact rate is
related to the behavior of people and animals, the temper-
ature, and the economy. Due to the existence of different
seasons, people have different activities which may lead to a
different contact rate. Because of various factors, the economy
in a different season has a very big difference. Therefore, this
paper studies the corresponding non-autonomous system
which is obtained by changing the constant transmission rate
into the periodic transmission rate. Seasonal transmission is
often assumed to be sinusoidal (cosine function has the same
meaning), such that 𝜆(𝑡) = 𝜆(1 + 𝜂 sin(𝜋𝑡/𝑏)) where 𝜂 is
the amplitude of seasonal variation in transmission (typically
referred to as the “strength of seasonal forcing”) and 2𝑏 is
the period, which is a crude assumption for many infectious
diseases [29–31]. When 𝜂 = 0, there is no nonseasonal
infections. Motivated by biological realism, some recent
papers take the contact rate as 𝜆(𝑡) = 𝜆(1 + 𝜂 term(𝑡)), where
term is a periodic function which is +1 during a period of
time and −1 during other time. More natural term can be
written as 𝜆(𝑡) = 𝜆(1 + 𝜂)

term(𝑡) [29]. Here, we take the form
𝛽(𝑡) = 𝑎[1 + 𝑏 sin(𝜋𝑡/10)].

The paper is organized as follows. In Section 2, we
introduce an autonomous model and analyze the equilibria
and their respective attractive region. In Section 3, we study
the non-autonomous system in terms of global asymptotic
stability of the disease-free equilibrium and the existence of
positive periodic solutions. Moreover, numerical simulations
are also performed. In Section 4, we give a brief discussion.

2. Autonomous Model and Analysis

2.1. Model Formulation. The model is a system of SEI ordi-
nary differential equations, where 𝑆 is the susceptible, 𝐸 is
the exposed, 𝐼 is the infected, and 𝑁 = 𝑆 + 𝐸 + 𝐼. This
system considers the logistic growth rate and the standard

Table 1: Descriptions and values of parameters in model (1).

Parameter Interpretation Value
𝑟 The intrinsic growth rate
𝑘 The carrying capacity 100000
𝛽 The transmission rate
𝑚 The natural mortality rate 0.1
𝜎 Clinical outcome rate 0.2
𝜇 The disease-induced mortality rate 0.1
𝑎 The baseline contact rate
𝑏 Themagnitude of forcing

incidence which is fit for the long-term growth of many large
populations. The incubation period is considered for many
diseases which do not develop symptoms immediately and
need a period of time to accumulate a pathogen quantity for
clinical outbreak, such as rabies, hand-foot-mouth disease,
tuberculosis, and AIDS [22, 32]. The model we employ is as
follows:

𝑑𝑆

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝑘
) −

𝛽𝑆𝐼

𝑁
− 𝑚𝑆,

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝜎𝐸 − 𝑚𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝑚𝐼 − 𝜇𝐼,

(1)

where all parameters are positive whose interpretations can
be seen in Table 1.

Noticing the equations in model (1), we have

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝑘
) − 𝑚𝑁 − 𝜇𝐼. (2)

When there exists no disease, we have

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝑘
) − 𝑚𝑁 = [𝑟 (1 −

𝑁

𝑘
) − 𝑚]𝑁. (3)

Let 𝑅𝑑 = 𝑟/𝑚, if 𝑅𝑑 > 1, 𝑁 → 𝑁
0

= (1 − 𝑚/𝑟)𝑘 for
𝑁(0) > 0, as 𝑡 → +∞; that is, the population will grow
and tend to a steady state 𝑁

0. If 𝑅𝑑 < 1, then 𝑑𝑁/𝑑𝑡 < 0

which will cause the population to disappear. Thus, 𝑅𝑑 is the
basic demographic reproduction number. From the above
equation, the feasible region can be obtained: 𝑋 = {(𝑆, 𝐸, 𝐼) |

𝑆, 𝐸, 𝐼 ≥ 0, 0 ≤ 𝑆 + 𝐸 + 𝐼 ≤ (1 − 𝑚/𝑟)𝑘}, where 𝑟 > 𝑚.

Theorem 1. The region𝑋 is positively invariant with respect to
system (1).

2.2. Dynamical Analysis. Let the right hand of system (1) to
be zero; it is easy to see that system (1) has three equilibria:

𝑂 = (0, 0, 0) ,

𝐸0 = ((1 −
𝑚

𝑟
) 𝑘, 0, 0) ,

𝐸∗ = (𝑆
∗
, 𝐸
∗
, 𝐼
∗
) ,

(4)
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where 𝑂 is the origin, 𝐸0 is the disease-free equilibrium, and
𝐸∗ is the endemic equilibrium. Concretely, one can have

𝑆
∗

=
[𝑚𝛽 (𝑚 + 𝜎 + 𝜇) + 𝜇 (𝑚 + 𝜇) (𝑚 + 𝜎) (𝑅0 − 1)]𝑁

∗

𝛽 [(𝑚 + 𝜇) (𝑚 + 𝜎) (𝑅0 − 1) + 𝑚 (𝑚 + 𝜎 + 𝜇)]
,

(5)

𝐸
∗

=
[𝑟 (1 − 𝑁

∗
/𝑘) − 𝑚] (𝑚 + 𝜇)𝑁

∗

𝜎𝜇
, (6)

𝐼
∗

=
(𝑚 + 𝜇) (𝑚 + 𝜎) (𝑅0 − 1)𝑁

∗

𝛽 (𝑚 + 𝜎 + 𝜇)
, (7)

𝑁
∗

= (𝑘 [𝛽𝑚 (𝑚 + 𝜎 + 𝜇) (𝑅𝑑 − 1)

+𝜇 (𝑚 + 𝜎) (𝑚 + 𝜇) (1 − 𝑅0)])

× (𝑟𝛽 (𝑚 + 𝜎 + 𝜇))
−1

,

(8)

where 𝑅𝑑 = 𝑟/𝑚 is the basic demographic reproduction
number and𝑅0 = 𝛽𝜎/(𝑚+𝜎)(𝑚+𝜇) is the basic reproduction
number which can be obtained by the next-generationmatrix
method [33–35]. The introduction of the basic demographic
reproduction number can be found in [36].

Moreover, from (6) and (7), the conditions of the endemic
equilibrium to exist are 𝑅0 > 1 and 𝑅𝑑 > 𝑅1, where 𝑅1 =

1+𝜇(𝑚+𝜇)(𝑚+𝜎)(𝑅0 −1)/𝑚𝛽(𝑚+𝜎+𝜇). So, we can obtain
the following theorems.

Theorem 2. The system (1) has three equilibria: origin 𝑂,
disease-free equilibrium 𝐸0, and the endemic equilibrium 𝐸∗.
𝑂 always exists; if 𝑅𝑑 > 1, 𝐸0 exists; if 𝑅0 > 1 and 𝑅𝑑 > 𝑅1, 𝐸∗
exists.

Theorem 3. When 𝑅𝑑 > 1 and 𝑅0 < 1, 𝐸0 is globally
asymptotically stable.

Proof. By [33–35], we know that 𝐸0 is locally asymptotically
stable. Now we define a Lyapunov function

𝑉 = 𝐸 +
𝑚 + 𝜎

𝜎
𝐼 ≥ 0. (9)

When 𝑅𝑑 > 1 and 𝑅0 < 1, the Lyapunov function satisfies

�̇� = �̇� +
𝑚 + 𝜎

𝜎

̇𝐼

=
𝛽𝑆𝐼

𝑁
−

(𝑚 + 𝜎) (𝑚 + 𝜇)

𝜎
𝐼

≤ [𝛽 −
(𝑚 + 𝜎) (𝑚 + 𝜇)

𝜎
] 𝐼

=
(𝑚 + 𝜎) (𝑚 + 𝜇)

𝜎
[𝑅0 − 1] 𝐼

≤ 0.

(10)

Moreover, �̇� = 0 only hold when 𝐼 = 0. It is easy to verify
that the disease-free equilibrium point 𝐸0 is the only fixed
point of the system. Hence, applying the Lyapunov-LaSalle

R
d

R0

E0

E∗

O1 O2

O3

0

L

1

1

Figure 1: 𝑅𝑑 in terms of 𝑅0. The region of 𝑂1, 𝑂2, and 𝑂3 is the
basin of attraction of equilibrium 𝑂; the region of 𝐸0 is the basin
of attraction of equilibrium 𝐸0; the region of 𝐸∗ is the basin of
attraction of equilibrium 𝐸∗; the line 𝐿 is 𝑅𝑑 = 𝑅1 = 1 + 𝜇(𝑚 +

𝜇)(𝑚 + 𝜎)(𝑅0 − 1)/𝑚𝛽(𝑚 + 𝜎 + 𝜇).

asymptotic stability theorem in [37, 38], the disease-free
equilibrium point 𝐸0 is globally asymptotically stable.

Since the proof of the stability of equilibria 𝑂 and 𝐸∗ is
more difficult, we only give some numerical results.

In sum, we can show the respective basins of attraction
of the three equilibria which can be seen in Figure 1 and
confirmed in Figure 2.

(1) When 𝑅𝑑 < 1, 𝑂 is stable; see Figures 2(b) and 2(c).
(2) When𝑅𝑑 > 1 and𝑅0 < 1, 𝐸0 is stable; see Figure 2(d).
(3) When 𝑅𝑑 > 1, 𝑅0 > 1, and 𝑅𝑑 < 𝑅1, 𝑂 is stable; see

Figure 2(a).
(4) When 𝑅𝑑 > 1, 𝑅0 > 1, and 𝑅𝑑 > 𝑅1, 𝐸∗ is stable; see

Figure 2(e).

3. Nonautonomous Model and Analysis

3.1. The Basic Reproduction Number. Now, we consider the
non-autonomous case of themodel (1) when the transmission
rate is periodic, which is given as follows:

𝑑𝑆

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝑘
) −

𝛽 (𝑡) 𝑆𝐼

𝑁
− 𝑚𝑆,

𝑑𝐸

𝑑𝑡
=

𝛽 (𝑡) 𝑆𝐼

𝑁
− 𝜎𝐸 − 𝑚𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝑚𝐼 − 𝜇𝐼,

(11)

where 𝛽(𝑡) is a periodic function which is proposed by [39].
In the subsequent section, we will discuss the dynamical
behavior of the system (11).

For system (11), firstly we can give the basic reproduction
number 𝑅0. According to the basic reproduction number
under non-autonomous system, we can refer to the method
of [40, 41]. From the last section, we know that system (11)
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Figure 2: The phase curves of the system under different initial conditions. (a) In the region 𝑂3 with 𝑟 = 0.101 and 𝛽 = 0.5; (b) in the region
𝑂2 with 𝑟 = 0.05 and 𝛽 = 0.35; (c) in the region𝑂1 with 𝑟 = 0.08 and 𝛽 = 0.2; (d) in the region 𝐸0 with 𝑟 = 0.13 and 𝛽 = 0.2; (e) in the region
𝐸
∗
with 𝑟 = 0.13 and 𝛽 = 0.7. The value of other parameters can be seen in Table 1.
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has one disease-free equilibrium 𝐸0 = (𝑁
0
, 0, 0), where𝑁

0
=

(1 − 𝑚/𝑟)𝑘. By giving a new vector 𝑥 = (𝐸, 𝐼), we have

𝐹 = (

𝛽 (𝑡) 𝑆𝐼

𝑁

0

) , 𝑉 = (
𝑚𝐸 + 𝜎𝐸

𝑚𝐼 + 𝜇𝐼 − 𝜎𝐸
) ,

𝑉
−

= (
𝑚𝐸 + 𝜎𝐸

𝑚𝐼 + 𝜇𝐼
) , 𝑉

+
= (

0

𝜎𝐸
) .

(12)

Taking the partial derivative of the above vectors about
variables 𝐸, 𝐼 and substituting the disease-free equilibrium,
we have

𝐹 (𝑡) = (
0 𝛽 (𝑡)

0 0
) ,

𝑉 (𝑡) = (
𝑚 + 𝜎 0

−𝜎 𝑚 + 𝜇
) .

(13)

According to [41], denote 𝐶𝜔 to be the ordered Banach
space of all 𝜔-periodic functions from R to R4 which is
equippedwith themaximumnorm ‖ ⋅ ‖ and the positive cone
𝐶
+

𝜔
:= {𝜙 ∈ 𝐶𝜔 : 𝜙(𝑡) ≥ 0, ∀𝑡 ∈ R+}. Over the Banach space,

we define a linear operator 𝐿 : 𝐶𝜔 → 𝐶𝜔 by

(𝐿𝜙) (𝑡)

= ∫

∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎, ∀𝑡 ∈ R+, 𝜙 ∈ 𝐶𝜔,

(14)

where 𝐿 is called the next infection operator and the inter-
pretation of 𝑌(𝑡, 𝑡 − 𝑎), 𝜙(𝑡 − 𝑎) can be seen in [41]. Then
the spectral radius of 𝐿 is defined as the basic reproduction
number

𝑅0 := 𝜌 (𝐿) . (15)

In order to give the expression of the basic reproduction
number, we need to introduce the linear 𝜔-periodic system

𝑑𝑤

𝑑𝑡
= [−𝑉 (𝑡) +

𝐹 (𝑡)

𝜆
]𝑤, 𝑡 ∈ R+, (16)

with parameter 𝜆 ∈ R. Let 𝑊(𝑡, 𝑠, 𝜆), 𝑡 ≥ 𝑠, be the
evolution operator of system (16) on R2. In fact, 𝑊(𝑡, 𝑠, 𝜆) =

Φ(𝐹/𝜆)−𝑉(𝑡), and Φ𝐹−𝑉(𝑡) = 𝑊(𝑡, 0, 1), for all 𝑡 ≥ 0. By
Theorems 2.1 and 2.2 in [41], the basic reproduction number
also can be defined as𝜆0 such that𝜌(Φ(𝐹/𝜆0)−𝑉(𝜔)) = 1, which
can be straightforward to calculate.

3.2. Global Stability of the Disease-Free Equilibrium

Theorem4. Thedisease-free equilibrium𝐸0 is globally asymp-
totically stable when 𝑅0 < 1 and 𝑅𝑑 > 1.

Proof. Theorem 2.2 in [41] implies that 𝐸0 is locally asymp-
totically stable when 𝑅0 < 1 and 𝑅𝑑 > 1. So we only need

to prove its global attractability. It is easy to know that 𝑆(𝑡) ≤

𝑁
0
= (1 − (𝑚/𝑟))𝑘. Thus,

𝑑𝐸

𝑑𝑡
≤ 𝛽 (𝑡) 𝐼 − (𝑚 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝑚𝐼 − 𝜇𝐼.

(17)

The right comparison system can be written as

𝑑𝐸

𝑑𝑡
= 𝛽 (𝑡) 𝐼 − (𝑚 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝑚𝐼 − 𝜇𝐼;

(18)

that is,

𝑑ℎ

𝑑𝑡
= (𝐹 (𝑡) − 𝑉 (𝑡)) ℎ (𝑡) , ℎ (𝑡) = (𝐸 (𝑡) , 𝐼 (𝑡)) . (19)

For (19), Lemma 2.1 in [42] shows that there is a
positive 𝜔-periodic function ℎ̂(𝑡) = (𝐸(𝑡), 𝐼(𝑡))

𝑇 such that
ℎ(𝑡) = 𝑒

𝑝𝑡
ℎ̂(𝑡) is a solution of system (18), where 𝑝 =

(1/𝜔) ln 𝜌(Φ𝐹−𝑉(𝜔)). By Theorem 2.2 in [41], we know that
when 𝑅0 < 1 and 𝑅𝑑 > 1, 𝜌(Φ𝐹−𝑉(𝜔)) < 1 and 𝑝 < 0,
which implies ℎ(𝑡) → 0 as 𝑡 → ∞. Therefore, the zero
solution of system (18) is globally asymptotically stable. By
the comparison principle [43] and the theory of asymptotic
autonomous systems [44], when 𝑅0 < 1 and 𝑅𝑑 > 1, 𝐸0
is globally attractive. Therefore, the proposition that 𝐸0 is
globally asymptotically stable holds.

3.3. Existence of Positive Periodic Solutions. Before the proof
of the existence of positive periodic solutions, we firstly
introduce some denotations. Let 𝑢(𝑡, 𝑥0) be the solution of
system (11) with the initial value 𝑥0 = (𝑆(0), 𝐸(0), 𝐼(0)). By
the fundamental existence-uniqueness theorem [45], 𝑢(𝑡, 𝑥0)
is the unique solution of system (11) with 𝑢(0, 𝑥0) = 𝑥0.

Next, we need to introduce the Poincaré map𝑃 : 𝑋 → 𝑋

associated with system (11); that is,

𝑃 (𝑥0) = 𝑢 (𝜔, 𝑥0) , ∀𝑥0 ∈ 𝑋, (20)

where 𝜔 is the period. Theorem 1 implies that 𝑋 is positively
invariant and 𝑃 is a dissipative point.

Now, we introduce two subsets of𝑋,𝑋0 := {(𝑆, 𝐸, 𝐼) ∈ 𝑋 :

𝐸 > 0, 𝐼 > 0} and 𝜕𝑋0 = 𝑋 \ 𝑋0.

Lemma 5. (a) When 𝑅0 > 1 and 𝑟 > 𝑚 + 𝜇, there exists a
𝛿 > 0 such that when

(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) − 𝐸0
 ≤ 𝛿 (21)

for any (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝑋0, one has

lim sup
𝑚→∞

𝑑 [𝑃
𝑚

(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) , 𝐸0] ≥ 𝛿, (22)

where 𝐸0 = (𝑁
0
, 0, 0).
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(b) When 𝑅0 > 1 and 𝑟 > 𝑚 + 𝜇, there exists a 𝛿 > 0 such
that when

‖(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) − 𝑂‖ ≤ 𝛿 (23)

for any (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝑋0, one has

lim sup
𝑚→∞

𝑑 [𝑃
𝑚

(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) , 𝑂] ≥ 𝛿, (24)

where 𝑂 = (0, 0, 0).

Proof. (a) ByTheorem 2.2 in [41], we know that when 𝑅0 > 1,
𝜌(Φ𝐹−𝑉(𝜔)) > 1. So there is a small enough positive number
𝜖 such that 𝜌(Φ𝐹−𝑉−𝑀𝜖(𝜔)) > 1, where

𝑀𝜖 = (
0

𝛽 (𝑡) 𝜖𝐼

𝑁0

0 0

) . (25)

If proposition (a) does not hold, there is some
(𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝑋0 such that

lim sup
𝑚→∞

𝑑 (𝑃
𝑚

(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) , 𝐸0) < 𝛿. (26)

We can assume that for all 𝑚 ≥ 0, 𝑑(𝑃
𝑚
(𝑆(0), 𝐸(0),

𝐼(0)), 𝐸0) < 𝛿. Applying the continuity of the solutions with
respect to the initial values,

𝑢 (𝑡, 𝑃
𝑚

(𝑆 (0) , 𝐸 (0) , 𝐼 (0))) − 𝑢 (𝑡, 𝐸0)
 ≤ 𝜖,

∀𝑚 ≥ 0, ∀𝑡1 ∈ [0, 𝜔] .

(27)

Let 𝑡 = 𝑚𝜔 + 𝑡1, where 𝑡1 ∈ [0, 𝜔] and 𝑚 = [𝑡/𝜔]. 𝑚 =

[𝑡/𝜔] is the greatest integer which is not more than 𝑡/𝜔.Then,
for any 𝑡 ≥ 0,

𝑢 (𝑡, (𝑆 (0) , 𝐸 (0) , 𝐼 (0))) − 𝑢 (𝑡, 𝐸0)


=
𝑢 (𝑡1, 𝑃

𝑚
(𝑆 (0) , 𝐸 (0) , 𝐼 (0))) − 𝑢 (𝑡1, 𝐸0)

 ≤ 𝜖.

(28)

So 𝑁
0

− 𝜖 ≤ 𝑆(𝑡) ≤ 𝑁
0

+ 𝜖. Then, when
lim sup

𝑚→∞
𝑑(𝑃
𝑚
(𝑆(0), 𝐸(0), 𝐼(0)), 𝐸0) < 𝛿,

𝑑𝐸

𝑑𝑡
≥ 𝛽 (𝑡) 𝐼 −

𝛽 (𝑡) 𝜖𝐼

𝑁0
− (𝑚 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝑚𝐼 − 𝜇𝐼.

(29)

Thus, we can study the right linear system

𝑑𝐸

𝑑𝑡
= 𝛽 (𝑡) 𝐼 −

𝛽 (𝑡) 𝜖𝐼

𝑁0
− (𝑚 + 𝜎) 𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝑚𝐼 − 𝜇𝐼.

(30)

For the system (30), there exists a positive 𝜔-periodic
function 𝑔(𝑡) = (𝐸(𝑡), 𝐼(𝑡))

𝑇 such that 𝑔(𝑡) = 𝑒
𝑝𝑡
𝑔(𝑡) is a

solution of system (11), where 𝑝 = (1/𝜔) ln 𝜌(Φ𝐹−𝑉−𝑀𝜖(𝜔)).
When 𝑅0 > 1, 𝜌(Φ𝐹−𝑉−𝑀𝜖(𝜔)) > 1, which means that when

𝑔(0) > 0,𝑔(𝑡) → ∞ as 𝑡 → ∞. By the comparison principle
[43], when 𝐸(0) > 0, 𝐼(0) > 0, 𝐸(𝑡) → ∞, 𝐼(𝑡) → ∞ as
𝑡 → ∞.There appears a contradiction.Thus, the proposition
(a) holds.

(b) When 𝑅0 > 1 and 𝑟 > 𝑚 + 𝜇, we have

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝑘
) − 𝑚𝑁 − 𝜇𝐼

≥ [𝑟 (1 −
𝑁

𝑘
) − 𝑚 − 𝜇]𝑁 > 0.

(31)

So if 𝑅𝑑 > 1, 𝑁 → 𝑁
0 for 𝑁(0) > 0 as 𝑡 → +∞; that is,

𝑊
𝑆
(𝑂) ∩ 𝑋0 = 0.

Theorem 6. When 𝑅0 > 1 and 𝑟 > 𝑚 + 𝜇, there exists a 𝛿 > 0

such that any solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) of system (11)with initial
value (𝑆(0), 𝐸(0), 𝐼(0)) ∈ {(𝑆, 𝐸, 𝐼) ∈ 𝑋 : 𝐸 > 0, 𝐼 > 0}

satisfies

lim inf
𝑡→∞

𝐸 (𝑡) ≥ 𝛿, lim inf
𝑡→∞

𝐼 (𝑡) ≥ 𝛿, (32)

and system (11) has at least one positive periodic solution.

Proof. From system (11),

𝑆 (𝑡) = 𝑒
−∫
𝑡

0
(𝛽(𝑠)𝐼(𝑠)/𝑁+𝑚)𝑑𝑠

× [𝑆 (0) + ∫

𝑡

0

𝑟𝑁 (𝑠) (1 −
𝑁 (𝑠)

𝑘
)

×𝑒
∫
𝑠

0
(𝛽(𝑐)𝐼(𝑐)/𝑁(𝑐)+𝑚)𝑑𝑐

𝑑𝑠]

> 0, ∀𝑡 > 0,

(33)

𝐸 (𝑡) = 𝑒
−(𝑚+𝜎)𝑡

[𝐸 (0) + ∫

𝑡

0

𝛽 (𝑠) 𝑆 (𝑠) 𝐼 (𝑠)

𝑁 (𝑠)
𝑒
(𝑚+𝜎)𝑠

𝑑𝑠]

> 0, ∀𝑡 > 0,

(34)

𝐼 (𝑡) = 𝑒
−(𝑚+𝜇)𝑡

[𝐼 (0) + ∫

𝑡

0

𝜎𝐸 (𝑠) 𝑒
(𝑚+𝜇)𝑠

𝑑𝑠]

> 0, ∀𝑡 > 0,

(35)

for any (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝑋0, which shows that 𝑋0 is
positively invariant. Moreover, it is obvious to see that 𝜕𝑋0

is relatively closed in 𝑋. Denote

𝑀𝜕 = {(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) ∈ 𝜕𝑋0 :

𝑃
𝑚

(𝑆 (0) , 𝐸 (0) , 𝐼 (0)) ∈ 𝜕𝑋0, ∀𝑚 ≥ 0} .

(36)

Next, we prove that

𝑀𝜕 = {(𝑆, 0, 0) ∈ 𝑋 : 𝑆 ≥ 0} . (37)

We only need to show that 𝑀𝜕 ⊆ {(𝑆, 0, 0) ∈ 𝑋 : 𝑆 ≥ 0},
which means that for any (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝜕𝑋0, 𝐸(𝑚𝜔) =

𝐼(𝑚𝜔) = 0, for all 𝑚 ≥ 0. If it does not hold, there exists
a 𝑚1 ≥ 0 such that (𝐸(𝑚1𝜔), 𝐼(𝑚1𝜔))

𝑇
> 0. Taking 𝑚1𝜔 as
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Figure 3: Phase plane of 𝑆(𝑡) and 𝐼(𝑡). (a) When the parameter values are 𝑟 = 0.13, 𝑎 = 0.3, and 𝑏 = 0.2, 𝑅0 = 0.9029 < 1, 𝑅𝑑 = 1.3 > 1. (b)
When the parameter values are 𝑟 = 0.3, 𝑎 = 0.7, and 𝑏 = 0.2, 𝑅0 = 2.1067 and 𝑟 > 𝑚+𝜇. The value of other parameters can be seen in Table 1.

the initial time and repeating the processes as in (33)–(35),
we can have that (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡))

𝑇
> 0, for all 𝑡 > 𝑚1𝜔.

Thus, (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) ∈ 𝑋0, for all 𝑡 > 𝑚1𝜔. There appears
a contradiction, which means that the equality (37) holds.
Therefore, 𝐸0 is acyclic in 𝜕𝑋0. Obviously, when 𝑅0 > 1 and
𝑟 > 𝑚 + 𝜇, 𝑂 is acyclic in 𝜕𝑋0.

Furthermore, by Lemma 5, 𝐸0 = (𝑁
0
, 0, 0) and 𝑂 =

(0, 0, 0) are isolated invariant sets in 𝑋, 𝑊𝑆(𝐸0) ∩ 𝑋0 = 0,
and 𝑊

𝑆
(𝑂) ∩ 𝑋0 = 0. By Theorem 1.3.1 and Remark 1.3.1

in [46], it can be obtained that 𝑃 is uniformly persistent with
respect to (𝑋0, 𝜕𝑋0); that is, there exists a 𝛿 > 0 such that any
solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) of system (11) with the initial value
(𝑆(0), 𝐸(0), 𝐼(0)) ∈ {(𝑆, 𝐸, 𝐼) ∈ 𝑋 : 𝐸 > 0, 𝐼 > 0} satisfies

lim inf
𝑡→∞

𝐸 (𝑡) ≥ 𝛿, lim inf
𝑡→∞

𝐼 (𝑡) ≥ 𝛿. (38)

ApplyingTheorem 1.3.6 in [46], 𝑃 has a fixed point

(𝑆
∗
(0) , 𝐸

∗
(0) , 𝐼
∗
(0)) ∈ 𝑋0. (39)

From (33), we know 𝑆
∗

> 0, for all 𝑡 ∈ [0, 𝜔]. 𝑆∗(𝑡) is also
more than zero for all 𝑡 > 0 due to the periodicity. Similarly,
for all 𝑡 ≥ 0,𝐸∗(𝑡) > 0, 𝐼∗(𝑡) > 0.Therefore, it can be obtained
that one of the positive 𝜔-periodic solutions of system (11) is
(𝑆
∗
(𝑡), 𝐸
∗
(𝑡), 𝐼
∗
(𝑡)).

3.4. Numerical Simulations. Firstly, we give some notations.
If 𝑔(𝑡) is a periodic function with period 𝜔, we define 𝑔 =

(1/𝜔) ∫
𝜔

0
𝑔(𝑡)𝑑𝑡, 𝑔𝑙 = min𝑡∈[0,𝜔]𝑔(𝑡), 𝑔𝑢 = max𝑡∈[0,𝜔]𝑔(𝑡). As

described in the previous section,

𝑅1 (𝑡) = 1 +
𝜇 (𝑚 + 𝜇) (𝑚 + 𝜎) (𝑅0 − 1)

𝑚𝛽 (𝑡) (𝑚 + 𝜎 + 𝜇)
. (40)

So 𝑅
𝑙

1
= 1 + 𝜇(𝑚 + 𝜇)(𝑚 + 𝜎)(𝑅

𝑙

0
− 1)/𝑚𝛽

𝑢
(𝑚 + 𝜎 + 𝜇), 𝑅𝑢

1
=

1 + 𝜇(𝑚 + 𝜇)(𝑚 + 𝜎)(𝑅
𝑢

0
− 1)/𝑚𝛽

𝑙
(𝑚 + 𝜎 + 𝜇).

In this section, we adopt 𝛽(𝑡) = 𝑎[1 + 𝑏 sin(𝜋𝑡/10)].
Then, applying the numerical simulation to verify the above
solution, we give the following conclusion:

(1) when 𝑅𝑑 < 1, 𝑂 is stable;
(2) when 𝑅𝑑 > 1 and 𝑅0 < 1, 𝐸0 is stable; see Figure 3(a);
(3) when 𝑅0 > 1 and 𝑟 > 𝑚 + 𝜇, system (11) has at least

one positive periodic solution; see Figure 3(b).

We can givemore results about the conditions of existence
of the positive periodic solution.

(1

) When 𝑅𝑑 > 1, 𝑅0 > 1, and 𝑅𝑑 < 𝑅

𝑢

1
, 𝑂 is stable; see

Figures 4(a) and 4(b).
(2

) When 𝑅𝑑 > 1, 𝑅0 > 1, and 𝑅𝑑 > 𝑅

𝑢

1
, system (11) has at

least one positive periodic solution, see Figure 5.

By numerical simulations, we can give that the conditions
which ensure the existence of positive periodic solution are
𝑅0 > 1 and 𝑟 > 𝑚+𝜇 or 𝑅𝑑 > 1, 𝑅0 > 1, and 𝑅𝑑 > 𝑅

𝑢

1
. In fact,

𝑅𝑑 > 1, 𝑅0 > 1, and 𝑅𝑑 > 𝑅
𝑢

1
are the sufficient conditions for

𝑅0 > 1 and 𝑟 > 𝑚 + 𝜇. As a result, the conditions 𝑅0 > 1 and
𝑟 > 𝑚 + 𝜇 are broader.

4. Discussion

This paper considers a logistic growth system whose birth
process incorporates density-dependent effects. This type of
model has a rich dynamical behavior and practical signif-
icance. By analyzing its equilibria and respective attractive
region, we find that the dynamical behavior of a disease will
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Figure 4: Phase plane of 𝑆(𝑡) and 𝐼(𝑡). (a) When the parameter values are 𝑟 = 0.11, 𝑎 = 0.9, 𝑏 = 0.2 and 𝜇 = 0.3, 𝑅0 = 1.4991, 𝑅𝑑 = 1.1 > 1,
𝑅𝑑 < 𝑅

𝑢

1
= 1.4159, and 𝑅𝑑 < 𝑅

𝑙

1
= 1.2773. (b) When the parameter values are 𝑟 = 0.126, 𝑎 = 0.7, 𝑏 = 0.2, and 𝜇 = 0.3, 𝑅0 = 2.1067,

𝑅𝑑 = 1.26 > 1, 𝑅𝑑 < 𝑅
𝑢

1
= 1.2964, and 𝑅𝑑 > 𝑅

𝑙

1
= 1.1976. The value of other parameters can be seen in Table 1.
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Figure 5: Phase plane of 𝑆(𝑡) and 𝐼(𝑡). When the parameter values
are 𝑟 = 0.13, 𝑎 = 0.36, and 𝑏 = 0.2, 𝑅0 = 1.0834, 𝑅𝑑 = 1.3 > 1, 𝑅𝑑 >
𝑅
𝑢

1
= 1.0435, and 𝑅𝑑 > 𝑅

𝑙

1
= 1.029. The value of other parameters

can be seen in Table 1.

be determined by two thresholds 𝑅0 and 𝑅𝑑. Only 𝑅0 > 1

cannot promise the existence of the endemic equilibrium
which also needs 𝑅𝑑 > 𝑅1. When 𝑅0 > 1 and 𝑅𝑑 < 𝑅1,
the solutions of the system (1) will tend to the origin 𝑂. It

is caused by the phenomenon that the death number due
to disease cannot be supplemented by the birth number
promptly. Finally, all people are infected and die out.The fact
interpreted by this model is more reasonable. Theoretically,
we prove the global asymptotic stability of the disease-
free equilibrium and give respective attractive regions of
equilibria.

Seasonally effective contact rate is themost common form
which may be related to various factors, and thus this paper
studies the corresponding non-autonomous system which is
obtained by changing the constant transmission rate of the
above system into the periodic transmission rate. For the
periodic systems, their dynamical behaviors, especially the
basic reproduction number, have been investigated in depth
by [41, 47–55] which provide many methods that we can
utilize. For the obtained periodic model, by analyzing the
global asymptotic stability of the disease-free equilibrium and
the existence of positive periodic solution, we have the similar
results as the autonomous system. The dynamic behavior of
disease will be decided by two conditions 𝑅0 > 1 and 𝑟 >

𝑚 + 𝜇 that show that when the disease is prevalent, the birth
rate should be larger than the death rate to guarantee the
sustainable growth of population. Otherwise, the population
will disappear. In addition, we will evaluate and compare
the basic reproduction number 𝑅0 and the average basic
reproduction number 𝑅0 which has been adopted by [27, 56–
59]. In this paper, we can calculate the average reproduction
number

𝑅0 =
𝛽𝜎

(𝑚 + 𝜎) (𝑚 + 𝜇)
, (41)
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where 𝛽 = (1/20) ∫
20

0
𝛽(𝑡)𝑑𝑡. When 𝑟 = 0.13, 𝑎 = 0.3, and

𝑏 = 0.2, we know that 𝑅0 = 0.9029 and 𝑅0 = 1. When 𝑟 =

0.13, 𝑘 = 100000, 𝑎 = 0.36, 𝑏 = 0.2, and 𝑚 = 0.1, 𝜎 = 0.2,
𝜇 = 0.1, then 𝑅0 = 1.0834 and 𝑅0 = 1.2. In that sense, it is
confirmed that the basic reproduction number 𝑅0 defined by
[40] is more accurate than the average reproduction number
𝑅0 which overestimates the risk of disease.

It should be noted that we live in a spatial world and it is a
natural phenomenon that a substance goes from high density
regions to low density regions. As a result, epidemic models
should include spatial effects. In a further study, we need to
investigate spatial epidemic models with seasonal factors.
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an age-dependent population model with logistic term and
periodic vital rates,”AppliedMathematics andComputation, vol.
206, no. 1, pp. 368–379, 2008.

[17] Z. A. Banaszak, X. Q. Tang, S. C. Wang, and M. B. Zaremba,
“Logistics models in flexible manufacturing,” Computers in
Industry, vol. 43, no. 3, pp. 237–248, 2000.

[18] S. Brianzoni, C. Mammana, and E. Michetti, “Nonlinear
dynamics in a business-cycle model with logistic population
growth,” Chaos, Solitons and Fractals, vol. 40, no. 2, pp. 717–730,
2009.

[19] W. P. London and J. A. Yorke, “Recurrent outbreaks of measles,
chickenpox and mumps. I. Seasonal variation in contact rates,”
The American Journal of Epidemiology, vol. 98, no. 6, pp. 453–
468, 1973.

[20] S. F. Dowell, “Seasonal variation in host susceptibility and cycles
of certain infectious diseases,” Emerging Infectious Diseases, vol.
7, no. 3, pp. 369–374, 2001.

[21] O.N. Bjørnstad, B. F. Finkenstädt, andB. T.Grenfell, “Dynamics
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[50] N. Bacaër and X. Abdurahman, “Resonance of the epidemic
threshold in a periodic environment,” Journal of Mathematical
Biology, vol. 57, no. 5, pp. 649–673, 2008.
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