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Abstract

Comparative genomic approaches have been used to identify sites where mutations are

under purifying selection and of functional consequence by searching for sequences that are

conserved across distantly related species. However, the performance of these approaches

has not been rigorously evaluated under population genetic models. Further, short-lived func-

tional elements may not leave a footprint of sequence conservation across many species.

We use simulations to study how one measure of conservation, the Genomic Evolutionary

Rate Profiling (GERP) score, relates to the strength of selection (Nes). We show that the

GERP score is related to the strength of purifying selection. However, changes in selection

coefficients or functional elements over time (i.e. functional turnover) can strongly affect the

GERP distribution, leading to unexpected relationships between GERP and Nes. Further, we

show that for functional elements that have a high turnover rate, adding more species to the

analysis does not necessarily increase statistical power. Finally, we use the distribution of

GERP scores across the human genome to compare models with and without turnover of

sites where mutations are under purifying selection. We show that mutations in 4.51% of the

noncoding human genome are under purifying selection and that most of this sequence has

likely experienced changes in selection coefficients throughout mammalian evolution. Our

work reveals limitations to using comparative genomic approaches to identify deleterious

mutations. Commonly used GERP score thresholds miss over half of the noncoding sites in

the human genome where mutations are under purifying selection.

Author summary

One of the most significant and challenging tasks in modern genomics is to assess the

functional consequences of a particular nucleotide change in a genome. A common

approach to address this challenge prioritizes sequences that share similar nucleotides
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across distantly related species, with the rationale that mutations at such positions were

deleterious and removed from the population by purifying natural selection. Our manu-

script shows that one popular measure of sequence conservation, the GERP score, per-

forms well at identifying selected mutations if mutations at a site were under selection

across all of mammalian evolution. Changes in selection at a given site dramatically

reduces the power of GERP to detect selected mutations in humans. We also combine

population genetic models with the distribution of GERP scores at noncoding sites across

the human genome to show that the degree of selection at individual sites has changed

throughout mammalian evolution. Importantly, we demonstrate that at least 80 Mb of

noncoding sequence under purifying selection in humans will not have extreme GERP

scores and will likely be missed by modern comparative genomic approaches. Our work

argues that new approaches, potentially based on genetic variation within species, will be

required to identify deleterious mutations.

Introduction

One of the largest challenges in modern medical and population genetics is determining the

phenotypic and fitness consequences of a particular mutation. Genome-wide association stud-

ies (GWAS) have implicated hundreds of loci across the genome for controlling many traits

[1]. However, finding causal variants at these loci has remained challenging due to the statisti-

cal correlations between markers (linkage disequilibrium) and by the fact that most GWAS

hits fall in noncoding regions of the genome with little obvious function [2]. Knowledge of the

particular causal variant(s) is an important goal, as it will improve risk prediction and enable a

more detailed understanding of the biological mechanism behind how the variant influences

the trait. In population genetics, there is tremendous interest in understanding how much of

the genome is under selection and the types of mutations underlying much of the phenotypic

variation and adaptation in different species. Further, studies have aimed to precisely quantify

the amount of deleterious variation segregating in populations to assess the role of population

history at influencing deleterious variation and for determining whether small population size

could lead to an accumulation of deleterious variants, potentially causing a mutational melt-

down and extinction [3–6].

One popular way to assess which mutations in a genome may be biologically functional and

affect fitness is to examine the extent to which nucleotides are conserved across evolutionarily

distant taxa. Sites showing a deficit of substitutions across many lineages are thought to be

functionally important and subject to purifying selection. Sites showing a larger number of

substitutions are thought to be evolving at a neutral rate and would be less likely to be func-

tional or under purifying selection. A number of statistical approaches have been developed to

find these sites in the genome showing conservation across disparate species [7–14]. Addition-

ally, this concept has been used in several annotation tools such as SIFT, PolyPhen, and

CADD scores to predict which mutations are likely to be deleterious [15–18].

One particular comparative genomic approach that has received widespread use is the

Genomic Evolutionary Rate Profiling (GERP) score [19,20]. The GERP score is defined as the

reduction in the number of substitutions in the multi-species sequence alignment compared to

the neutral expectation. For example, a GERP score of 4 would mean there are 4 fewer substi-

tutions at a particular site than what is expected based on the neutral rate of evolution across

the phylogeny. As such, the GERP score is a measure of sequence conservation across multiple

species. However, GERP scores have been commonly used in evolutionary genomic studies as
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a measure of the strength of selection acting on derived mutations segregating within a species.

In these applications, it is assumed that mutations that appear at sites that are highly conserved

across many species are deleterious and thus contribute to genetic load within a species. Quan-

titatively, for each segregating site within a species, the GERP score is assigned to the derived

mutation segregating at that site. For example, Schubert et al. [3] studied patterns of deleteri-

ous mutations in wild and domesticated horses. They computed a GERP score load for each

horse which was the average GERP score over all derived variants within that individual. They

found an increase in the GERP score load in the domesticated horse, arguing that domestica-

tion has led to an increase in deleterious variation. Henn et al. [5] used GERP to assess the fit-

ness impact of amino acid changing mutations in humans. They defined mutations with

GERP scores 4–6 to have “large” deleterious effects, corresponding to a selection coefficient of

10−3, and observed an increase in the number of these derived deleterious alleles in non-Afri-

can populations. They also reported that the GERP scores summed over all sites within an

individual were higher in an average Mayan Native American genome compared to an average

San Sub-Saharan African genome. Marsden et al. [4] used GERP to identify deleterious amino

acid changing mutations in dogs and wolves and found an increase in deleterious mutations

(GERP>4) in dogs and that dogs have a higher summed GERP score across all amino acid

changing variants as compared to wolves. Lastly, Valk et al. [6] found that, across a range of

mammals, species with historically low population size and low genetic diversity have a lower

average GERP score of the derived allele than species with large population sizes, suggesting

that purging of deleterious alleles reduces genetic load in small populations in the long term.

While GERP scores have been extensively used in medical and population genetics, some

challenges remain. First, the studies described above partition the GERP scores in a coarse

fashion to reflect the underlying deleterious selection coefficient. Those mutations with a

higher GERP score were assumed to have a more deleterious selection coefficient. However,

the accuracy of attributing GERP scores to particular fitness effects remains unclear. GERP

scores may not provide quantitative evidence of the strength of selection because any deleteri-

ous mutations that have a scaled selection coefficient of Nes< -2 will not accumulate as substi-

tutions [21–24]. Below this value, neither weakly nor strongly deleterious mutations will

accumulate as substitutions, and it may thus not be possible to distinguish between them using

comparative genomic data [23]. Second, most conservation-detection methods assume con-

stant selection pressures across all branches of a phylogeny [8]. Any sort of lineage-specific

selection, or turnover of functional sequence (i.e. a sequence has a specific regulatory role in

one lineage, but does not in another lineage), could potentially be missed by these comparative

genomic approaches. Recent evidence has suggested a fair amount of turnover of functional

sequence in the noncoding regions of the human genome [25, but see 26]. Lastly, it was shown

that the power of comparative genomics methods to detect sequences under selection can be

maximized by selecting optimal subsets from a larger set of species [27]. However, the optimal

subset of species to maximize the performance under different selection and turnover scenar-

ios remains unclear. This is especially prescient in light of recent projects aimed at increasing

the numbers of sequenced genomes across species [28,29].

Finally, the extent of the human genome under purifying selection has remained under vig-

orous debate. Early comparative genomic studies suggested that at most 15% of the genome

was under selection [9,20,30–33]. However, biochemical studies conducted by ENCODE have

suggested that up to 80% of the genome shows activity in at least one biochemical assay [34]. It

may be possible to reconcile these estimates by noting that they measure different processes—

functional assays assess whether the nucleotide has biochemical activity, but this activity may

not necessarily be related to fitness [35,36]. As such, mutations at biochemically active sites

may not have an evolutionary impact and thus could appear to be neutral in comparative
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genomic approaches. Further, there has been evidence from comparative genomic studies of

turnover of sequence subjected to purifying selection [25,30,33,37,38]. This could occur in a

number of ways. First, sequences may have a biological function in some species and not oth-

ers due to changes in regulatory architecture across species [39]. Second, even if the regulatory

region retains biological function over long evolutionary times, selection coefficients of muta-

tions at particular sites could change over time due to epistatic effects with other mutations

[40]. Rands et al. suggest that the evolutionary history of the human genome has been highly

dynamic, with only 25% of the elements under purifying selection in humans having main-

tained constraint in mouse [25,30]. Other studies have suggested that more recent evolution-

ary turnover has had little impact on the functional content of the genome [26]. Thus, it

remains an open question as to how much of the genome is under purifying selection and the

amount of turnover of functional sequence that is occurring.

Here we conduct realistic simulations under population genetic models of purifying selec-

tion to assess the performance of GERP scores under different scenarios. We first evaluate

whether GERP scores can provide reliable estimates of selection coefficients at individual cod-

ing mutations. We then assess the extent to which sequence turnover affects the ability of

GERP to identify selected sequences at noncoding sites. Lastly, we estimate that at least 4.51%

of the noncoding portion of the human genome is under purifying selection and that muta-

tions at most of these noncoding sites have not been under selection throughout all of mam-

malian evolution. Our results point to several important limitations to using comparative

genomic approaches for determining the fitness effects of individual mutations and add to the

growing literature arguing for using polymorphism data for assessing present-day amounts of

selection within species [23].

Results

Estimating the strength of selection for mutations at coding sites from

GERP scores

We begin by examining how the GERP score behaves under different amounts of purifying

selection. The GERP score is a measure of the decrease in the number of substitutions or fixa-

tions relative to neutrality. Thus, it is directly related to the probability of fixation of deleteri-

ous mutations as derived by Kimura [21]. The ratio ω of the substitution rate under selection

relative to the neutral substitution rate depends on the compound parameter of the product of

haploid effective population size Ne with the selection coefficient s [22,24]:

o ¼
2Nes

1 � e� Nes
ð1Þ

It is assumed that fitness of an individual with a deleterious mutation is reduced by a factor

of 1-s in the heterozygous state. We then simulate sequences under this model of substitution

along a phylogenetic tree of 36 mammalian species (see Methods). By using the GERP++ soft-

ware for estimating the number of substitutions that have accumulated at each site, we can

compute a GERP score. Examining the relationship between the GERP score as a function of

the strength of selection, we see that more deleterious mutations tend to have more positive

GERP scores (Fig 1A). For mutations that are moderately deleterious, Nes<-5, GERP scores

are>4, suggesting that GERP can distinguish these mutations from neutral ones. Nearly neu-

tral mutations, however, (-2<Nes<0) have a broad distribution of GERP scores, with some

being >4 and others being <0. GERP scores< = 0 suggest effectively neutral evolution

(-1<Nes<0).
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Importantly, GERP scores are often used to assign selection coefficients to individual vari-

ants [5,41–43]. Fig 1A shows that the largest GERP score (GERP = 6.18, i.e. zero predicted sub-

stitutions) can be generated by weakly deleterious mutations as well as very strongly

deleterious mutations. For example, both sites with weakly deleterious mutations (e.g., Nes =

-4) and sites with strongly deleterious mutations (e.g., Nes = -1000) lead to the largest GERP

score with high probability (98.2% and 100%, respectively). Thus, observing the largest possi-

ble GERP score for a given alignment is not very predictive of the strength of purifying selec-

tion. The reason for this is that both weakly and strongly deleterious mutations have a low

probability of fixation. As such, mutations with either strength of selection will have a similar

GERP score—namely, a large one because all or most substitutions were removed by purifying

selection. Smaller GERP scores, however, are only compatible with weak selection or neutrality

(Nes> -4).

While GERP may not be very useful at identifying the selection coefficient at individual

mutations, it may be able to distinguish sites where mutations are neutrally evolving from

those where deleterious mutations occur. To test this, we simulated neutral sequences along

the 36 species phylogeny and identified the 95% upper quantile of the GERP score distribution

to use as a cutoff to identify mutations undergoing purifying selection. We then applied this

cutoff to data simulated with different strengths of purifying selection. GERP has near-perfect

power to correctly identify sites with moderately (Nes<-2) to strongly deleterious mutations

(orange curve in Fig 1B). Power drops dramatically for sites where mutations are nearly

neutral.

Though GERP scores are often applied to coding regions of genes, they are calculated with-

out using or modelling the codon structure of protein-coding genes. To examine how GERP

scores behave under a codon-based evolutionary model, we simulated sequences under a

codon model where mutations either change the coding amino acid (nonsynonymous) or do

Fig 1. GERP scores as a function of the strength of purifying selection (Nes). (A) Violin plots of simulated GERP scores on a 36 species phylogeny assuming Nes
values from 0 to -8 in steps of 0.5. (B) Power of GERP to detect purifying selection, at a given selection strength shown on the x-axis. GERP scores were computed

using the entire phylogeny of 36 mammalian species, but purifying selection only occurred in the phylogenetic scope shown in the legend.

https://doi.org/10.1371/journal.pgen.1008827.g001
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not change the amino acid (synonymous; see Methods). We simulate codons as a sequence of

three nucleotides, and for each simulated codon, the selection coefficient of an amino acid

changing mutation was assigned a value sampled from a mixture of a gamma distribution and

a point mass at neutrality as inferred in Kim et al. [44]. Synonymous mutations were assumed

to be neutral. For 0-fold degenerate sites, i.e. sites where every possible mutation is nonsynon-

ymous, we see that GERP has reasonable power to distinguish nearly neutral mutations from

more strongly deleterious ones (Fig 2A). For example, GERP scores<0 are almost only seen

for sites that have Nes> -1, whereas GERP scores>5.5 are strongly associated with purifying

selection (Nes<<-1). However, only about 67% of GERP scores between 4.5 and 5.5 are sub-

jected to purifying selection (Fig 2B). GERP scores are less predictive for amino acid changes

at 2-fold and 3-fold degenerate sites than at 0-fold degenerate sites (Fig 2; S1 Fig). At 3-fold

degenerate sites, as much as 21% of the sites with Nes< -1 show GERP scores that are <0 as a

result of neutral changes occurring at these sites throughout the evolutionary history of the

phylogeny. Mutations at 4-fold degenerate sites are neutrally evolving in these simulations.

However, due to the long evolutionary time span covered by the 36 mammalian species phy-

logeny, in codon models, sites that are currently 4-fold degenerate in a certain species could

have been 0, 2, or 3 fold degenerate sites at previous times and could have experienced deleteri-

ous amino-acid changing mutations during their history. Nonetheless, for these sites, we see in

our simulations that the average strength of selection is unrelated to the GERP score (Spear-

man’s ρ = 0.0061, p = 0.16).

In sum, due to the redundancy of the genetic code, the same GERP score can be associated

with different Nes values, depending on where it occurs in the codon, complicating the map-

ping of GERP scores to selection coefficients.

Functional turnover at noncoding sites

Thus far our models have assumed that the selection coefficient at a given site has remained

constant over evolutionary time. However, there is some evidence of rapid functional turnover

of noncoding constrained sites [25,30,33,37,38]. Further, even if the regulatory architecture

Fig 2. GERP scores and Nes values under a codon-based model of evolution. (A) Nes values of nonsynonymous mutations as a function of GERP scores for different

degrees of codon degeneracy. Codon degeneracy and Nes value are observed in humans, whereas simulations are run across the entire 36 species tree. Note that a

nonfunctional site in humans is considered to have a Nes value of zero, whereas a 4-fold degenerate site can have Nes values different from zero. The blue line represents

the median Nes value given a specific GERP score, whereas the dashed lines represent the 2.5% and 97.5% quantiles. (B) Distribution of Nes values for GERP scores at

0-fold and 2-fold sites. Note that the Nes values are distributed differently for the same GERP scores depending on the type of site.

https://doi.org/10.1371/journal.pgen.1008827.g002

PLOS GENETICS Population genetic models of conservation scores

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008827 May 29, 2020 6 / 26

https://doi.org/10.1371/journal.pgen.1008827.g002
https://doi.org/10.1371/journal.pgen.1008827


has remained constant over evolutionary time (i.e. the same amount of gene product is needed

and the same transcription factors are binding in the same general area of sequence), the selec-

tion coefficients can change over time due to changes on the genetic background on which

mutations arise. Such turnover implies that mutations at a site may be under selection during

some time points, while neutrally evolving in other species or at other points in time. To inves-

tigate the performance of the GERP score under scenarios with evolutionary turnover, we sim-

ulated data over the 36 species phylogeny using a model where a site transitions between

functional and non-functional according to a Markov process (see Methods; S2 Fig). The rate

of turnover from functional to non-functional was set to 2.48 turnover events per neutral sub-

stitution, as estimated for noncoding elements in Rands et al. [25]. The rate from non-func-

tional to functional was set to 0.19, assuming an equilibrium of ~ 7% functional sequence. The

selection coefficients of mutations at functional sites are assumed to be distributed according

to Torgerson et al. [45], whereas mutations at non-functional sites are assumed to be neutral.

When there is no functional turnover, the distribution of GERP scores is reasonably predic-

tive of the strength of selection acting on a site (see above; Fig 3A). Specifically, 82% of the sites

that show a large GERP score (>5.5) are selected with Nes< -1. Sites where mutations evolve

neutrally have smaller GERP scores. Assuming functional turnover as outlined above (i.e.,

according to the estimates in [25]) results in a different pattern. With functional turnover, we

observe sites that are under strong selection within the human lineage but have very small and

even negative GERP scores (Fig 3A). Turnover of functional sequence also results in neutrally

evolving sites within the human lineage showing large GERP scores (Fig 3B). For example,

approximately 61.6% of GERP scores >5.5 in our simulations are from sites that are not func-

tional in humans, i.e. mutations segregating at those sites in humans would be neutral, but the

GERP score at those sites would strongly signify selection. For comparison, in a model without

turnover, only 15.9% of mutations at sites with a GERP score >5.5 are neutrally evolving in

humans. Less extreme GERP score cutoffs have a larger proportion of neutral sites even under

the model without functional turnover (e.g., 76.0% neutral sites for GERP score >4), which

Fig 3. Turnover of selected sequence disrupts the relationship between GERP scores and Nes values. (A) Nes values as a function of GERP scores for a model without

turnover of functional sequence across the 36 species tree (left) or where there is turnover modelled according to our Markov model (right). The turnover rate is

estimated in Rands et al. [25] for noncoding elements. Green dots denote selected sites and yellow dots denote neutral sites, as observed in humans. The blue line

represents the median Nes value given a specific GERP score, whereas the dashed lines represent the 2.5% and 97.5% quantiles. (B) Distribution of Nes values for GERP

scores when there is no turnover (left) and when there is turnover of functional sequence (right). Note that when there is turnover, the majority of the sites with high

GERP scores (>5.5) are not functional.

https://doi.org/10.1371/journal.pgen.1008827.g003
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only worsens under the turnover model (85.1%). Thus, even a small amount of functional

turnover can dramatically limit the utility of GERP scores at detecting mutations under

selection.

Finally, we explored the power of GERP scores to detect purifying selection that only occurs

within a specific subset of the phylogeny. Mutations at these sites are neutrally evolving on the

remaining parts of the tree. As done previously, the entire 36 species were used to compute

GERP scores. When considering purifying selection only on the 18 supraprimates (e.g.

rodents, lagomorphs, treeshrews, colugos, and primates), power reaches a maximum of about

23% (Fig 1B). When considering purifying selection restricted to either the primates or just the

human lineage, GERP has essentially no power to detect purifying selection. In sum, consistent

with our simulations under the Markov model of turnover, the general application of GERP

scores will have little power to identify lineage-specific purifying selection. We explore the sen-

sitivity of our conclusions to various modeling assumptions (S1 Text, S4 Fig–S7 Fig).

Optimal tree size for GERP scores

The simulations thus far have used a phylogenetic tree of 36 mammalian species. We next

investigate the effect of the tree size, i.e. the sum of branch lengths of the phylogenetic tree, on

the power to detect sites under selection. There are several reasons why the tree size may vary.

First, the tree size varies across the genome due to missing data in the multi-species sequence

alignment, leading to branches that have to be excluded due to missing data (S3 Fig). Second,

there is interest in expanding the number of genomes sequenced [28,29], increasing the num-

ber of branches of the tree. The impact that larger phylogenetic trees will have on the utility of

GERP has yet to be explored. Lastly, we saw that with sequence turnover, or selection on spe-

cific branches of the phylogeny, using the entire tree to compute the GERP scores was drasti-

cally limited in power. It may be possible to use subsets of the tree to improve power.

To investigate the power of GERP to detect sequence under purifying selection, we gener-

ated trees with a wide range of tree sizes. For this analysis, we used a 100 vertebrate tree down-

loaded from the UCSC genome browser. Starting with the two branches from the tree that

connect humans and chimps, we successively added species to increase the size of the tree in

the smallest possible increments of total branch lengths, until we reached a full tree of 100 ver-

tebrate species, with a total tree size of 18.5 expected substitutions per site. Then, we simulated

alignment data conditional on the respective trees under neutrality and with varying levels of

selection (see Methods). When there is no sequence turnover, increasing the tree size results in

an increase in statistical power to detect selected sites (Fig 4). The increase in power is most

dramatic for weak selection (Nes>-2). For strong purifying selection (Nes<-100), there is close

to 100% power even for shallow tree depths of 4 expected substitutions.

We next investigated scenarios with turnover of selected sequence. We evaluated a level of

turnover as estimated for noncoding elements [25] and an intermediate level with a rate of

turnover half of the estimated value. In both cases, the power to detect functional sequence in

humans decreased dramatically relative to the no turnover scenario, consistent with the simu-

lations described above (Fig 4). Further, there is greater power to detect stronger selection.

However, we now find that increasing the phylogenetic tree size does not monotonically

increase statistical power. There is no improvement in statistical power with increasing tree

size for very weak selection (Nes< -0.25). Moreover, for strong selection, power peaks at a tree

size of about 6.5 substitutions and, after that, decreases with increasing tree size. The reason

for this decrease in power is that adding more species at this point leads to a decoupling of the

functional status in humans (or any other focal species) and the functional status in the other

species and therefore level of conservation across the phylogeny. In other words, mutations at
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highly constrained sites that are functional across large parts of the phylogenetic tree might

have switched to non-functionality in humans, and vice-versa. When considering high levels

of turnover, like those that may be expected in intergenic regions, this de-coupling becomes

stronger and statistical power decreases even more (Fig 4). These results suggest that optimal

tree size depends on the strength of purifying selection as well as whether there is turnover of

functional sequence. Adding additional sequences does not always improve power and in fact

can decrease power for identifying strongly selected elements with high levels of turnover.

Comparing evolutionary turnover models using data

The distribution of GERP scores across the human genome is a summary statistic of sequence

conservation. Here we leveraged this summary statistic to compare different models of turn-

over of selected sequence to each other. We do this by fitting evolutionary models to the

empirical GERP score distribution computed from commonly used sequence alignment of

data from 35 mammalian species to the human genome [3,5,19,41,43]. Because the number of

species for which there is data in the multi-sequence alignment varies across the genome, we

partitioned the genome into multiple bins. Each bin represents sites with one particular tree

size (S3 Fig). Overall, a total of 268 bins were considered, with tree sizes ranging from 3.5 neu-

tral substitutions to 6.18 neutral substitutions per site. Fig 5 shows examples of the GERP score

distribution for sites corresponding to small, intermediate, and large tree size (3.52, 4.69, and

Fig 4. Power to detect purifying selection using GERP scores as a function of tree size. Colored lines denote different strengths of purifying selection. Tree size is

defined as the sum of lengths of all branches of the tree. Branch length is measured as expected neutral substitutions, i.e. a branch with length one has on average one

neutral substitution. The tree size is varied by including/excluding species from a phylogenetic tree of 100 vertebrates (see main text). Left panel shows no turnover.

Right panel shows intergenic levels of turnover with turnover rate as estimated in Rands et al. [25] for noncoding elements. Middle panel shows intermediate turnover

with a rate half of that in the right panel. Blue vertical lines denote the tree size of the 36 mammalian species tree that is commonly used for calculation of GERP. See S2

Text for further discussion of alternate strategies for adding species.

https://doi.org/10.1371/journal.pgen.1008827.g004
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5.85, respectively). As expected, the GERP score distribution differs across these three tree

sizes. Sites with the largest tree sizes have a higher proportion of sites with the largest possible

GERP score. This result is unsurprising since high sequence conservation across species is

likely to improve the quality of the multi-species alignment, leading to greater tree sizes.

We next fit a mixture distribution to the empirical GERP score distributions. The mixture

distribution consisted of three categories of simulated mutations. The first category consisted

of sites where mutations are neutrally evolving across the entire phylogenetic tree (category

N). The second category consisted of sites where mutations are consistently under purifying

selection across the entire tree, such that substitutions would not occur and GERP scores

would show the maximum value (category C). The third category consisted of sites that had

experienced functional turnover or had changed selection coefficients over the timescale of

mammalian evolution (category TO). That is to say, at these sites mutations are deleterious in

the human lineage but could have been neutral on other branches of the phylogeny. Here we

used a turnover model based on the turnover rate of noncoding elements from Rands et al.

[25]. When the site was under selection, no substitution would occur. However, when the site

was neutral, substitutions could occur at the neutral rate (see Methods). The turnover model

Fig 5. Fit of models of purifying selection to the empirical GERP score distribution for different tree depths. Dashed gray lines indicate the empirical distribution of

GERP scores. The 3 plots in each row denote the distributions for different depths in the multi-species sequence alignment. The GERP scores were normalized by

dividing each score by the largest possible score given the tree size (see Methods). (A-C) Fit of a model with 3 categories of sites: neutral, selected, and turnover (see text).

(D-F) Fit of a model with 2 categories of sites: neutral and selected. Note that the model with turnover provides a more satisfactory fit to the empirical data.

https://doi.org/10.1371/journal.pgen.1008827.g005
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allows substitutions to occur on branches that are non-functional but not along branches that

are functional. The parameters of the mixture distributions estimated from the data are the

proportions of sites in each of the three categories (see Methods). This mixture distribution

can fit the empirical distribution of the GERP scores relatively well for all three tree sizes (Fig

5A–5C). The smaller GERP scores indicate less sequence conservation and such sites are

mostly fit by the neutral component. The very high GERP scores, indicating a high degree of

sequence conservation, are best fit by sites in category C (orange in Fig 5C). The turnover

model can explain the intermediate GERP scores that are neither explained by sites in category

N or C (blue in Fig 5B and 5C).

We next assessed how well a model fits the data by examining the overlap of the distribution

of standardized GERP scores observed in the data with the distribution of standardized GERP

scores under a certain model (OModel; S8 Fig). OModel was measured from kernel density esti-

mation of both distributions (see Methods for more details). A value of OModel of zero indicates

no overlap of the two distributions, a value of one indicates perfect overlap, a value between

zero and one indicates intermediate overlap. The parameters for each mixture model (i.e., the

mixing proportions of sites in category N, C, and TO) were chosen such that they maximize

OModel, which means that the model fits optimally to the data.

The estimated proportion of sites in the neutral, selected, and turnover categories varies as

a function of tree size (Fig 6A). The shorter tree depths have a more neutral sequence, as

expected, considering that neutrally evolving sequence contains more substitutions and is thus

harder to align. Importantly, more than half of the sequence with large tree sizes is accounted

for by the turnover model. The remainder is split equally between the N and C categories.

While the fit of the three-component mixture model is visually satisfying, we next compared

the fit of a model that did not include evolutionary turnover (Fig 6B). This mixture model only

contains the two components N and C. Visually, this two-component mixture model does not

fit the empirical distribution of GERP scores very well for the medium and large tree sizes (Fig

5E and 5F). Specifically, the model without turnover cannot account for sites with intermedi-

ate GERP scores (light gray shading in Fig 5E and 5F).

To more formally compare the fit of the different models, we simulated sites under two-

and three-component mixture models (N+C, N+TO, N+TO+C) as well as sites under the

purely neutral model (N). We ran 500 replicates, and for each replicate, we mimicked the

number of sites that are observed in the empirical data for each tree size (S3 Fig). The parame-

ters for the simulations are from the tree-size specific estimates that we derived from the 36

species alignment data (Fig 6A and 6B). First, we test the performance of our method for esti-

mating the proportions of the three components N, C, and TO. We find that our method leads

to unbiased and accurate estimates of the proportion of sites from each of the three compo-

nents, except for the highest tree sizes >6 where the small number of available sites leads to

larger uncertainty in the estimates (S9 and S10 Figs).

Next, we developed a test statistic (Λ) for model comparison, i.e. for evaluating if a more

complex model fits significantly better to the data than a less complex model. The test statistic

Λ is derived by computing the log-ratio of one minus the maximized overlaps OModel1 and

OModel2 as ΛModel1 vs Model2 = 2 (log(1−OModel1)−log(1−OModel2)), where Model1 refers to the null

model with fewer parameters. A large value of ΛModel1 vs Model2 indicates that Model2 fits better

to the data than Model1. We derive two null distributions for this test statistic: one using simu-

lations under a model with only neutral sites (N; Fig 7A), and one using simulations under a

model that contains neutral and selected sites, but no turnover (N+C; Fig 7B). Further, we cal-

culate four versions of Λ, each one comparing two types of models (N vs. N+TO; N vs. N+C;

N vs. N+TO+C, and N+C vs. N+TO+C).
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First, we simulated 500 test datasets under the N model to derive null distributions of

ΛN vs. N+TO, ΛN vs. N+C, and ΛN vs. N+TO+C. Next, we tested where the empirically observed val-

ues of ΛN vs. N+TO, ΛN vs. N+C, and ΛN vs. N+TO+C fell in the relevant null distributions. In all

three cases, the observed test statistic falls well outside the range of the 500 simulated values

(Fig 7A), suggesting that any of the three mixture models fit better to the data than the null

model of neutral evolution (p< 0.01). Second, we simulated 500 test datasets under the N+C

model and examined where the observed value of ΛN+C vs. N+TO+C fell relative to this simulated

null distribution. We again find that the observed test statistic falls well outside the range of

the 500 simulated values (Fig 7B), suggesting that adding the turnover component to the

model significantly improves the fit (p< 0.01).

Fig 6. Amount of the noncoding human genome under purifying selection for different models. Left panels show the proportion of sites falling in each category

of the mixture component as a function of tree size. Right panels show the proportion of the genome falling in the selected categories under the model. (A) The full

model including sequence turnover (N+C+TO) that better fits the data. (B) A model without sequence turnover (N+C).

https://doi.org/10.1371/journal.pgen.1008827.g006
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Finally, we repeated the same testing procedure for each tree size separately and calculated

p-values as the proportion of the 500 simulations that have a larger value of Λ than that of the

data. We find that for tree sizes larger than approximately 5, the full model (N+C+TO) fits sig-

nificantly better than both the N model and the N+C model (p< 0.05; S11 Fig). Below a tree

size of 5, adding a selected component (N+C or N+TO) seems to significantly improve the fit

over the neutral model (N). However, the full model (N+C+TO) does not improve over the N

+C model, the N+TO model, or the neutral model (p> 0.05; S11 Fig). This is in agreement

with the empirically estimated mixture proportions (Fig 5A), where the proportion of the C

component approaches zero below tree size 5 and only the N and TO components remain.

In sum, we find that if the empirical data truly evolved under a scenario where mutations

are either neutrally evolving or have the same selective effect across the phylogeny, we would

be unlikely to see the observed improvement in fit by adding the turnover component to the N

+C model. Taken together, these results imply that intergenic regions consist of a mix of sites:

sites where mutations are neutral, sites where mutations are consistently selected across the

full phylogeny, and sites where mutations are selected only in sub-parts of the phylogenetic

tree.

Inference of the amount of the human genome under purifying selection

Finally, summing over the different tree sizes weighted by their relative proportions across the

genome, we can estimate the proportion of sites genome-wide in each category. We restrict

our estimate to noncoding regions that show high mappability and remove repeat-rich

regions. When considering the full (N+C+TO) model, 4.51% of the noncoding genome is

inferred to be under purifying selection, with the majority of the 4.51% coming from the

Fig 7. The observed values of Λ fall outside the null distributions. The null distribution (blue points) is derived from 500 simulations under the respective null

model, i.e. assuming only neutral sites in (A) and neutral plus constantly selected sites in (B). The triangles denote the empirically observed statistics. In all cases, the

null hypothesis is rejected with p<0.01.

https://doi.org/10.1371/journal.pgen.1008827.g007
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turnover category (Fig 6A). The model without turnover predicts a greater proportion of sites

in the C category (1.08%), however, the overall proportion of the genome under purifying

selection is substantially smaller than under the model with turnover. Given that the model

with turnover fits the data significantly better than the model without turnover, we estimate

that at least 4.5% of the noncoding human genome has been impacted by purifying selection

along the human lineage. Adding about 1% functional coding sequences [46] to this propor-

tion would make the total proportion of the genome under selection to be close to 5.5%.

Our estimated model of sequence evolution also allows us to test the effectiveness of GERP

scores to prioritize or filter selected mutations at noncoding sites. GERP scores are used to

identify sites where mutations may have an impact on fitness. For example, variants with a

GERP score >4 are often assumed to be deleterious [3,4]. While this cutoff has a low false dis-

covery rate (FDR; i.e. the proportion of sites with GERP>4 where mutations are not under

selection) of 9%, the power to detect selected mutations is seriously limited (Table 1, S12 Fig).

For example, only 30% of selected sites would be identified by this approach. Put another way,

mutations in approximately 80.8Mb of the noncoding human genome are predicted to have

an effect on fitness in humans, but would not show extreme GERP scores. Using less stringent

GERP score thresholds to identify putatively deleterious mutations will increase the power, but

with an increase in FDR (Table 1, S12 Fig).

GERP scores are also used to remove sites where mutations may be affected by purifying

selection for demographic inference that assumes mutations are neutrally evolving. Retaining

only sites with a GERP score <2 would remove ~5.5% of sites in the noncoding genome

(Table 1, S12 Fig). However, under our full (N+C+TO) model, this cutoff would miss ~29%

(33.2Mb) of noncoding sites in which mutations would be deleterious. Removing more of the

genome can help mitigate this effect, but even in the extreme case of removing ~11% of the

genome with GERP scores>0, this still leaves 10% of the selected sites behind.

In sum, filters based on GERP scores might not be effective for applications that rely on

identifying selected sites with high sensitivity and specificity.

Discussion

Here we use population genetic models over deep time scales to help interpret patterns of

GERP scores seen for the human genome. We find that GERP scores are immensely useful for

distinguishing mutations under purifying selection from mutations that are neutrally evolving if

these evolutionary forces have not changed throughout deep evolution. Real-world complica-

tions, like codon models of evolution, missing data, and turnover of functional sequence can

greatly limit the utility of GERP scores to identify sites where mutations are under selection.

Lastly, a model including functional turnover fits the genome-wide distribution of GERP scores

significantly better than a model where mutations at sites are either under selection or neutrally

evolving across the entire mammalian phylogeny. This best-fitting model suggests that muta-

tions in about 4.51% of noncoding sites are under purifying selection in the human lineage.

Table 1. Performance of GERP scores to identify noncoding sites containing deleterious mutations in the human lineage.

Threshold % of sites > threshold that are neutral (FDR) % of selected sites > threshold (power) % of genome filtered % of selected sites not filtered

>4 9.1% 30.1% 1.5% 69.9%

>3 23.7% 54.4% 3.2% 45.6%

>2 41.8% 71.3% 5.5% 28.7%

>1 56.1% 82.2% 8.5% 17.8%

>0 64.8% 89.7% 11.5% 10.3%

https://doi.org/10.1371/journal.pgen.1008827.t001
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Our estimate that 4.51% of noncoding sites in the human genome experience deleterious

mutations is in line with previous estimates based on conservation patterns [33]. However, it is

most likely an underestimate of the fraction of functional sequence, for several reasons. First,

our analysis does not detect functional sequences that are evolving very rapidly and/or are sub-

jected to positive selection [47]. Positive selection increases divergence above neutral levels

and thus would lead to negative GERP scores that are interpreted as neutral in our approach.

Second, GERP scores are based on a neutral reference tree with branch lengths estimated from

four-fold degenerate sites [19]. However, there are indications that synonymous sites of verte-

brate genomes are also subject to purifying selection [48]. For example, it was shown that the

overall divergence between chimpanzees and humans is 39% lower at four-fold degenerate

sites than at intergenic sites [49]. Thus, the rate of evolution at four-fold degenerate sites is

likely an underestimate of the rate of neutral evolution at intergenic sites. Using four-fold

degenerate sites as neutral reference is, therefore, a conservative approach as it biases the neu-

tral GERP score distribution to negative values and purifying selection has to be strong enough

to overcome this bias. Finally, our estimate of the fraction of sites under purifying selection

does not measure selection against insertions or deletions (indels). For example, indels may

induce frameshifts in coding regions or secondary structure changes in RNAs, suggesting that

stronger purifying selection may often act upon them than on nucleotide changes in the same

region. This might explain the discrepancy between our estimates of the fraction of functional

sequence and a recent estimate based on indels that suggests that about 7% of the noncoding

human genome is subject to purifying selection [25].

Our finding that the majority of the noncoding sequence under purifying selection in the

human genome has not been under purifying selection across the entire mammalian phylog-

eny does not necessarily mean that the regulatory architecture or selective pressures them-

selves have changed over time. The overall amount of stabilizing selection on gene expression

could have remained constant over time. Rather, selection coefficients at particular sites could

change over time due to the genomic background on which a given mutation occurred [40].

For example, a neutral substitution could fix in a regulatory region, making a mutation at

another site be less deleterious than originally found. Thus, changes in selection coefficients

across the phylogeny at particular sites are expected simply due to the stochastic nature of the

evolutionary process governing which other neutral and nearly neutral mutations have

become fixed in particular lineages.

While the turnover component was required in the mixture model to explain the interme-

diate GERP scores across the human genome, it is in principle possible that very slightly delete-

rious mutations also could account for some of these intermediate scores. However, we ignore

such slightly deleterious mutations since they are relatively rare and most selected mutations

either have a selection coefficient such that they do not fix (Nes< -3) or fix at an effectively

neutral rate (-0.1<Nes< 0). This is supported by simulations assuming a distribution of selec-

tion coefficients of intergenic elements [45]. Under this distribution, the vast majority of muta-

tions either have an expected substitution rate of close to zero, or a neutral substitution rate

(S4 Fig). For the same reason, we find that varying effective population size and thus varying

effectiveness of selection across the phylogenetic tree does not substantially alter the relation-

ship between Nes and the GERP score (S1 Text and S7 Fig). Thus, intermediate GERP scores

are most likely explained by functional turnover and not by mutations with only slightly dele-

terious selection coefficients or varying effective population size across species.

While comparative genomic studies have had some success at identifying functional sites

[17–19,50–55], our present work shows that improvements can be made. First, one improve-

ment would be to use alternate measures of conservation in coding regions of genes [15,16], or

by combining existing codon models of evolution with the GERP framework. Second, because
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GERP is less effective when there is functional turnover, and at distinguishing weak selection

from strong selection, improvement can be made by using polymorphism-based measures of

purifying selection [18,23,56–58]. These methods should only improve as the sample sizes of

human genomes become greater [59]. Lastly, methods that seek to combine comparative geno-

mic information with functional data [17,18,26,60,61] may also offer improved power to iden-

tify functionally important sites.

For evolutionary genetic studies, our work suggests that GERP may be a reasonable

approach to identify which coding sites, if mutated, would give rise to a deleterious mutation.

Because coding sites are thought to not undergo much functional turnover, GERP should still

have some utility. However, the common approach [3–5] of assuming that the GERP score is

proportional to the deleteriousness of a given mutation does not appear to work well. The

prospects of using GERP to compute genetic load at noncoding mutations is likely to be even

more tenuous, due to functional turnover (Table 1). For example, we estimate that mutations

in ~115 Mb of the noncoding genome are under purifying selection in the human lineage, but

only 30% of these sites would have a GERP score>4. Using GERP scores to filter sites where

mutations may be deleterious will also miss a substantial proportion of sites where mutations

are under selection. For example, filtering the ~6% of the genome with GERP scores>2 will

miss 29% of the selected sites. The impact of these effects on downstream analyses remains to

be quantified in future work.

Our work has implications for future comparative genomic studies. The finding that

increasing the number of species used in the multi-species alignment does not always result in

an improvement in power suggests the need to carefully assess the utility of sequencing addi-

tional genomes for conservation-based measures of selection. Another challenge to adding

sequence to compute GERP scores is the need to generate accurate multi-species sequence

alignments. Because all of our simulations assumed no errors in multi-species sequence align-

ments, performance is likely to be worse with alignment errors. From this point of view, com-

puting conservation scores from closely related species with a shallow phylogenetic

relationship is advantageous since the genomes have a highly correlated functional state and

are readily alignable to the focal species. However, if the overall tree size is too small, then con-

servation (i.e., a lack of substitutions) is harder to detect and power is low. This leads to a

tradeoff between tree size and relatedness between the included species (see also S2 Text). Sim-

ulations under our turnover model can be used to optimize the choice of species that are

included in a conservation score analysis, given a specific turnover rate and selection strength

(Fig 4; S2 Text). As projects like Genome 10K [28,29] continue to develop, there will be

sequence data from a cornucopia of species. There is a need for conservation metrics to be

computed on different phylogenetic scopes, with different tree sizes, to optimize power for the

turnover rate and selection strengths of specific functional elements.

The amount of the human genome under the direct effects of purifying selection has

remained controversial. Previous estimates from comparative genomic approaches put a lower

bound around 3–4% [33]. However, these studies require a class of putative sites from which

to estimate the neutral substitution process. Other studies, relying on indels, found that the

percentage of the genome under purifying selection is likely to be slightly higher. Our current

approach estimates that at least 4.5% of the noncoding human genome has been subjected to

purifying selection. As opposed to previous approaches, we explicitly model functional turn-

over and control for the relation between the level of conservation and the amount of missing

data. Thus, our approach provides an independent line of evidence that about 4.5% of the non-

coding genome is under purifying selection. Importantly, we directly compare the fit of models

with and without turnover to the genome-wide GERP score distribution. Because our statisti-

cal approach makes few assumptions (see S1 Text for a detailed discussion of the assumptions
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behind our approach), it provides robust statistical support for the turnover of selected

sequence. Importantly, our approach suggests that many of the noncoding sites under purify-

ing selection fall in the turnover category. As such, our work argues that evolutionarily impor-

tant sequences have changed over millions of years of evolution.

Methods

Simulating deleterious substitutions along a phylogenetic tree

A neutral tree of 46 vertebrate species was downloaded from the UCSC genome browser

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/46way.nh). A subset of spe-

cies was then selected to arrive at the tree of 36 mammalian species that is commonly used for

GERP analysis [3,5,19,41,43]. The length of a branch reflects the neutral substitution rate along

the branch, i.e. the expected number of neutral substitutions along this branch per site. Simula-

tions of alignment data were done with the software pyvolve [62], under the nucleotide/HKY85
model and setting the transition to transversion ratio to 2. The equilibrium frequencies were

assumed to be equal for all four nucleotides. To test robustness of the GERP score distribution,

a range of different nucleotide evolution models were simulated as well (see S1 Text). Deleteri-

ous mutations have a reduced substitution rate as a function of the strength of selection

according to Eq 1. We simulate deleterious mutations by scaling the full tree by a factor ω
which takes into account the reduced substitution rate as a result of purifying selection.

Estimating the rate of substitutions with GERP++

We used the program gerpcol from the GERP++ software [19] to estimate the number of

“rejected substitutions” (RS), or GERP score. The GERP score can be viewed as the number of

substitutions “rejected” by evolutionary constraint. Gerpcol estimates nucleotide frequencies

from the alignment data to use in the calculation of the GERP score, as was done for the

robustness analyses in S1 Text and S13 Fig. Generally, we can estimate these frequencies accu-

rately from whole-genome data, so we removed this source of estimation variability and fixed

the nucleotide frequencies to the known simulation values (i.e. equal proportions of nucleo-

tides). This was done by changing the source code of gerpcol.

Simulations under the codon model

The codon simulations were done with pyvolve under the codon model, again with a transition

to transversion ratio of 2. The ‘neutral_scaling’ parameter was set to True to make sure that

the tree reflects the synonymous substitution rate and not the overall substitution rate (see

pyvolve manual). The codon model assumes a GY-style substitution matrix. The dN/dS ratio is

set with the omega parameter in the pyvolve model specification. The ω parameter was calcu-

lated by using Eq 1, given a specific Nes value for nonsynonymous mutations. The nonsynon-

ymous Nes values were sampled according to the best fitting-model in Kim et al. [44], where

the Nes values of mutations are distributed according to a mixture of 82.6% gamma-distributed

Nes values (shape = 0.343, scale = 334) and 17.4% neutral mutations.

Simulations under the turnover model

We model functional turnover as a time-homogeneous random Markov process with two

states, functional and nonfunctional, using the model proposed by Rands et al. [25]. This

model makes the assumption that the rate of turnover is constant throughout time. Specifi-

cally, each simulated functional site will lose its function with a rate b and each nonfunctional

site will gain function with rate c. The equilibrium proportion of functional sequence is thus c/
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(b+c). As opposed to previous models that assume an infinite sites model [25], we consider the

genome to consist of a finite number of sites and thus account for a reversion back to function-

ality of neutral but previously functional sequence.

We simulated functional turnover along a given phylogenetic tree. The functional state of

the root branch was chosen randomly with probability c/(b+c) for being functional, and 1-c/(b

+c) for being nonfunctional. The rates b and c are considered per one time unit of branch

length, which is usually provided in units of expected neutral substitutions. The waiting time

for a switch of the state along a branch was simulated as an exponentially distributed waiting

time with rate parameter c for a branch that starts in a nonfunctional state, and b for a branch

that starts in a functional state. Further, a branch can contain more than one switch along its

length (e.g. from functional to nonfunctional, and back to functional), or no switch at all if the

simulated waiting time is longer than the branch length. Whenever a branch splits into two sis-

ter branches along the phylogenetic tree, the functional state at the end of the parental branch

is copied to the beginning of the two sister branches. The simulation of functional turnover is

started at the root of the tree and then subsequently proceeds over all branches of the tree.

Simulation of alignment data was again done using the software pyvolve. However, the scal-

ing of the simulated tree for deleterious sites was now done for each branch individually. Each

branch length was scaled by a factor that is the sum of ω times the proportion of the branch that

was in a functional state, and the proportion of the branch that was in a nonfunctional status.

Thus, the proportion of the branch that is functional had a substitution rate that was reduced by

the factor ω, whereas the remaining nonfunctional part had a neutral substitution rate.

Estimating the proportion of sites under purifying selection

GERP scores were obtained from the University of California, Santa Cruz genome browser

based on an alignment of 35 mammals to the human reference genome hg19. The allele repre-

sented in the human hg19 sequence was not included in the calculation of GERP scores. The

GERP scores were further standardized by dividing by the expected number of neutral substi-

tutions given the tree size. Thus, a value of zero indicates a neutral rate of substitutions, a value

of one indicates no substitutions, and a negative value indicates a larger number of substitu-

tions than expected under neutrality.

Next, a mixture model was fit to the observed GERP score distribution to provide a direct

estimate of the amount of the noncoding genome under purifying selection, as well as the pro-

portion of the genome where selection coefficients have changed over time. The mixture

model includes three categories of mutations. The proportions of sites in each category are the

parameters we estimated from the model. The first category consists of sites where mutations

are neutrally evolving across the entire phylogenetic tree (category N). To generate the GERP

scores under this model we simulated genetic data along the 36 species phylogeny using

pyvolve and gerpcol as described above (Simulating deleterious substitutions along a phyloge-
netic tree and Estimating the rate of substitutions with GERP++). The second category consists

of sites where mutations are consistently under purifying selection across the entire tree, such

that substitutions would not occur and GERP scores would show the maximum value (cate-

gory C). The third category consists of sites that had experienced functional turnover or had

changed selection coefficients over the timescale of mammalian evolution (category TO). To

generate GERP scores under this category, we used the turnover model of Rands et al. as

described above (Simulations under the turnover model), with a rate parameter of turnover that

was estimated from intergenic data [25].

Because GERP scores do not follow a common probability distribution [19], we used a non-

parametric approach. We separately fit a kernel density to the empirical distribution of GERP
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scores and as well as to the GERP scores simulated under a particular mixture model (see

below). The density was estimated in R using the density function with a bandwidth of 0.05, a

number of grid points of 5000, and a gaussian kernel. After calculating a kernel density of both

empirical and simulated distribution, we then assessed the fit of different models using the

overlap statistic (OModel) of the distribution of standardized GERP scores observed in the data

with the distribution of standardized GERP scores under the model (S8 Fig). OModel is calcu-

lated as two minus the sum of the absolute difference in density of model versus data at each of

the 5000 grid points on the standardized GERP score axis, multiplied by 0.0006, the distance

between two neighboring grid points. Thus, OModel is measuring the amount to which the two

probability densities overlap. A value of OModel of zero indicates no overlap between the two

distributions, a value of one indicates perfect overlap, a value between zero and one indicates

intermediate overlap. The parameters for each mixture model (i.e., the mixing proportions of

sites in category N, C, and TO) were chosen such that they maximize OModel, i.e. such that the

model fits optimally to the data. Maximization was achieved by an exhaustive grid search over

a dense grid on the mixing proportions of the three components N, C, and TO, constrained on

the proportions summing to one. The mixing proportions that lead to the largest overlap

between model and data were defined as the estimates of the proportions. Simulations suggest

that the estimates are accurate and unbiased (S9 and S10 Figs). Summing over the different

tree sizes weighted by their relative proportions across the genome was used to estimate the

genome-wide proportion of sites in each category. However, for this, we remove regions that

are repeat-rich or show low mappability by filtering out challenging regions of the human

genome using the bed file downloaded from https://github.com/Boyle-Lab/Blacklist/blob/

master/lists/hg19-blacklist.v2.bed.gz. Most of these regions do not have any sequence align-

ment across species.

Model comparison

To formally compare mixture models which include different numbers of mixture compo-

nents (e.g. N+C vs. N+TO+C), we developed a test statistic (Λ) for evaluating if a more com-

plex model fits significantly better to the data than a less complex model. Λ is derived by

computing the log-ratio of the maximized overlaps OModel1 and OModel2 as ΛModel1 vs Model2 = 2

(log(1-OModel1)−log(1-OModel2)), where Model1 refers to the null model with fewer parameters.

A large value of ΛModel1 vs Model2 indicates that Model2 fits better to the data than Model1, i.e.

has a larger overlap statistic. We derive two null distributions for this test statistic, one using

simulations under a model with only neutral sites (N; Fig 7A), and one using simulations

under a model that contains neutral and selected sites, but no turnover (N+C; Fig 7B). Further,

we look at four versions of Λ, each one comparing two types of models (N vs. N+TO; N vs. N

+C; N vs. N+TO+C, and N+C vs. N+TO+C). We compute the four versions of Λ from 500

simulations under the null models and then contrast this distribution with the Λ statistic calcu-

lated from the data. The proportion of simulated Λ statistics larger than the empirically

observed value of Λ is an estimate of the p-value. A confidence interval of the true p-value, i.e.

the value that would be derived from an infinite number of simulations, can be computed by

assuming that the number of simulated Λ statistics that are more extreme than the observed

value follows a binomial distribution, with the p-value as success probability and the number

of simulations as number of trials. For example, if none of the 500 simulated statistics is more

extreme than the observed value, then the 95% confidence interval of the true p-value can be

computed with the R command binom.test(x = 0, n = 500) and is [0, 0.00735]. In this case, we

would state that p<0.01.
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Supporting information

S1 Text. Model assumptions and robustness of inference.

(PDF)

S2 Text. Optimally increasing power when adding species.

(PDF)

S1 Fig. Relationship between GERP scores and strength of selection at zero-fold codon

sites. The strength of selection, Nes, is distributed according to a mixture distribution where

82.6% of mutations have gamma-distributed Nes values (shape = 0.343, scale = 334) and 17.4%

of mutations are neutral. The green points represent selected mutations, the blue points neu-

tral mutations. The red points are averages of Nes in bins of GERP scores. Note that the first

codon position of four codons (CTC, CTT, CGT, CGC) shows a less consistent relationship

between GERP score and strength of selection where even strongly selected sites can have

GERP scores that are different from the maximum value. We thus classified these four classes

of sites as two-fold instead of zero-fold.

(PDF)

S2 Fig. Examples of simulated functional turnover on a tree of 100 vertebrates. The rates of

turnover from a functional state to a non-functional state along the tree for both coding and

intergenic sites was taken from Rands et al. [25]. The back-mutation rate from a non-func-

tional to a functional state assumes an equilibrium proportion of functional sequence of 7%. A

red branch indicates functional state, a black branch indicates non-functional state. The simu-

lations are conditioned on the human lineage (far left of the tree) being either in the functional

state (columns one and three) or the non-functional state (columns 2 and 4).

(PDF)

S3 Fig. Tree size distribution for the 36 mammalian species alignment. The tree size is in

units of expected neutral substitutions on the tree. It is taken from the first column of the

GERP/gerpcol software output, which takes into account the reduced tree size due to missing

data in some of the species.

(PDF)

S4 Fig. Without turnover, most sites either show no substitutions or neutral levels of sub-

stitutions. The distribution of expected substitutions (A) given a DFE for noncoding con-

served elements from Torgerson et al. [45]. The assumed tree size of 5.85 should reflect almost

perfect alignment in the commonly used 36 mammalian species alignment (same as in Fig 4C

and 4D). Note that the vast majority of sites either experience an expected substitution rate of

neutral sites (peak at 5.85) or zero substitutions. When assuming a Poisson distribution of sub-

stitutions on the tree to compute standardized GERP scores (B), the score distribution reflects

a mixture of either strongly selected sites (peak at standardized GERP score of one) or a neutral

distribution of substitutions (distribution centered at zero). However, the empirical distribu-

tion of standardized GERP scores (gray) contains a considerable density of sites with a score

between 0.5 and 0.8 that cannot be fit by a model of a DFE estimated for noncoding conserved

elements.

(PDF)

S5 Fig. Estimation of the effective population size for 36 mammalian species. (A) We col-

lected values of synonymous diversity from the literature for a subset of 13 species and pre-

dicted synonymous diversity for the remaining 23 species by assuming a linear relationship

between log(bodyweight) and log(diversity). (B) Synonymous genetic diversity is then
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transformed into haploid effective population size by a simple linear interpolation, assuming a

haploid population size of humans of 40,000 and of mouse of 1,160,000 (i.e. 20,000 and

580,000 individuals, respectively).

(PDF)

S6 Fig. Phylogenetic tree of 36 mammalian species with estimated effective population

sizes. The effective population size of internal nodes was predicted assuming a Brownian

model (see S1 Text).

(PDF)

S7 Fig. Relationship between GERP scores and Nes values in a phylogenetic model with

varying effective population size. Simulations assume the phylogeny and effective population

sizes depicted in S6 Fig. (A) Nes values as a function of GERP scores for a model without turn-

over of functional sequence across the 36 species tree (left) or where there is turnover modelled

according to our Markov model, using the turnover rate from Rands et al. [25] for noncoding

elements (right). The blue line represents the median Nes value given a specific GERP score,

whereas the dashed lines represent the 2.5% and 97.5% quantiles. (B) Distribution of Nes values

for GERP scores when there is no turnover (left) and when there is turnover of functional

sequence. Note that when there is turnover, the majority of the sites with high GERP scores

(>5.5) are not functional.

(PDF)

S8 Fig. Definition of the overlap statistic OModel. The overlap OModel between the probability

density of a statistic estimated from the data (blue area) and the probability density of the same

statistic estimated under a model (red area) is defined as the area of overlap between the two

distributions (striped area). Since probability densities integrate to one, the maximum value of

OModel is one if both distributions fully overlap. If the two distributions do not overlap, the

OModel is zero.

(PDF)

S9 Fig. Estimation error for proportions of sites under different selection models. The true

minus estimated proportion of neutral sites (A), sites under functional turnover (B) and sites

under constant selection (C) were computed using estimates from 500 replicated simulations.

For each simulation, the parameters and tree sizes were chosen to reflect the empirical esti-

mates and distribution (Fig 6A and S3 Fig). The gray shaded area reflects the mean +-2 SD.

The blue line is a fitted loess curve to the data. It is centered on zero, suggesting that the esti-

mates are unbiased across all tree sizes. Note however that the variance in error increases for

tree sizes > 6 because of the small number of sites with alignment across most species.

(PDF)

S10 Fig. Comparison of true and estimated mixture proportions under four different mix-

ture models. The estimated proportion of three different components of sites: neutral sites (N;

green), sites under functional turnover (TO; blue) and sites under constant selection (C;

orange), estimated from 500 replicated simulations. For each simulation, the parameters and

tree sizes were chosen to reflect the empirical estimates assuming four different models: (A)

only N sites, (B) mixture of N and C sites, (C) mixture of N and TO sites, and (D) mixture of

N, TO, and C sites. The empirical (i.e. true) proportions are plotted as a black line. For most

tree sizes the number of sites is large enough to reliably estimate the proportion of components

under the four mixture models. However, the variance in error increases for tree sizes > 6

because of the small number of sites with alignment across most species.

(PDF)
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S11 Fig. P-values assessing the significance of improvement in model fit when adding addi-

tional components for each tree size. The points denote p-values of rejecting the null hypoth-

esis for each tree size. The p-value is calculated by comparing a null distribution of the test

statistic Λ with the value of Λ observed in the data, where the test statistic Λ is comparing the

fit to the data of a more complicated model with more components with the fit of a simpler

model with fewer components (see Methods). The null model and the alternative model are

indicated at the top of each plot. The null distribution of Λ was calculated from 500 simula-

tions under the respective null model. The null model is assuming only neutral sites (A), neu-

tral plus turnover sites (B, left column), or neutral plus constantly selected sites (B, right

column). Points below the horizontal dashed line are significant assuming a false positive rate

of 5%. The blue line is a smooth loess curve fitted to the points. Note that the data reject a null

model of pure neutrality across all tree sizes (p< 0.05). For tree size > 5, the full model (N+C

+TO) significantly improves the fit over the N+C model, suggesting a significant role of func-

tional turnover for regions with large tree sizes, i.e. with alignment across most species.

(PDF)

S12 Fig. Effectiveness of using GERP scores to identify selected sites. In our estimated full

(N+C+TO) model, sites with tree size less than 3.5 are predicted to be exclusively neutral.

Thus, we assume that these sites are filtered out accordingly. Blue denotes the number of sites

in the human genome with GERP scores: (A)>4, (B)>3, (C)>2, (D) >1. Red denotes the

number of sites inferred to be under selection in the human lineage. In C and D, the number

of sites with GERP scores >2 or>1 is larger than the number of bases under selection. Note

that any filtering strategy based on the GERP score can either have high sensitivity or high

specificity, but not both.

(PDF)

S13 Fig. Robustness of the GERP score distribution to the nucleotide evolution model.

Violin plots of simulated GERP scores on a 36 species phylogeny assuming Nes values ranging

from 0 to -8 in steps of 0.5. The colors indicate different models of nucleotide evolution. See S1

Text for details.

(PDF)

S14 Fig. Conceptual models for evaluating the increase in power per added species. These

trees in (A)—(C) represent a primary tree with different degrees of relatedness of a focal spe-

cies to four other species. The scale of branch lengths in units of subs/site is shown in (A). To

investigate the increase in power for detecting functional sites in the focal species, new species

are added to this primary tree. The relatedness between the focal species and the added species

is 0.4 subs/site (A), 2 subs/site (B), and 0.1 subs/site (C). In (D), every added species is closely

related to species 2 (0.1 subs/site) but more distantly related to the focal species (0.4 subs/site).

These trees are the basis for the simulations of alignment data and the computation of power

for detecting functional sites in S15 Fig. See S2 Text for details.

(PDF)

S15 Fig. Evaluating the increase in power per added species for the conceptual models in

S14 Fig. Power is calculated based on the simulation of substitutions on the trees shown in S14

Fig., assuming different levels of turnover and selection coefficients. Left panels in (A)-(D)

show no turnover. Right panels show intergenic levels of turnover with turnover rate as esti-

mated in Rands et al. [25] for noncoding elements. Middle panels show intermediate turnover

with a rate half of that in the right panels. See S2 Text for details.

(PDF)
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