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Risk assessment for tunnel portals in the construction stage has been widely recognized as one of the most critical phases in tunnel
construction as it easily causes accident than the overall length of a tunnel. However, the risk in tunnel portal construction is
complicated and uncertain which has made such a neural network very attractive to the construction projects. 3is paper presents
a risk evaluation model, which is obtained from historical data of 50 tunnels, by combining the fuzzy method and BP neural
network.3e proposedmodel is used for the risk assessment of the Tiefodian tunnel.3e results show that the risk evaluation level
is IV, slope instability is the greatest impact index among four risk events, and the major risk factors are confirmed. According to
the evaluation results, corresponding risk control measures are suggested and implemented. Finally, numerical simulation is
carried out before and after the implementation of risk measures, respectively. 3e rationality of the proposed risk evaluation
model is proved by comparing the numerical simulation results.

1. Introduction

Over the past few decades, construction of highways has been
developing quickly in China. Tunnel construction has become
the first choice for highway alignment because of its advantages
of optimal alignment, reduced travelling time, and enhanced
operation efficiency. Meanwhile, tunneling is a dangerous
occupation owing to its complicated construction technology,
uncertainties risk factors, and complicated geological condi-
tions. 3ere are numerous casualties and millions of economic
losses caused by tunnel accidents. Compared with the overall
length of a tunnel, portals usually have a limited area of in-
fluence. 3e weathering extent of surrounding rock is heavier,
the buried depth is shallow, and it is vulnerable to the impact of
rainfall. In the entrance section, the construction is difficult,
and these unfavorable factors easily lead to engineering acci-
dents, such as slope instability, large deformation, tunnel
collapse, and other accidents [1]. In most instances, risk as-
sessment may reduce the probability of accidents and decrease
economic costs. 3erefore, it is necessary to take the modern
risk management method to evaluate the risk of the tunnel
portal construction process.

Risk assessment for highway tunnel portals during the
construction stage has been widely recognized as one of the
most critical phases. However, risk factors of tunnel portal
construction are complex and uncertain. At the same time,
most of the information in risk evaluation comes from the
expert’s subjective judgement which is usually imprecise and
subjective in the decision-making process. Handling
vagueness and subjectivity becomes a primary task in risk
assessment.

3e fuzzy system describes a class of extrapolated
blurring without explicit boundaries and establishes a cor-
respondence between uncertainties and membership func-
tions so that favorable mathematical tools can be used to
analyze many inaccurate vague phenomena in nature. Fuzzy
theory has found in-depth research and application in the
mining, nuclear, petrochemical, and construction industries.
van Laarhoven and Pedrycz introduced the concept of fuzzy
set theory into the traditional analytic hierarchy process
(AHP) and originally proposed the fuzzy analytic hierarchy
process (FAHP) [2, 3]. Fuzzy hierarchy evaluation is
a synthetic risk evaluation method based on AHP and fuzzy
comprehensive evaluation [4, 5]. It is well known as a useful

Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 8547313, 16 pages
https://doi.org/10.1155/2018/8547313

mailto:15249272511@163.com
http://orcid.org/0000-0001-6996-9758
http://orcid.org/0000-0002-1992-5324
https://doi.org/10.1155/2018/8547313


tool to deal with imprecise, uncertain, or ambiguous data and
the high nonlinearity and complexity [6–8]. 3e uncertain
comparison judgement can be represented by the fuzzy
number. To deal with the uncertainty or vagueness of data, the
fuzzy analytic hierarchy process (FAHP) has found huge
applications in recent years [9]. Compared with the overall
length of a tunnel, portals usually have the complicated terrain
and poor geological conditions. 3us, the construction of
a tunnel portal is often difficult and easily leads to engineering
accidents [10]. Wang et al. applied the logarithmic fuzzy
preference programming (LFPP) method to analyze the data
[11]. Although FAHP has good applicability in construction
industries than traditional risk assessment methods such as
AHP, it still has subjectivities to identify the weight and set
a single-factor judgement matrix in risk evaluation.

Artificial neural network (ANN) is also known as
a neutral network which is a mathematical model for finding
patterns among datasets where there are complex relation-
ships between the inputs and outputs. ANN attempts to
simulate the structure and operation of the human neural
network system. Since ANN acts like a “black-box” and
cannot explain the reasoning process, it can well achieve the
self-adaptation through the learning function and can acquire
the fuzzy data expression knowledge accurately and auto-
matically. 3e ability to learn from examples has made this
technique a very useful tool in data modeling [12–14]. In the
past few decades, researchers applied ANN inmany aspects of
construction management such as risk analysis, resource
optimization, and productivity assessment [15]. ANN is ca-
pable of learning from the data; however, it cannot explain the
quality of the input-outputmapping process. On the contrary,
the fuzzy system is a systematic reasoning method that is
more compatible with human logic and intuition.

ANN and fuzzy theory are complementary technologies.
Fuzzy theory tries to describe and deal with the ambiguity
concept in human language and thinking. 3e artificial
neural network is based on the human brain’s physiological
structure and information-processing process. With the
rapid development of fuzzy system and artificial neural
network research, it has been found that the original in-
dependent field can be compensated and fused together,
which leads to a new field—fuzzy neural network (FNN).
FNN provides effective tools for addressing uncertainties in
decision-making [16]. In the past few years, this system has
been widely applied to develop risk management models in
the engineering construction. Wang et al. combined AHP
with the backpropagation (BP) neural network (which is
a multilayer error-feedforward network), and they proposed
a model of coal mine water disaster emergency logistics risk
assessment [17]. Mirahadi and Zayed developed a modified
neural-network-driven fuzzy reasoning (NNDFR) model
with optimized parameters and improved the developed
model so that it can simultaneously deal with crisp values
and fuzzy numbers [18]. Li et al. proposed an analytic hi-
erarchy process model for the transformer risk assessment
built by a transformer risk assessment method based on
FAHP and artificial neural network (ANN) [19].

For the purpose of handling the vagueness and sub-
jectivity in risk evaluation of highway tunnel portal

construction, this paper proposes a risk evaluation model by
combining fuzzy theory with the neural network. 3ere are
many kinds of neural network types. 3is paper uses the BP
network—a multilayer feedforward neural network—which
can achieve any nonlinear mapping from the input to
output. 80% to 90% of the neural network model uses the BP
network or its change form. 3e feasibility and effectiveness
of this model are proved by an engineering case.

3e remainder of this research is organized as follows:
Section 2 introduces the BP fuzzy neutral network model in
detail. Section 3 shows the case study. Section 4 verifies the
accuracy of the model. 3is paper is concluded in the last
section.

2. BP Fuzzy Neutral Network
Model Development

2.1. Design of the Topology Structure. 3e BP neural network
generally has three or more layers of neurons. 3ere are
input layer, hidden layer, and output layer, respectively.
According to the Kolmogorov theorem, this model uses
a three-layer BP neural network with a single hidden layer
[20]. 3ere are some debates about the relevance of Kol-
mogorov’s theorem. Girosi and Poggio have criticized this
interpretation of Kolmogorov’s theorem. 3ey reviewed
Kolmogorov’s theorem on the representation of functions of
several variables in terms of functions of one variable and
showed that it is irrelevant in the context of networks for
learning. However, Kůrková supported the relevance of this
theorem to neural nets. He gave a direct proof of the uni-
versal approximation capabilities of perceptron-type net-
works with two hidden layers by taking advantage of
techniques developed by Kolmogorov. He proved the fea-
sibility of the Kolmogorov theorem in the BP neural network
[21, 22]. 3e topology was built with the BP neural network
combined with the characteristics of the highway tunnel
portal construction, which is shown in Figure 1.

3is topology is divided into four parts: the first part is
the input layer and each of its nodes represents an input
variable. 3e second part is the fuzzy process. 3e neural
network input value, which is the input layer of the neural
network structure, can be obtained by the fuzzification of the
risk factor. 3e third part is the fuzzy reasoning layer, which
is the hidden layer. It can complete the mapping between the
input variable and the fuzzy value of the output variable.3e
fourth part is the output layer, which is the result of the risk
level.

2.2. Hierarchical of the Highway Tunnel Portal Construction
Risk. 3e evaluation of the index system is the basis and key
of the risk assessment research. It directly affects the ob-
jectives, accuracy, and results of the evaluation. From risk
evaluation theory of the highway tunnel construction, any
risk factors associated with a highway tunnel project are
likely to evolve into a risk event, leading to the occurrence of
construction safety accidents. 3is paper collected the data
of the 50 highway tunnel samples from the literature.
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All these 50 tunnels are located in China. Among them, 12
tunnels are located in Fujian Province, 10 in Shanxi Province,
8 in Zhejiang Province, 6 in Shaanxi Province, 5 in Hebei
Province, 3 in Shandong Province, 3 in Hubei Province, and 3
in Hunan Province. 3ere are 39 two-lane and 11 three-lane
tunnels among 50 tunnels. 3ere are 15 tunnels with a length
of 3000m or more, 22 tunnels with a length of 1000–3000m,
and 13 tunnels with a length of less than 1000m. 3e longest
one is the Mayazi tunnel which is 9007m. 3e Wulidun
tunnel is the shortest one which is about 980m. According to
the safety status and the screening of risk factors, the risk
assessment index system of the 50 highway tunnel portal
construction was built, as shown in Figure 2.

It is composed of three layers. On the top, the goal of this
paper is to assess the risk level of highway tunnel portal
construction. 3e first index is four risk events of the
highway tunnel portal construction, which include tunnel
entrance collapse (B1), slope instability (B2), large de-
formation (B3), and water inrush (B4). 3e second index is
seven risk factors, which are surrounding rock level (C1),
cross-sectional size (C2), construction method (C3), un-
symmetrical load (C4), buried depth (C5), support param-
eters (C6), and rainfall and groundwater (C7).

2.3. Determination of the Sample Data of the Evaluation
Model with the Fuzzy Method

2.3.1. Modeling Input. It is necessary to quantify these risk
indexes of the established index system because the BP
neural network requires quantitative data in risk evaluation
of construction. As a result, the fuzzy evaluation method was
used to quantify the degree of risks in this research. Take one
of the 50 tunnels as an example.

Step 1: the set of the comments level

In this paper, the risk of highway tunnel portal con-
struction was divided into five levels according to 50 sample
tunnels, where level I, level II, level III, level IV, and level V
represent less risk, low risk, general risk, high risk, and higher
risk, respectively. 3e reviews set is expressed by V as follows:

V � I, II, III, IV, V{ }. (1)

Step 2: factors domain of the evaluation object

3e number of evaluation objects is n. Each first index
corresponds to seven evaluation results. 3e factor set is
expressed by U as follows:

U � u1, u2, . . . , un . (2)

Step 3: membership matrix

Take Tunnel 1 which belongs to the 50 tunnels as an
example.

Each risk factor holds a degree of membership to every
risk level for different risk events, with the summation of all of
its degrees of membership being 1. 3e membership matrices
of the secondary indicators at each level are as follows:

R1 �

0 0.2 0 0.6 0.2
0 0 1 0 0
0.8 0.2 0 0 0
1 0 0 0 0
0.6 0.4 0 0 0
0 0.7 0.3 0 0
0.8 0.2 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R2 �

1 0 0 0 0
0 0.7 0.3 0 0
0 1 0 0 0
0.9 0.1 0 0 0
1 0 0 0 0
0 0.4 0.6 0 0
1 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R3 �

0 0 0.6 0.4 0
0 0.3 0.7 0 0
0.7 0.3 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0.1 0.9 0 0
0.6 0.4 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R4 �

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0.6 0.4 0 0 0
0.2 0.8 0 0 0
0.3 0.7 0 0 0
0.1 0.9 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

where R1 is the degree of membership of each second index
to tunnel entrance collapse, R2 is the degree of membership
of each second index to slope instability, R3 is the degree of
membership of each second index to large deformation, and
R4 is the degree of membership of each second index to
water inrush. Each row in R represents the membership
degree of each index to the risk probability levels I, II, III, IV,
and V. 3e above four membership matrices are combined
to obtain a comprehensive evaluation factor of the mem-
bership matrix R. 3is membership matrix is represented as
follows:

R �

R1

R2

R3

R4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Step 4: the weight of the risk level
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Each risk level has different impacts on the highway
tunnel portal construction; therefore, the weight of each
risk level in the judging set is different in the set of the
comments level. Determine the standard risk probabil-
ity level V � I, II, III, IV, V{ } � {very unlikely, impossi-
ble, accidental, possible, most likely} with a weight of
1/25, 3/25, 5/25, 7/25, 9/25{ } which is as follows:

W � wI, wII, wIII, wIV, wV(  �
1
25

,
3
25

,
5
25

,
7
25

,
9
25

 ,

(5)

where (wI, wII, wIII, wIV, wV) means the weight of the risk
level from I to V.

Step 5: calculate modeling input

3e input data of the risk evaluation model can be
obtained by combining R and W, which are as follows:

BX � W · R �
0.136, 0.200, 0.344, 0.360, 0.328, 0.256, 0.344, 0.360, 0.256, 0.280, 0.352, 0.360, 0.232, 0.360

0.168, 0.224, 0.336, 0.280, 0.280, 0.208, 0.328, 0.360, 0.360, 0.360, 0.328, 0.296, 0.304, 0.288
 ,

(6)

The construction risk of
highway tunnel portal A

Surrounding 
rock level

C1

Cross-sectional
size
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Construction
method
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Unsymmetrical
load C4
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Support 
parameters
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ground water
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Tunnel entrance
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Large deformation
B3

Water inrush
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Figure 2: 3e hierarchical structure of risk evaluation in highway tunnel portal construction.
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Figure 1: Structure of the BP neural network (xI: input variable; yN: estimated output).
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where BX is the weight of seven second indexes corre-
sponding to four different first indexes, which indicates the
impact of risk factors. 3e value of BX is in the range (0, 1),
which can be used as the input of the neural network.

3e input data of Tunnel 1 are calculated as shown in
Table 1.

Similar to the abovementioned calculation process, the
input data of the other 49 highway tunnels can be obtained.
3e calculation process is omitted here due to the space
constraints.

2.3.2. Modeling Outputs. 3e expected output corre-
sponding to this paper is the risk evaluation level of
highway tunnel portal construction. In this section,
FAHP is used to calculate the risk evaluation level of
Tunnel 1 portal construction. 3e calculation process of
the output data for Tunnel 1 will be described in detail as
follows.

Step 1: calculate the weight

AHP is employed to calculate the weight of the risk
index of highway tunnel portal construction. According
to the abovementioned hierarchical structure, individu-
al judgements are collected and comparison matrices of
the risk factor are constructed. Calculation of the com-
parison matrix requires consistency checking. 3e ex-
pression’s consistency ratio (CR) can be computed as
follows:

CR �
λm − n( /(n− 1)

RI
, (7)

where λm is the maximum eigenvalue of the judgement
matrix, n is the matrix order, and RI is the average random
consistency indicator which is shown in Table 2. If CR < 0.1,
the comparison matrix is acceptable. Otherwise, experts’
judgements should be adjusted until CR < 0.1.

3rough expert surveys and associated risk theories,
a judgement matrix for the construction stage of the cavern
section was established for each of the identified seven risk
factors. 3e comparison matrix A and CR of the risk event
are as follows:

AB �

1 3 7 9

1
3

1 3 7

1
7

1
3

1 3

1
9

1
7

1
3

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

CR � 0.0363< 0.1,

(8)

where AB is the comparison matrix of the A-B-level risk.
3e comparison matrices B and CR of risk factors are as
follows:

B1 �

1 3
1
3

11 9 7 5

1
3

1
1
5

9 7 5 3

3 5 1 13 11 9 7
1
11

1
9

1
13

1
1
3

1
5

1
7

1
9

1
7

1
11

3 1
1
3

1
5

1
7

1
5

1
9

5 3 1
1
3

1
5

1
3

1
7

7 5 3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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where B1 is the comparison matrix of tunnel entrance
collapse, B2 is the comparison matrix of slope instability, B3
is the comparison matrix of large deformation, and B4 is the
comparison matrix of water inrush.

Weight vectors of the risk factor are calculated using the
eigenvalue method which are as follows:
WB � [0.5962 0.2616 0.0989 0.0434],

WC �

W1

W2

W3

W4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�

0.2569 0.1450 0.4337 0.0148 0.0250 0.444 0.0802

0.1467 0.0143 0.0423 0.0240 0.0753 0.4354 0.2619

0.4307 0.2591 0.0255 0.0141 0.0764 0.1500 0.0441

0.2522 0.0435 0.0802 0.0143 0.1365 0.0243 0.4490

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

(10)

whereWB is the weight of the four risk events andWC is the
weight of each risk factor relating to different risk events.

Step 2: identify the membership degree matrix

3e membership degree matrix R has been calculated in
Section 2.3.1

Step 3: single risk factor fuzzy evaluation

Combining the weight of single risk factors with R, the
single risk factor fuzzy comprehensive evaluation matrix is
calculated as follows:

R′ � WC · R �

0.4409 0.1952 0.1583 0.1541 0.0514

0.5055 0.2288 0.2655 0 0

0.0443 0.2085 0.5747 0.1722 0

0.4639 0.5360 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11)

where R′ is the comprehensive judgement result com-
bined with the risk factor weightWC and the membership
matrix R, which represents the first comprehensive
evaluation.

Step 4: multifactor fuzzy comprehensive evaluation

Taking R′ as a membership matrix of multifactor fuzzy
comprehensive evaluation, the comprehensive evaluation
value was calculated by combining with WB and R′. 3e
results of fuzzy comprehensive evaluation are as follows:

BY � WB × R′ � [0.4196 0.2201 0.2206 0.1089 0.0306],

(12)

where BY is a judgement matrix of the risk event obtained by
two fuzzy comprehensive evaluation processes.

3is research chooses the maximummembership degree
principle to identify the risk level because it is generally
applicable in the course of engineering risk assessment. 3e
risk level of the construction stage in highway Tunnel 1
portal is most likely to be level I.

Step 5: risk probability score

Each risk evaluation level is represented by a digit, which
is converted to a corresponding probability score according
to Table 3, as the output value of the proposed model.

As a result, the risk score of Tunnel 1 is 10000.
Similarly, the probability of construction risk of the

other 44 tunnel portals and the risk score of overall 45
tunnels can be obtained as shown in Table 4.

2.4. BP Neural Network Algorithm Flow. 3e BP neural
network is a kind of a network with a teacher. 3e teachers
are actually a training sample for training the network. 3e
input and output mappings of the network are obtained
from training samples. 3e sample input and the target
output required by the network must be known, and the
weight coefficient between each layer is determined by the
input after the exact output value can be derived. In the BP
neural network, the data are propagated backwards from the
input layer through the hidden layer. If the output layer does
not have the desired output value, the connection weight of
the network is corrected from the output layer in the di-
rection of reducing the error. 3e error will gradually de-
crease with the continuous learning of the network until the
error is no longer down, and then the network training is
completed.

2.4.1. Determination of Learning Rate. With different
learning rates, there is great influence on the performance of
the established BP neural network model. 3e smaller the
learning rate is, the slower the convergence rate is. If the
learning rate is too large, the training is prone to oscillation.
At present, we can only roughly determine the learning rate
through experience for different issues, and the selection
range is generally in the range [0.01, 0.8].

2.4.2. Determination of the Number of Hidden Neurons.
3e performance of the BP neural network is also related to
the number of hidden neurons. In general, the bigger the
number of hidden neurons is, the better the network per-
formance is. However, if the number of hidden neurons is
too much, the training time may be too long. Currently,
there is no ideal analytical formula for determining the
number of hidden neurons. Generally, the following em-
pirical formula is used to obtain the estimated value:

M �
�����
n + m

√
+ a, (13)

where M is the number of hidden neurons, n is the number
of input layer neurons, m is the number of output layer
neurons, and a is a constant in the range [0, 10].

In the three-layer BP neural network, assuming that the
number of input neurons is I, the number of hidden neurons

Table 2: 3e average random consistency indicator.

Matrix order 3 4 5 6 7 8 9
RI 0.58 0.90 1.12 1.24 1.32 1.41 1.46
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is J, and the number of neurons in the output layer is N, the i

neurons of the input layer are denoted as xi, the j neurons of
the hidden layer are denoted as kj, and the n neurons of the
output layer are denoted as yn. 3e algorithm is as follows:

Step 1: determine the structure of the network and then
initialize all of the network weights and the threshold
neurons in the hidden layer and output layer.
Step 2: the fuzzy sample dataset xpl  and the corre-
sponding expected output set ypl  are input to the
network for training, where p is the number of samples
and l is the number of input vectors.
Step 3: calculate the output O of each layer. 3e input
and output are the same in the input layer, that is,
Opi � xpi, where xpi is the i value of the p sample; the
output operation of the neuron is Opi � f( wpi − θi)

for the hidden layer and the output layer, where Opi is
the output of neuron i and the input of neuron j; the
neurons in the hidden layer use the sigmoid function,
that is,

f(x) �
1

1 + e−x( )
. (14)

Step 4: calculate the value of each layer. 3e error
of the output layer is expressed as δpj �

(ypj −Opj)Opj(1−Opj); the error of the hidden layer
is expressed as δpj � Opj(1−Opj)  δpjw′pj.
Step 5: adjust the weight value by using
w′ji(t + 1) � w′ji(t) + αδpjOpj, where α is the learning
speed.
Step 6: calculate the error by using Er �

12 p  k(Opk −ypk)2. If E is less than the expected
error value, the network training will end. Otherwise,
the value will return to Step 3 and then continue
training until the error value satisfies the preset value.

3e flow diagram of the BP algorithm is shown in
Figure 3.

2.5. BP Fuzzy Neutral Network Model Training. Forty-five
samples data from the 50 tunnel samples data are selected,
which have been obtained in Section 2.3, of highway tunnel
portal construction for network training. 3e remaining five
samples data were compared with the results which are
obtained from the model as test samples. 3e test results are
shown in Table 5.

By comparing the test results with the expected results,
the difference between the two values is taken as the error,
and the error of each object is obtained. 3e cumulative
error of the five subjects is 2.06%, and the prediction ac-
curacy of the network model is 97.94%, which indicates that

the BP fuzzy neural network model has a high prediction
accuracy.

3. Case Study

3.1. Hydrogeological Condition. 3e Tiefodian highway
tunnel is connected to Baoji and Hanzhong in Shaanxi
Province of China located in the south of Tiefodian Town,
the west of the National Highway 316. 3e tunnel is com-
posed of two separate tunnels, which belong to short tunnels.
3e left tunnel being 135m long has a mileage pile number
of ZK164 + 570–ZK164 + 705. 3e right tunnel is 185m long
and has amileage pile number of YK164 + 550–YK164 + 735.

3e tunnel is perpendicular to the slope surface with no
bias, and the portal of this tunnel lies in the valley foot on the
right bank of Bao River. 3e depth of the tunnel portal is
lower than 36.0m, which belongs to the shallow tunnel. 3e
tunnel span is 16.0m. 3e inclination angle of the stable
natural slope is 41°. 3e lithology along the tunnel is
completely weathered gneiss. During the construction of
tunnel portal excavation, the collapse and the slope in-
stability are easily caused.3erefore, there is a certain degree
of difficulty in excavating the tunnel portal.

3e distance between the left tunnel exit and right tunnel
exit is 30m. 3e surrounding rock type is completely
weathered gneiss. 3e surrounding rock of the right tunnel
portal and left tunnel portal is both of level V. Take the portal
section of the left tunnel as the research object for risk
assessment. 3e longitudinal profile of the left tunnel is
shown in Figure 4.

3.2.ConstructionMethodof theTunnelPortal. Tunnel portals
are constructed with the bench method, which is shown in
Figure 5. 3e tunnel excavation C is listed as follows:

Step 1: in the arch of the tunnel, the advanced small
pipe with grouting reinforcement strata is used.
Step 2: the upper bench is excavated.
Step 3: the initial support of the bolt, steel frame, and
shotcrete is constructed at the upper bench.
Step 4: the lower bench is excavated.
Step 5: the initial support of the bolt, steel frame, and
shotcrete is constructed at the lower bench.
Step 6: the invert arch is excavated.
Step 7: the concrete of the invert arch is constructed.
3e excavation distance of each part is 3m.

3.3. Risk Evaluation Index. 3e construction risk of the
Tiefodian tunnel portal is evaluated according to the pro-
posed model in Section 2. 3e sample data are employed by
the abovementioned fuzzy method in Section 2.2, as shown
in Table 6.

Taking those input data into the evaluation model which
has been trained completely in Section 2, the expected
output results are as follows:

Y � [0.0000 0.0000 0.0084 0.9403 0.0513]. (15)

Table 3: 3e correspondence between the risk level and score.

Risk level I II III IV V
Score 10000 01000 00100 00010 00001

8 Computational Intelligence and Neuroscience



Obviously, the risk probability level of the Tiefodian
tunnel is level IV, which belongs to high risk.

3.4. Comparison and Discussion. In order to verify the ac-
curacy of the proposed model, FAHP is used to calculate the
risk probability level of Tiefodian tunnel portal construction.
According to the FAHPmethod described in Section 2.2, the
total ranking results of the Tiefodian tunnel are shown in
Table 7.

3e risk value with fuzzy comprehensive evaluation is as
follows:

B � [0.0126 0.2332 0.2608 0.3798 0.1134]. (16)

3e result shows that the risk level is level IV, which
belongs to high risk.

According to Table 6, tunnel entrance collapse (B1) is
most likely to happen due to the risk of Tiefodian tunnel
portal construction. 3e largest relative weight coefficient is
0.2756, which indicates the construction method. Similarly,

Table 4: 3e risk probability score of sample tunnels.
Tunnel 1 2 3 4 5 6 7 8 9
Score 10000 00100 00100 01000 00100 00010 01000 01000 00100
Tunnel 10 11 12 13 14 15 16 17 18
Score 01000 00010 00100 00010 01000 00100 00100 01000 00100
Tunnel 19 20 21 22 23 24 25 26 27
Score 00100 00100 00010 00100 00010 00100 00010 00100 00100
Tunnel 28 29 30 31 32 33 34 35 36
Score 00100 00100 01000 00010 01000 01000 00010 00010 00100
Tunnel 37 38 39 40 41 42 43 44 45
Score 00100 01000 00010 00010 00100 00100 10000 00100 00010

Determine the sample input and 
the target output

Calculate the output of each unit

Calculate the actual output and the desired output error

Initialization

Error meets the
requirements

Adjust the
weight value

N

Y

End

Ba
ck

pr
op

ag
at
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n

Figure 3: 3e flow diagram of the BP algorithm.

Table 5: Comparison of network test results.

Tunnel
Test results of the fuzzy neural network

Model result Cumulative error Realistic risk level
Output 1 Output 2 Output 3 Output 4 Output 5

46 0.0000 0.0001 1.0000 0.0000 0.0000 0 0 1 0 0 0.01% III
47 0.0000 0.0032 0.9992 0.0000 0.0000 0 0 1 0 0 0.40% III
48 0.0000 0.0001 0.9497 0.0016 0.0000 0 0 1 0 0 5.20% III
49 0.0000 0.0003 0.9854 0.0001 0.0000 0 0 1 0 0 1.50% III
50 0.0000 0.9847 0.0149 0.0001 0.0015 0 1 0 0 0 3.18% II

Computational Intelligence and Neuroscience 9



the smallest relative weight coefficient indicates un-
symmetrical load. In accordance with the results, the risk
factors in the Tiefodian tunnel portal section are ordered
according to importance as follows: surrounding rock level,
support parameters, rainfall and groundwater, cross-sectional
size, buried depth, and unsymmetrical load.

3e BP fuzzy neural network method and FAHPmethod
are used to calculate the risk probability level in Tiefodian
tunnel portal construction. 3e results are shown in Table 8.

3e BP fuzzy neural network method and FAHPmethod
are the same as the evaluation results of the risk probability
grade in the construction stage of the Tiefodian tunnel. 3e
advantages of the BP fuzzy neural network method are as
follows: the BP fuzzy neural network method has the
characteristics of strong fault tolerance and self-adaptability,
which can overcome the inaccuracy of the result quantifi-
cation of each risk factor in FAHP. Coupled with the fuzzy
algorithm, the BP fuzzy neural network method is applied to
form a composite evaluation system, whichmakes the results
more reasonable and closer to the actual situation.

3.5. Risk Control Measures. 3e risk probability level of the
construction of Tiefodian tunnel portals is grade IV, which

indicates high risk. Risk control measures should be applied
to the construction to ensure the stability of the tunnel. In
view of the risk assessment results in Section 3.4, the risk
control measures are proposed as follows:

(1) Adjust the construction method: the original con-
struction method is the bench method, which can
cause the surrounding rock disturbance. 3erefore,
we exchange the bench method for the centre di-
aphragm (CD) method. 3e excavation footage is no
greater than 3.0m, and the distance between dif-
ferent excavation parts is at 9.0m to maintain tunnel
stability. Meanwhile, the anchorage, primary lining,
and invert arch are constructed in the tunnel. When
the length of the invert arch is 12m, the secondary
lining is installed. 3e blasting charge should be
strictly controlled in the portal section to reduce the
blasting excavation risk. Finally, the dynamic
monitoring of tunnel deformation should be
strengthened during the construction process. 3e
construction of the CD method is shown in Figure 6.

(2) Reinforcement of surrounding rock: ensuring the
stability of the tunnel portal is difficult because of the
poor quality of the rock mass, the thinner cover
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depth, and rainfall in the Tiefodian highway tunnel.
As a result of this, the presupport measures should be
improved before the excavation of the tunnel. Ac-
tually, the pipe roof has a good effect as a presupport
measure in the construction of the tunnel portals. A
30m long pipe roof, which consists of a total of 44
seamless steel pipes (Φ108× 6mm) with a con-
struction scope of 2× 57°, is suggested as a presup-
port measure of the tunnel portal on the basis of the
abovementioned analysis. 3e length of single pipe
sections is 3 or 6m. 3ey are connected at the joints
by 150mm long threaded sections. With the use of
the umbrella arch as a guide wall, the pipe roof is
constructed along the outer contour line of the open
cut.

(3) Strengthening the supporting parameters: the sup-
porting parameters are important in avoiding tunnel
face instability and great deformation of the tunnel
portals. 3erefore, the diameter of the rock bolt is
improved to Φ28, and the length is increased to
4.5m. 3e I22b steel frame in H shape is adopted,
and the length of the pregrouting bolt is added to
5.0m.

(4) In the construction process, the monitoring work
should also be carried out simultaneously, and the
measured data should be backanalyzed. 3e sta-
bility of the surrounding rock is determined by the
analysis results of monitoring data. And the support

parameters are adjusted to ensure the safety of
construction.

4. Model Validations

3e deformation of the surrounding rock and the force of
the supporting structure were simulated based on the
construction conditions of the Tiefodian tunnel. 3e ra-
tionality of the proposed model and the risk measures was
proved by simulating and analyzing with the MIDAS/GTS
finite-element analysis software. 3e ZK164 + 570 section
and ZK164 + 600 section are selected as the object of nu-
merical simulation which belong to the Tiefodian tunnel
portal.

According to the Saint-Venant principle, tunnel exca-
vation has little effect on the surrounding rock which is
located in 3–5 times the diameter. 3e model size is taken as
X×Y×Z� 100m× 30m× 90m in this simulation.3emain
design parameters are selected as shown in Table 9.

4.1. Numerical Simulations before Risk Control Measures.
3is simulation is based on the bench method before the risk
control measures in the construction. 3e model meshing
and the supporting structure simulation are established as
shown in Figures 7 and 8.

3e stress state of the surrounding rock is redistributed
and deformed toward the temporary surface with the ex-
cavation process of the tunnel cavern. 3e deformation of

Table 7: 3e total ranking of risk factors.

Risk factors B1 B2 B3 B4 Total ranking0.5962 0.2616 0.0989 0.0434
C1 0.2569 0.1467 0.4307 0.2522 0.2451
C2 0.1450 0.0143 0.2591 0.0435 0.1177
C3 0.4337 0.0423 0.0255 0.0802 0.2756
C4 0.0148 0.0240 0.0141 0.0143 0.0171
C5 0.0250 0.0753 0.0764 0.1365 0.0481
C6 0.0444 0.4354 0.1500 0.0243 0.1563
C7 0.0802 0.2619 0.0441 0.4490 0.1402

Table 8: Comparison of evaluation methods.

Evaluation target BP fuzzy neural network method FAHP method
Risk result (0.0000, 0.0000, 0.0084, 0.9403, 0.0513) (0.0126, 0.2332, 0.2608, 0.3798, 0.1134)
Risk level IV (high risk) IV (high risk)

1

2

3

4

1

2

3

4

3m 3m 3m

Figure 6: Construction of the left tunnel portal by the CD method.
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the cavern can be themost intuitive and convenient response
to the deformation state of the surrounding rock. 3e value
of vault settlement and horizontal convergence is a typical
observation project to reflect the deformation of cavern. 3e
final deformation of the tunnel portal with the bench
method before the risk control is shown in Figures 9 and 10.

Obviously, the deformation of the surrounding rock
after tunnel excavation is symmetrical, which is mainly
reflected in the vault, and the sidewall converges inward.
3e maximum vault settlement value is about 54.91mm,
and the maximum arched part has a certain amount of
spring back about 24.95mm due to the unloading effect.
3e horizontal convergence value of the surrounding
rock at the left and right sidewalls is about 46.22mm. 3e
vault settlement value and the horizontal convergence
value of surrounding rock are larger than the specification
requirement [23]. 3ere is a risk in the tunnel portal

construction, and the corresponding risk control measures
should be taken to strengthen the tunnel and ensure the
safety of the tunnel.

4.2. Numerical Simulations after Risk Control Measures.
Adjust the construction method and support parameters
according to the importance of risk factors; this simulation is
based on the CD method after the risk control measures in
the construction. 3e model meshing and the support
structure simulation are established as shown in Figures 11
and 12.

3rough the numerical simulation analysis, the vault
settlement and the horizontal convergence cloud diagram of
surrounding rock at each construction stage obtained are
shown in Figures 13 and 14.

It can be seen from Figures 3 and 4 that the deformation
value of surrounding rock is declining after adopting the CD
construction method and optimizing the support parameters.
3emaximum value of the vault settlement is about 13.32mm.
3e horizontal convergence value of the surrounding rock at
the left and right sidewalls is about 13.49mm.

4.3. Discussion. 3e numerical simulations of two cases are
listed and analyzed in order to verify the effectiveness of the
proposed measures. 3e details are shown in Table 10.

It can be seen from Table 10 that the values of the vault
settlement before and after the risk control are 54.91mm and
6.27mm, respectively. 3e values of vault settlement after
risk controls are far less than those before risk controls.
Similarly, the values of horizontal convergence after risk
controls are also far less than those before risk controls.
3erefore, the comparison results indicate that the risk

Table 9: 3e model parameters after optimization.

Formation or structure Elastic modulus
E (GPa)

Poisson’s ratio
(μ)

Bulk density
(kN/m3)

Cohesion
(kPa)

Internal friction
angle (°)

Fully weathered gneiss 0.2 0.4 18 50 28
Strong weathering gneiss 0.5 0.35 20 200 32
Weathering gneiss 1 0.3 22 320 35

Figure 7: Model meshing before risk controls.

Figure 8: Spray anchor support before risk controls.

Displacement
TZ, n

1.2%
2.2%
3.1%

29.8%
20.0%
10.3%
7.9%
8.1%
6.3%
5.6%
4.0%
1.5%

–5.49074e–002
–4.82529e–002
–4.15983e–002
–3.49438e–002
–2.82893e–002
–2.16347e–002
–1.49802e–002
–8.32567e–003
–1.67113e–003
+4.98340e–003
+1.16379e–002
+1.82925e–002
+2.49470e–002

Figure 9: Vault settlement value.
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evaluation model established in this paper is accurate to
evaluate the construction risk of the tunnel portal and the
proposed risk control measures are feasible (Table 11).

5. Conclusion

3is paper develops a BP fuzzy neural network model based
on fuzzy theory and BP neural network to handle the

vagueness and subjectivity in risk evaluation of highway
tunnel portal construction. A risk evaluation model which is
obtained from historical data of 50 tunnels is established by
combining the fuzzy method with the BP neural network.
3e proposed model is applied for the risk assessment of
the Tiefodian tunnel. 3e results show that the risk evalu-
ation level is IV and slope instability is the greatest impact
index among four risk events. Based on above analysis, we
conclude that supporting parameters, rainfall and ground-
water, and surrounding rock level precede the others. At the
same time, this model is confirmed to be available in risk

Displacement
TX, n

0.1%
0.2%
1.4%
4.6%
9.5%

19.4%
44.4%
10.8%
7.4%
1.5%
0.6%
0.1% –4.38216e–002

–3.63180e–002
–2.88145e–002
–2.13109e–002
–1.38073e–002
–6.30378e–003
+1.19979e–003
+8.70336e–003
+1.62069e–002
+2.37105e–002
+3.12141e–002
+3.87176e–002
+4.62212e–002

Figure 10: Horizontal convergence value.

Figure 11: Model meshing after risk controls.

Figure 12: Spray anchor support after risk controls.

Displacement
TZ, n

0.3%
1.3%
2.6%
2.1%
2.6%

14.3%
31.2%
17.0%
11.6%
9.5%
6.6%
1.0%

–1.33175e–002
–1.10837e–002
–8.84996e–003
–6.61621e–003
–4.38247e–003
–2.14872e–003
+8.50228e–005
+2.31877e–003
+4.55251e–003
+6.78626e–003
+9.02001e–003
+1.12538e–002
+1.34875e–002

Figure 13: Vault settlement value.

Displacement
TX, n

–1.45181e–002
–1.21034e–002
–9.68872e–003
–7.27405e–003
–4.85938e–003
–2.44471e–003
–3.00370e–005
+2.38463e–003
+4.79930e–003
+7.21397e–003
+9.62864e–003
+1.20433e–002
+1.44580e–002

0.0%
0.1%
1.6%
7.0%
8.2%

34.9%
30.5%
8.1%
6.4%
2.6%
0.5%
0.0%

Figure 14: Horizontal convergence value.

Table 10: 3e comparison of the deformation value.

Deformation
value

Evaluation index
Vault

settlement
(mm)

Horizontal
convergence

(mm)

Specification
allowed (mm)

Before the
risk control 54.91 46.22 40

After the risk
control 6.27 13.32 40
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evaluation of the tunnel portal by using the fuzzy analytic
hierarchy process (FAHP). According to the evaluation re-
sults, corresponding risk control measures are suggested and
taken. Besides, numerical simulation is carried out before and
after the implementation of risk measures, respectively. 3e
rationality of the proposed risk evaluation model is proved by
comparing the numerical simulation results.

However, the proposed method is still a semiquantitative
risk evaluation method. Because of the complicated geo-
logical conditions and uncertainties of tunnel construction,
the risk identification is based on the rich experience of
experts in this paper. Although the main risk factors can
be identified, some less influence of the risk factors has the
probability be missed. Moreover, the number of tunnel

Table 11: 3e historical data of the 50 tunnels.

Number Tunnel name Number of
one-way lanes Location Surrounding

rock level
Tunnel

length (m)
Maximum
depth (m)

1 Aofeng Mountain Tunnel 3ree lanes Fuzhou IV 1867 —
2 Lake Yun No. 1 Tunnel Two lanes Mianzhu V 3555 400
3 Mountain Hu Tunnel Two lanes Nanjing IV 1645 466
4 Cang Ridge Tunnel Two lanes Taijin IV 7530 768
5 Jiuling Mountain Tunnel Two lanes Wuji V 5473 887
6 Qingshan Hillock Tunnel Two lanes Changsha V 1245 80
7 Xuefeng Mountain Tunnel Two lanes Anhua IV 7039 780
8 Anyuan Tunnel Two lanes Anyuan V 6868 470
9 Lujialing Tunnel Two lanes Chongqing IV 6664 701
10 Wujian Ridge Tunnel Two lanes Yongzhang V 1050 197
11 Mayazi Tunnel Two lanes Wuguan V 9007 714
12 Shanziding Tunnel Two lanes Meida V 500 110
13 Luwan Tunnel 3ree lanes Lishui IV 708 170
14 Mountain Mao Tunnel 3ree lanes Changning V 1628 50
15 Tongzhou Tunnel Two lanes Yongjia IV 493 102
16 Wuzhi Mountain Tunnel 3ree lanes Leshan V 3923 800
17 Xiang River Tunnel Two lanes Huangyuan IV 1858 300
18 Zhongtiao Mountain Tunnel Two lanes Jiezhou V 7423 605
19 South Village Tunnel Two lanes Nancun IV 6787 153
20 Wolonggang Tunnel 3ree lanes Beijing V 420 35
21 Liujiapai Tunnel Two lanes Liujiapai V 1233 136
22 Nan Yanmenguan Tunnel Two lanes Shanyin IV 5247 600
23 Foling Tunnel Two lanes Linfen IV 8803 762
24 Xilingjing Tunnel Two lanes Taijia V 6555 711
25 Yanmenguan Tunnel Two lanes Xizhou V 5183 600
26 Yangtou Mountain Tunnel Two lanes Qianjiang V 5385 466
27 Sumu Mountain Tunnel 3ree lanes Huhetaote IV 3213 —
28 Xuefeng Moutain Tunnel Two lanes Shaoyang V 6958 840
29 Taining Tunnel Two lanes Taining IV 7039 485
30 Leigong Mountain Tunnel 3ree lanes Xiamen V 3433 253
31 Zhengjiayuan Tunnel Two lanes Zhashui V 2037 189
32 Foyangling Tunnel Four lanes Binzhou IV 3904 70
33 Baiyangwan Tunnel 3ree lanes Hangzhou V 1400 52
34 Wanxichong Tunnel 3ree lanes Kunming V 7980 754
35 Mountain Tiger Tunnel Four lanes Jinan V 1880 276
36 Jianping Tunnel Two lanes Tongchuan IV 1287 240
37 Yanling Mountain Tunnel Two lanes Hangzhou IV 1250 178
38 Jinzhuwan Tunnel 3ree lanes Chongqing V 1322 255
39 Yangzong Tunnel 3ree lanes Yuxi V 2727 141
40 Magongci Tunnel Four lanes Zibo IV 655 86
41 Wulidun Tunnel Two lanes Rucheng V 2380 980
42 Zhenbao Tunnel Two lanes Boshan IV 2880 32
43 Daiyuling No. 2 Tunnel Two lanes Zhuanghe V 2930 262
44 Shimenya Tunnel Two lanes Yichang V 7524 894
45 Queer Mountain Tunnel Two lanes Ganzi IV 7079 700
46 Xueshanliang Tunnel Two lanes Abazhou IV 6950 598
47 Ziyang Tunnel Two lanes Ziyang V 7938 904
48 Baihua Mountain Tunnel 3ree lanes Wuding V 1620 —
49 Jiaodongao Tunnel Two lanes Ningbo IV 2185 410
50 Shigu Tunnel 3ree lanes Dongguan IV 4011 500
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samples for the proposed model needs to be further ex-
panded to improve the accuracy of risk evaluation.

Conflicts of Interest

3e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

3is researchwas financially supported by theNational Natural
Science Foundation of China (Grant nos. 51408054 and
51678500); the Natural Science Foundation (2017JM5136) by
the Science and Technology Department of Shaanxi Province;
the Housing and Urban-Rural Construction Foundation
(2017-K55) by the Housing and Urban-Rural Department of
Shaanxi Province; the Scientific Research Program (KLTLR-
Y14-15) for Technology of Highway Construction and
Maintenance Technology of National Transportation Industry
Key Laboratory; Higher Education Foundation (2050205) by
the Financial Department of Shaanxi Province; and the Re-
search Program (XAGDXJJ16003) sponsored by Xi’an Tech-
nological University.

References

[1] M. Li, “Research of landscape design on the entrance of highway
tunnel,” M.S. thesis, Kunming University of Science and
Technology, Kunming, China, 2008.

[2] P. J. M. van Laarhoven and W. Pedrycz, “A fuzzy extension of
Saaty’s priority theory,” Fuzzy Sets and Systems, vol. 11,
no. 1–3, pp. 229–241, 1983.

[3] L. A. Zadeh, “3e concept of a linguistic variable and its
application to approximate reasoning,” International Journal
of Information Science, vol. 8, no. 3, pp. 199–249, 1975.

[4] B. Liang and D. Cao, Fuzzy Mathematics and Application,
Science Press, Beijing, China, 2007, in Chinese.

[5] Y. Zhao andW. Xu, “Risk assessment of TBM construction for
tunnels based on AHP and fuzzy synthetic evaluation,” Rock
and Soil Mechanics, vol. 30, no. 30, pp. 793–798, 2009, in
Chinese.

[6] F. Ardente, M. Beccali, and M. Cellura, “FALCADE: a fuzzy
software for the energy and environmental balances of
products,” Ecological Modelling, vol. 176, no. 4, pp. 359–379,
2004.

[7] O. Kulak, M. B. Durmusoğlu, and C. Kahraman, “Fuzzy
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