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Machine learning predicts putative
 hematopoietic stem cells within large

single-cell transcriptomics data sets
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Hematopoietic stem cells (HSCs) are an essential source and reservoir for normal hemato-

poiesis, and their function is compromised in many blood disorders. HSC research has

benefitted from the recent development of single-cell molecular profiling technologies, where

single-cell RNA sequencing (scRNA-seq) in particular has rapidly become an established

method to profile HSCs and related hematopoietic populations. The classic definition of

HSCs relies on transplantation assays, which have been used to validate HSC function for

cell populations defined by flow cytometry. Flow cytometry information for single cells, how-

ever, is not available for many new high-throughput scRNA-seq methods, thus highlighting

an urgent need for the establishment of alternative ways to pinpoint the likely HSCs within

large scRNA-seq data sets. To address this, we tested a range of machine learning

approaches and developed a tool, hscScore, to score single-cell transcriptomes from murine

bone marrow based on their similarity to gene expression profiles of validated HSCs. We

evaluated hscScore across scRNA-seq data from different laboratories, which allowed us to

establish a robust method that functions across different technologies. To facilitate broad

adoption of hscScore by the wider hematopoiesis community, we have made the trained

model and example code freely available online. In summary, our method hscScore provides

fast identification of mouse bone marrow HSCs from scRNA-seq measurements and repre-

sents a broadly useful tool for analysis of single-cell gene expression data. © 2019 ISEH –

Society for Hematology and Stem Cells. Published by Elsevier Inc. This is an open access

article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
It has been more than 60 years since experiments first

proved the existence of bone marrow cells capable of

producing the whole blood system. In the following

decades, multipotent hematopoietic stem cells (HSCs)

have been the subject of many studies aimed at reveal-

ing the mechanisms controlling their function [1].
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Strategies to isolate blood cells were developed follow-

ing the invention of techniques to sort cells based on

their expression of specific proteins. By isolating and

transplanting different fractions of bone marrow, sort-

ing strategies could be refined to enrich for populations

passing the gold-standard stem cell assay of repopula-

tion upon secondary transplantation into irradiated

mice (for review, see Mayle et al. [2]). Once HSCs

could be isolated it became possible to measure molec-

ular properties of these cells.

However, it is well known that many of the surface

marker-defined hematopoietic stem and progenitor (HSPC)

populations are very heterogeneous in terms of both func-

tion and their molecular profiles [3−5]. The field of hema-

topoiesis has therefore been at the forefront of exploring

single-cell technologies. In particular, many studies have
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used single-cell RNA sequencing (scRNA-seq) to profile

gene expression across hematopoietic populations [3,6−10].
This has provided insights into processes such as differenti-

ation, ageing, and disease (for review, see Watcham et al.

[11]).

Initial scRNA-seq studies were limited in throughput

by the cost and difficulty of profiling large numbers of

cells. However, newer technologies such as droplet-

based scRNA-seq methods [12−14] are enabling gener-

ation of increasingly large data sets, with multiple

studies capturing tens of thousands of cells from the

blood system [9,15−17]. This has many exciting impli-

cations for hematopoiesis research, yet these technolo-

gies bring their own challenges. Our best strategies

for identifying HSCs rely on measurements of cell

surface marker proteins [18,19]. However, many

scRNA-seq data sets do not incorporate these meas-

urements. Even in those studies using technologies

such as index sorting [20,21] or CITE-seq [22] to link

protein and gene expression, the identification of HSCs

is still dependent on the choice of markers measured

in the experiment. Therefore, identifying potentially

rare populations of HSCs in single-cell data remains a

challenge.

To address this, we decided to develop an approach

that could be easily applied to scRNA-seq data with

the aim of identifying transcriptional profiles belong-

ing to HSCs. Using annotated data from a previous

study of mouse HSPCs [19], we tested a range of

machine learning methods to score single-cell tran-

scriptomes based on their similarity to HSC gene

expression, and identified a model performing well

across data from a range of different laboratories and

technologies. Along with this article we provide freely

available code and the trained model so that research-

ers can easily apply this tool to their own single-cell

data sets.

Methods

scRNA-seq data sets
Model training data. Models were trained on data from

Wilson et al. [19]. In this study, 96 HSCs (Lin�c-Kit+

Sca1+CD34�Flt3�CD48�CD150+) from mouse bone marrow

were profiled using the Smart-Seq2 protocol [23]. Cells were

filtered to the same 92 cells that passed stringent quality con-

trol (QC) measures in the original publication. Wilson et al.

used a classification approach to assign scores to each tran-

scriptome representing its similarity to a population highly

enriched for functional HSCs (Figure E1A, online only,

available at www.exphem.org). Data were visualized using

principal component analysis (PCA) coordinates from the

original publication. Count data, HSC-scores, QC information

and PCA coordinates can be downloaded from Zenodo

(https://zenodo.org/, DOI: 10.5281/zenodo.3303783).
Index-sorted HSPC data

Data profiling 1,654 HSPCs were published in Nestorowa

et al. [6]. These data were generated with the same Smart-

Seq2 protocol as the training data. After QC, 798 Lin�c-
Kit+Sca1�, 701 Lin�c-Kit+Sca1+, and 155 Lin�c-Kit+Sca1+

CD34�Flk2� cells were retained, and the count data for these

cells can be downloaded from Zenodo (DOI: 10.5281/zen-

odo.3303783). QC information can be obtained from the data

website (http://blood.stemcells.cam.ac.uk/single_cell_atlas.

html). Data were visualized using the diffusion map coordi-

nates and cell type information downloaded from the same

data website.
Dormant and active HSC data. This data set was described

in Cabezas-Wallscheid et al. [24]. scRNA-seq data were gen-

erated using the Fluidigm C1 microfluidics device to profile

HSCs (Lin�c-Kit+Sca1+CD150+CD48�CD34�) and the subset

of these cells that were long-term label-retaining, described

as dormant HSCs (dHSCs). Gene expression counts for these

data were downloaded from ArrayExpress (E-MTAB-4547).

For QC, cells with < 50,000 mapped reads, < 1,000 detected

genes, or > 30% of reads mapping to External RNA Controls

Consortium (ERCC) spike-ins were excluded, as in the origi-

nal publication. For visualization, expression data were fil-

tered to the highly variable genes (HVGs) from the original

publication (Supplementary Table 2 in Cabezas-Wallscheid

et al. [24]). Cells were normalized to have total counts equal

to the median counts per cell, and normalized counts were

log(x + 1) transformed with the scanpy.preprocessing.log1p

function. A diffusion map was calculated on these log-trans-

formed values using 30 neighbors and the “gauss” method in

the scanpy.tools.diffmap function.
Smart-Seq2 data of multipotent stem and progenitors

Data profiling LT-HSCs (Lin�c-Kit+Sca1+CD150+CD48�),
ST-HSCs (Lin�c-Kit+Sca1+CD150�CD48�), and MPPs

(Lin�c-Kit+Sca1+CD150�CD48+) were described in Mann

et al. [25]. Expression counts were downloaded from NCBI

GEO (GSE100426). This study profiled cells from young

(8−12 weeks) and old (20−24 months) mice, and under stim-

ulated (LPS treated) and unstimulated conditions. For testing

of the hscScore method, only unstimulated cells were used.

QC was performed by removing cells with fewer than 2,000

detected genes. For visualization, HVGs were identified using

the scanpy.preprocessing.filter_genes_dispersion function with

default settings, and data were normalised and log-transformed as

described above. PCA was calculated on the log-transformed

counts.
Droplet-based c-Kit+ cells. Transcriptomes for 22,993 Lin�c-
Kit+Sca1+ and 21,809 Lin�c-Kit+ transcriptomes were generated

using the 10x genomics [14] droplet-based sequencing method as

described in Dahlin et al. [15]. Data can be downloaded from

https://gottgens-lab.stemcells.cam.ac.uk/adultHSPC10X/ and

NCBI GEO (GSE107727). Lin�c-Kit+ cells from W41/W41

mouse bone marrow were profiled similarly with data avail-

able from the same online resources. Data were visualized

using the force-directed graph coordinates calculated for the

original publication.

http://www.exphem.org
https://zenodo.org/
http://blood.stemcells.cam.ac.uk/single_cell_atlas.html
http://blood.stemcells.cam.ac.uk/single_cell_atlas.html
https://gottgens-lab.stemcells.cam.ac.uk/adultHSPC10X/
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Droplet-based multipotent progenitors. Rodriguez-Frati-

celli et al. [26] describe the generation of inDrops [12]

scRNA-seq data from mouse bone marrow for each of the

LT-HSC (Lin�c-Kit+Sca1+Flt3�CD150+CD48�), ST-HSC

(Lin�c-Kit+Sca1+Flt3�CD150�CD48�), MPP2 (Lin�c-Kit+

Sca1+Flt3�CD150+CD48+), MPP3 (Lin�c-Kit+Sca1+Flt3�

CD150�CD48+), and MPP4 (Lin�c-Kit+Sca1+Flt3+CD48+)
fractions. Processed count matrices were downloaded from

NCBI GEO (GSE90742), and QC was performed by exclud-

ing any cells with fewer than 1,000 detected genes. For visu-

alization, PCA was calculated as described above, and then

UMAP [27] coordinates were calculated using the scanpy.

tools.umap function with default parameters.
Data pre-processing

Before input into the model, count data were processed by

gene filtering and normalization. The gene filtering retained

genes in one of three sets: (1) all protein-coding genes, (2)

HVGs, or (3) MolO and NoMO gene sets. For option 1, only

non-mitochondrial genes annotated as “protein_coding” in

the Ensembl Version 81 annotation [28] were retained. For

option 2, HVGs were calculated on normalised counts of all

protein-coding genes (normalised using the scanpy.prepro-

cessing.normalize_total function with default parameters).

These normalised counts were log(x + 1)-transformed, and the

HVGs identified with the scanpy.preprocessing.highly_varia-

ble_genes function with default parameters. Raw count data

were filtered to this set of HVGs for input into the model.

Option 3 retained the genes from Wilson et al.’s Supplemen-

tary Table 3 annotated as either MolO or NoMO genes [19].

These genes were those with significant correlation with the

HSC-score assigned to each cell (adjusted p value < 0.1,

Benjamini−Hochberg correction for multiple testing).

After feature selection, count data were normalized on

the selected genes using one of two alternatives: (1) rank

normalization or (2) total count normalization. For rank nor-

malization, expression in each cell was replaced by a vector

representing the expression values ranked within that cell.

Genes with identical counts were replaced with their average

rank. For option 2, normalization was performed with the

scanpy.preprocessing.normalize_total function to normalize

each cell to have the same summed counts. This number of

counts was set to be the median number of counts for the

Wilson et al. data across the gene set of choice. Total count-

normalized data were then log(x + 1)-transformed.
Model training

To identify optimal parameters for each type of model, a

search over parameters was performed using the sklearn.

GridSearchCV function with fivefold cross-validation. Param-

eters explored for each model can be found in Supplementary

Table E1 (online only, available at www.exphem.org). Before

training, 25% of the data were held back as a test set, and the

remaining 75% were scaled using the sklearn.StandardScaler

function and then (optionally) PCA-transformed. The optimal

parameters identified by the grid search are listed in Supple-

mentary Table E2 (online only, available at www.exphem.

org), along with the model R2 scores for each cross-valida-

tion fold, the mean and standard deviation of these scores,
and the score of the trained model on the unseen test data.

After the optimal parameters were obtained the models were

retrained on the whole data set using these parameters.

Plotting

Plotting was performed in python using either scanpy [29],

seaborn, or matplotlib functions.

Clustering and cell cycle scoring

Leiden clustering [30] was performed using the scanpy.tl.

leiden function with resolution equal to either 1.0 for lower-

resolution clustering or 1.5 for higher-resolution clustering.

Before clustering, data from Nestorowa et al. were normal-

ised using the scanpy.preprocessing.normalize_total function

and log(x + 1)-transformed, and then HVGs were identified

with the scanpy.preprocessing.highly_variable_genes func-

tion. PCA was calculated on the HVG values and the top

eight principal components used for input to the clustering.

Cell cycle scoring was performed by using the scanpy.tl.

score_genes_cell_cycle function with S-phase and G2/M-

phase genes downloaded from Macosko et al. [13].

Code availability

Scripts for identifying model parameters and producing plots

in this article are hosted on GitHub (https://github.com/fiona

hamey/hscScore). The trained model can be downloaded

from Zenodo (DOI: 10.5281/zenodo.3332150). An example

notebook on applying the model to new data is also hosted

on GitHub.

Software versions

Versions of all software used can be found in the Supplementary

Material (online only, available at www.exphem.org).

Results

Linked stem cell function and gene expression data can

be used to train models to identify HSCs

As our aim was to identify HSCs, we first required data

where it was already known which transcriptomes belonged

to these cells. This annotation could be done using surface

marker expression, but even the purest HSC strategies still

contain only up to 70% functional stem cells [19]. There-

fore, we chose a data set of HSCs that were profiled as part

of a study in which these cells were annotated with an

HSC-score based on their gene expression [19]. This score

represented each cell’s transcriptional similarity to a highly

homogeneous population of HSCs (Figure 1A; Supplemen-

tary Figure E1A). In this previous work, cells profiled using

scRNA-seq were index-sorted to measure 11 flow cytome-

try parameters. To establish a link between the HSC-score

and the functional output of a stem cell, single-cell trans-

plantation assays were performed in which the same 11

flow cytometry parameters were recorded for each of the

transplanted cells. On the basis of these shared parameters,

dimensionality reduction was used to show that the repopu-

lating HSCs in the single-cell transplantation experiments

http://www.exphem.org
http://www.exphem.org
http://www.exphem.org
https://github.com/fionahamey/hscScore
https://github.com/fionahamey/hscScore
http://www.exphem.org
https://doi.org/10.1016/j.exphem.2019.08.009


Figure 1. Predicting HSC identity in single-cell gene expression data sets. (A) Data from Wilson et al. [19] were used as training data for mod-

els predicting HSC identity in scRNA-seq data sets. In this study, 92 transcriptomes of HSCs were assigned a value, the HSC-score, where a

higher HSC-score represents greater similarity to transcriptional profiles of functionally validated HSCs. (B) Outline of the training process for

building the HSC prediction tool.

14 F.K. Hamey and B. G€ottgens / Experimental Hematology 2019;78:11−20
possessed surface marker profiles similar to those of the

high-HSC-score cells. Therefore, this study established the

correlation between having a high HSC-score and giving a

positive readout in a transplantation assays designed to test

for stem cell function [19]. Here, our aim was to use these

scored transcriptomes to train models to predict the HSC-

score of cells from new data sets (Figure 1B). To find the

most suitable type of model for this prediction, we trained a

number of different machine learning methods (linear

regression, random forest regression, nearest-neighbor

regression, support vector regression, and multilayer percep-

tron [MLP] regression) and scored the performance of each

method on a test subset of the data (Supplementary Figure

E1B). Model parameters were fitted using a grid search

approach with fivefold cross-validation and then models

were tested on unseen test subsets to assess their accuracy

in predicting the HSC-score.

Using a select subset of genes for training produces the

most accurate models

Before training any models it was first necessary to

define a pipeline for processing any scRNA-seq data

set given as input to the model. In particular, it was

important to choose analysis steps that would allow

comparison of data across different experiments.

Although scRNA-seq can measure thousands of genes

per cell, the majority of genes detected across a data

set have very noisy expression. To avoid obscuring
biological variation in the data, often only a set of so-

called highly variable genes (HVGs) that exceed a cer-

tain level of variance are used for analysis [31]. To

explore the effect of gene set choice we decided to test

models on three different gene sets: all protein-coding

genes, HVGs, and the set of “MolO” and “NoMO”

genes defined by Wilson et al. [19] (Supplementary

Table E3, online only, available at www.exphem.org).

Wilson et al. correlated the expression of all genes

with the HSC-score within their scRNA-seq data, and

denoted genes with significant positive correlation with

the HSC-score as “MolO” genes and those with signifi-

cant negative correlation as “NoMO” genes. Further

details of these three different gene lists used for train-

ing can be found under Methods. As well as the choice

of gene set, we also chose to test different data normal-

ization methods, similar to work aimed at predicting

cell cycle state based on gene expression [32].

Many different normalization approaches have been

applied to single-cell data, yet we needed one that

would yield comparable results across multiple data

sets. This requirement excluded many of the more

sophisticated methods that share information across a

sample to perform normalization [33,34]. We tested

both total count normalization and a ranking normali-

zation method (see Methods). Finally, we also tried

training models on PCA-transformed data, reasoning

that projecting new data into the PCA space of the

http://www.exphem.org
https://doi.org/10.1016/j.exphem.2019.08.009


Figure 2. Trained models can predict HSC-score on unseen test data. R2 score of predicted compared with actual HSC-score on test subset of

data for models trained with best identified parameters. Shape indicates normalization, and color, the type of method. Results are shown for

models trained on raw counts (A) or PCA-transformed counts (B).
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training data could help to relate data sets from differ-

ent technologies. Inspection of models trained across

these combinations of pre-processing variables revealed

that the best performing models were all trained using

the MolO and NoMO genes (Supplementary Figure E2,

online only, available at www.exphem.org). In general,

models trained on the PCA-transformed data performed

better on unseen data (Figure 2), although some models

trained on untransformed counts were still amongst the

highest scoring (Figure 2; Supplementary Figure E2).

HSCs are successfully identified in a broad data set of

blood stem cells and progenitors

After assessing the performance of the models on test

data held back from the original data set, we next

applied the highest scoring models to an alternative

data set containing more than 1,600 HSPCs from

mouse bone marrow using the same scRNA-seq proto-

col as the training data [6]. As this protocol was a

plate-based method, cells were index sorted; hence
single-cell transcriptomes could be retrospectively

assigned to one of 10 different phenotypic cell types

(Figure 3A). This data set contained 38 cells from the

highly specific ESLAM (Lin�c-Kit+Sca1+EPCR+

CD48�CD150+) HSC population [18] as well as more

mature progenitor cells, allowing our models to be

tested on a broader population than the training data.

Diffusion map dimensionality reduction [35,36]

revealed separation of HSCs from cells differentiating

into erythroid, lymphoid, and myeloid lineages. For the

majority of high-scoring models, high HSC-scores were

localised to the top of the diffusion map in the region

occupied by the ESLAM cells (Figure 3B; Supplemen-

tary Figure E3A, online only, available at www.

exphem.org). HSC-scores were significantly higher in

the ESLAM population when compared with other phe-

notypic cell types for a number of the models

(Figure 3C; Supplementary Figure E3B, Wilcoxon

rank-sum test, p values in figure). Overall, the MLP

model with total count normalization and no PCA

http://www.exphem.org
http://www.exphem.org
http://www.exphem.org
https://doi.org/10.1016/j.exphem.2019.08.009


Figure 3. Top-performing models can identify HSCs in alternative data set profiling hematopoietic stem and progenitor cells. (A) Schematic of

experiment from Nestorowa et al. [6] showing the number of cells for each surface marker-defined cell type in the scRNA-seq data set. Diffu-

sion map dimensionality reduction is colored by surface marker cell type. (B) Diffusion map colored by the predicted HSC score from the top-

performing models. Additional plots are shown in Supplementary Figure E3. Highest scores are seen in the region corresponding to phenotypic

stem cells. (C) Violin plots showing distribution of scores across surface marker-defined phenotypes. p values indicate significance of pairwise

tests between scores of each population in comparison to scores of ESLAM population, Wilcoxon rank-sum test. Additional plots are shown in

Supplementary Figure E3. ESLAM=EPCR+ subset of HSCs; LT-HSC=long-term HSC; ST-HSC=short-term HSC; MPP=multipotent progenitor;

LMPP=lymphoid-primed multipotent progenitor; CMP=common myeloid progenitor; GMP=granulocyte−macrophage progenitor; MEP=megakar-

yocyte−erythroid progenitor; MLP=multilayer perceptron; SVM=support vector machine.
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transformation gave the best distribution of HSC-scores

across the data set, with high-scoring cells restricted

largely to the ESLAM population. The score across all

other populations was low, meaning this model was

specifically highlighting the stem cells. As this combi-

nation of parameters mostly clearly highlighted the

ESLAM cells that are enriched for functional HSCs in

dimensionality reduction and violin plots, we therefore
chose to carry this model forward for testing across a

wider range of experiments and denote this prediction

pipeline as hscScore.

One of the most widely used steps in the analysis of

single-cell data is the application of clustering algo-

rithms. Comparison of hscScore with a graph-based

clustering approach [30] revealed that whilst clustering

could identify a broad stem cell region, it nevertheless

https://doi.org/10.1016/j.exphem.2019.08.009
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struggled to separate out the highest-HSC-score cells

even with increased clustering resolution (Supplemen-

tary Figure E4A,B, online only available at: www.

exphem.org). Clustering is also limited as it assigns

cells into discrete groups, whereas hematopoietic dif-

ferentiation may be better defined by a continuous

representation [1]. Next, as there is known to be a link

between cell cycle activity and repopulation capability

of HSCs, we decided to compare scoring cells with

hscScore to scoring cells by their expression of cell

cycle genes [13]. In keeping with the reported quies-

cent nature of functional HSCs [37], we found a corre-

lation between HSC-score and cell cycle score, with

the group of cells most transcriptionally similar to

HSCs having very low expression of cell cycle genes

(Supplementary Figure E4C). This inverse relation

between the HSC-score and cell cycle activity again

supports the ability of hscScore to identify the stem

cell population.

hscScore locates HSCs in single-cell data sets

produced by different technologies

To test the model’s performance on data generated

from a different laboratory and using an alternative

scRNA-seq technology, we decided to investigate data

from work by Cabezas-Wallscheid et al. [24]. In this

study, the authors profiled dormant HSCs (dHSCs), a

subset of HSCs that show long-term label retention in

label-retaining assays. Previous work had shown that

these dHSCs were enriched for repopulation potential

and, therefore, represent a subset of HSCs containing a

higher proportion of functional stem cells. 146 dHSCs

and 170 HSCs were profiled using microfluidics

scRNA-seq technology (Figure 4Ai). Diffusion map

dimensionality reduction shows a progression from dHSCs

to other cells within the HSC gate, which in the original

study are shown to represent more “active” HSCs primed

for cell cycle entry. Applying hscScore to these data

revealed significantly higher (p = 1:1 � 10�19, Wilcoxon

rank-sum test) scores in the dHSCs compared with the

overall HSC population (Figure 4Aii, iii). We also

tested our model on an additional data set containing

long-term HSCs (LT-HSCs), short-term HSCs (ST-

HSCs) and multipotent progenitor (MPP) populations

[25] (Figure 4Bi). Again, highest scores were seen in

the LT-HSC population, with lowest scores in the MPP

populations (Figure 4Bii, iii; Supplementary Figure

E4D).

Next, we wanted to see if our method would also

work for higher-throughput single-cell gene expression

methods such as droplet-based scRNA-seq. These

approaches capture much larger numbers of cells but at

least until now have had much lower sequencing depth.

Additionally, many existing HSPC droplet-based

scRNA-seq data sets do not have surface marker
information for cells that would allow phenotypic pop-

ulations to be identified. Application of hscScore to

droplet-based data profiling of Lin�c-Kit+ mouse bone

marrow cells [15] identified the highest-scoring cells in

a specific region of the diffusion map (Figure 4Ci).

Inspection of HSC marker genes Procr [38] and Hoxb5

[39] revealed overlap between high HSC-score and

expression of these genes (Figure 4Cii, iii). To examine

another lower sequencing depth method, we calculated

HSC-scores for LT-HSC, ST-HSC and MPP cells pro-

filed using the alternative droplet-based method [26],

and again the highest scores were found in the LT-

HSCs (Supplementary Figure E5A, online only, avail-

able at: www.exphem.org).

We also asked how our method compared with a naı̈ve

approach of simply averaging MolO gene expression

across cells, as we had previously found this to be useful

in highlighting the HSC population [15]. Whilst we con-

firmed that this approach of averaging the expression of a

specific gene set gave higher averages in the HSCs, these

differences were not as clear as the hscScore model results.

Instead, the average expression showed more of a gradient

across HSPC populations (Supplementary Figure E5B−F),
making it more challenging to clearly distinguish the

HSCs with this approach.

hscScore distribution is in keeping with lower

proportion of stem cells in bone marrow of Kit mutant

mouse

Finally, we applied our scoring method to previously

published droplet-based scRNA-seq data from W41/W41

mouse bone marrow [15]. The W41/W41 mutation leads

to reduced c-Kit signaling activity, and these mice

have a lower proportion of stem cells [40,41]. We

wanted to see if our approach could both detect stem

cells in the mutant background and identify their shift

in numbers. Dimensionality reduction on both wild-

type and W41/W41 Lin�c-Kit+ cells showed very simi-

lar appearances and localization of the cells with high

HSC-scores, verifying that this tool can be applied to

these data from perturbed hematopoiesis (Figure 4Di,

ii). The distribution of the HSC-score across the whole

data set revealed the W41/W41 population had overall

lower scores, in keeping with the reduction of HSCs

within this mutant model (Figure 4Diii). The wild-type

Lin�c-Kit+ population is expected to contain around

1% HSCs so we calculated the 99th percentile of the

wild-type Lin�c-Kit+ hscScore. Only 0.56% of W41/W41

HSCs had a predicted score above this same threshold.

This was in spite of the numerical range of scores being

similar across these data sets (�7:8 � 10�3 − 0.51 for

W41/W41 and �8:3 � 10�3 − 0.53 for wild-type cells).

This shows that the hscScore method gives results in

keeping with the reduced frequency of stem cells in

the W41/W41 mouse model.

http://www.exphem.org
http://www.exphem.org
http://www.exphem.org
https://doi.org/10.1016/j.exphem.2019.08.009


Figure 4. HSCs can be identified in data sets generated using different technologies. (A) Model performance on 316 HSCs from Cabezas-Wall-

scheid et al. [24]. Diffusion maps show data colored by cell sorting gate (i) and by predicted hscScore (ii). dHSC=dormant HSC. (iii) Violin

plot shows HSC-score distribution over the dHSC and HSC gates. (B) Model applied to 718 SMART-Seq2 scRNA-seq profiles of stem and pro-

genitor cells from Mann et al. [25]. PCA plots show the cell type (i) and predicted HSC-score (ii). (iii) The violin plot shows the score distribu-

tion across LT-HSC, ST-HSC, and MPP populations. (C) Application of top-performing model to droplet-based scRNA-seq data of 44,802

Lin−c-Kit+ bone marrow cells from Dahlin et al. [15]. Data are visualized using a force-directed graph colored by predicted HSC-score (i).

Expression of HSC marker genes Procr and Hoxb5 are shown in panels (ii) and (iii), respectively. (D) Force-directed graph of Lin−c-Kit+ bone

marrow cells from wild-type (i) and W41/W41 (ii) mouse bone marrow colored by predicted HSC-score. (iii) Distribution of HSC-score across

the wild-type and W41/W41 data sets.
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Discussion

A rapidly growing number of studies use single-cell

gene expression profiling to investigate the molecular

state of blood stem and progenitor cells. One of the
challenges when working with this type of data is to

reliably identify the transcriptomes belonging to rare

cell types. This is particularly relevant for those cell

types conventionally defined by expression of specific

https://doi.org/10.1016/j.exphem.2019.08.009
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cell surface marker proteins as many scRNA-seq data

sets do not contain information on protein expression.

In this work we trained and tested a range of predictive

machine learning models to develop a tool to score sin-

gle-cell gene expression profiles for their transcrip-

tional similarity to a functionally pure population of

HSCs.

It is well established that integrating or comparing

scRNA-seq data from different sources can be difficult

because of so-called batch effects arising from factors

such as different experimental techniques [42,43]. We

therefore tested our method across a number of data

sets and identified a pipeline that performed well across

scRNA-seq platforms with different sequencing depths.

Optimal model performance was found when training

on a small set of genes highly correlated with the

HSC-score. We chose to include genes with both posi-

tive and negative associations to provide as much

information as possible to distinguish between “good”

and “bad” stem cells. The inclusion of these negatively

correlated genes, as well as the fact that the hscScore

model can learn specific weights for each gene, offers

benefits over simply averaging the expression of a gene

set. The flexibility in the MLP framework also allows

varying weights across genes, meaning that there are

different combinations of gene expression enabling a

cell to get a high HSC-score.

We made efforts to ensure that our approach can be

easily applied by other researchers, providing both the

trained model and example code online. We envisage

the hscScore method to be an easy step in the analysis

of murine bone marrow scRNA-seq samples, enabling

fast and reliable identification of HSCs in a data set.

When the expected frequency of stem cells in a sample

is known, it could be used to select a threshold for

classifying cells based on their HSC-score, although

this information will not be available for all data sets.

In these cases, hscScore can still be used to reveal the

most likely stem cells instead of being used for strict

classification. Our hscScore approach also has the

potential to be used as part of a pipeline for refining

stem cell sorting strategies by identifying any genes

that encode for surface marker proteins and have

expression levels correlated with the HSC-score. With

high-quality cell state annotation this approach could

be applied to other systems. In particular, this would

be worth exploring in systems where there are linked

functional data and expression data, for example,

through the expression of shared surface marker pro-

files. Of special interest to hematopoiesis, it would be

interesting to try and extend this approach to identify-

ing human HSCs, as a number of markers differ

between human and mouse HSCs.

An exciting potential application of the hscScore

method will be to compare data across different
conditions, including genetic perturbations such as the

W41/W41 mouse model explored here. A number of

blood disorders affect stem cell behavior, and in such

situations surface marker expression is commonly dis-

rupted, making it unreliable to identify HSCs using con-

ventional strategies. In particular, there are several mouse

models in which an increase in the number of phenotypic

HSCs but a decrease in the number of functional HSCs

has been described. Where this decreased functionality is

linked to transcriptional changes, a lower frequency of

stem cells should be seen with hscScore. Being able to

robustly identify HSCs within scRNA-seq data could there-

fore provide important new insights into disrupted hemato-

poiesis in these situations.

In summary, the hscScore model provides a fast and

simple approach to identification of HSCs within

scRNA-seq data sets from mouse bone marrow. This

should provide a broadly useful tool for analysis of sin-

gle-cell gene expression data, which we hope will be

adopted widely by the community.
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