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Abstract

Background: Preclinical studies strongly suggest that accelerated apoptosis in skeletal myocytes may be involved in the
pathogenesis of sarcopenia. However, evidence in humans is sparse. In the present study, we investigated whether
apoptotic signaling in the skeletal muscle was associated with indices of muscle mass and function in older persons.

Methodology/Principal Findings: Community-dwelling older adults were categorized into high-functioning (HF) or low-
functioning (LF) groups according to their short physical performance battery (SPPB) summary score. Participants
underwent an isokinetic knee extensor strength test and 3-dimensional magnetic resonance imaging of the thigh. Vastus
lateralis muscle samples were obtained by percutaneous needle biopsy and assayed for the expression of a set of apoptotic
signaling proteins. Age, sex, number of comorbid conditions and medications as well as knee extensor strength were not
different between groups. HF participants displayed greater thigh muscle volume compared with LF persons. Multivariate
partial least squares (PLS) regressions showed significant correlations between caspase-dependent apoptotic signaling
proteins and the muscular percentage of thigh volume (R2 = 0.78; Q2 = 0.61) as well as gait speed (R2 = 0.81; Q2 = 0.56).
Significant variables in the PLS model of percent muscle volume were active caspase-8, cleaved caspase-3, cytosolic
cytochrome c and mitochondrial Bak. The regression model of gait speed was mainly described by cleaved caspase-3 and
mitochondrial Bax and Bak. PLS predictive apoptotic variables did not differ between functional groups. No correlation was
determined between apoptotic signaling proteins and muscle strength or quality (strength per unit volume).

Conclusions/Significance: Data from this exploratory study show for the first time that apoptotic signaling is correlated
with indices of muscle mass and function in a cohort of community-dwelling older persons. Future larger-scale studies are
needed to corroborate these preliminary findings and determine if down-regulation of apoptotic signaling in skeletal
myocytes will provide improvements in the muscle mass and functional status of older persons.
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Introduction

Over the past decades, the 75+ years age group has been the

most rapidly expanding segment of the population in Western

countries [1]. Unfortunately, this group is also the most susceptible

to developing functional impairments and disability [2]. Indeed,

the increase in life expectancy has not been paralleled by a

proportional expansion in disability-free lifespan [3]. As a result,

although several indices of functional limitations have shown

improvements in the last two decades, over 20% of older

American adults are presently disabled [3].

Sarcopenia, the age-related involuntary decline in skeletal

muscle mass and function, is a major determinant of frailty and

disability [4]. Furthermore, decreased muscle mass and strength

are independently associated with mortality in older persons [5,6].

The biological determinants of muscle aging remain elusive;

however, several lines of evidence suggest that acceleration of

apoptosis in skeletal myocytes during aging may represent a

converging mechanism through which sarcopenia and physical

function decline ensue (reviewed in [7]). Noteworthy, chronic low-

grade inflammation and oxidative stress secondary to mitochon-

drial dysfunction, two processes believed to contribute to muscle
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aging [8], are powerful inducers of skeletal myocyte apoptosis

[9,10]. Moreover, down-regulation of apoptotic signaling in

myocytes via pharmacological [11–14] and behavioral interven-

tions [10,15–19] or genetic manipulations [20] has been associated

with attenuation of muscle loss and physical function decline in

aged experimental animals. Conversely, up-regulation of apoptotic

signaling secondary to the accumulation of critical levels of

mitochondrial DNA (mtDNA) mutations, results in a premature

aging phenotype and severe sarcopenia in mice expressing a

proofreading deficient mtDNA polymerase [21]. Similarly, mice

lacking the antioxidant enzyme copper/zinc-dependent superox-

ide dismutase (CuZnSOD or Sod1) develop marked sarcopenia

accompanied by skeletal myocyte morphological and biochemical

abnormalities, including enhanced apoptosis [22]. Remarkably,

the genetic characterization of interleukin 10-deficient mice, a

rodent model of frailty, unveiled up-regulation of several skeletal

muscle apoptosis-related genes [23], further supporting the

involvement of accelerated myocyte apoptosis in the pathogenesis

of sarcopenia and physical frailty in late life.

Although studies in experimental animal models implicate

apoptosis as a mechanism in muscle aging, evidence in humans is

still lacking. To date, only three reports have been published

examining the occurrence of skeletal myocyte apoptosis in older

persons [24–26]. However, only one of these studies was

performed on muscle specimens from living human subjects [26]

and none investigated either specific biochemical pathways of

apoptosis or the relationship between apoptotic signaling and

measures of physical performance. Hence, the present exploratory

study was designed to investigate whether the extent of apoptosis

activation and signaling through specific apoptotic pathways were

linked with functional status in older persons. The main hypothesis

underlying this study was that older individuals with poor physical

function would display reduced muscle mass and strength

concomitant with enhanced apoptotic signaling relative to their

high-functioning peers.

Materials and Methods

Ethics Statement
Prior to enrollment in the study, all participants provided

written informed consent. In no case informed consent was

obtained from next of kin, carers or guardians on the behalf of

participants. The study was approved by the University of

Florida’s Institutional Review Board.

Objectives
The aim of the study was to explore the relationship between

the extent of apoptosis activation in the skeletal muscle and

measures of muscle mass and physical performance in older

persons. The relationship between signaling through specific

apoptotic pathways and indices of muscle mass and function was

also investigated.

Participants
Participants were community-dwelling men and women aged

70 years or older, categorized in high-functioning (HF) or low-

functioning (LF) based on their short physical performance battery

(SPPB) summary score [27]. Specifically, persons with a

performance score $11 were assigned to the HF group, whereas

those with a summary score #7 were considered LF. These cutoff

limits were selected based on their ability to predict several

relevant health outcomes in older adults, including functional

limitations, institutionalization and mortality [28–30]. Persons

scoring 8–10 at the SPPB were excluded to allow a greater

distinction in physical function and possibly muscle biochemical

parameters between groups. Additional exclusion criteria were:

smoking in prior 12 months; history of drug or alcohol abuse;

engagement in regular physical exercise; active treatment for

cancer or cancer in the past three years; heart failure New York

Heart Association (NYHA) class III–IV; stroke with upper and/or

lower extremity involvement; Parkinson’s disease or other

neurological disorders likely to interfere with physical function;

major psychiatric illnesses; peripheral vascular disease Lériche-

Fontaine stage 3–4; history of life-threatening cardiac arrhythmias;

cognitive impairment (i.e., MiniMental State Examination score

#21); renal disease requiring dialysis; lung disease requiring

steroids; chronic viral diseases (e.g., hepatitis B and C, HIV); lower

extremity amputation; severe knee or hip osteoarthritis limiting

mobility; diabetes with visual, vascular or neuropathic complica-

tions; inflammatory diseases (e.g., rheumatoid arthritis, vasculitis,

autoimmune disorders and inflammatory bowel disease); taking

growth hormone, estrogen replacement, testosterone, anticoagu-

lants, steroids, non-steroidal anti-inflammatory drugs on a regular

basis; severe obesity [i.e., body mass index (BMI)$35]; under-

weight (i.e., BMI#18.5); active weight loss .5 kg in prior three

months; lidocaine allergy; life-threatening illnesses with an

estimated life expectancy ,1 year. Temporary exclusion criteria

were: recent bacterial/viral infection (,2 weeks); acute febrile

illness in prior two months; high blood pressure (i.e., $180/

110 mm Hg) at the screening visit; major surgery or hip/knee

replacement in the past six months; statin treatment (subjects were

asked to refrain from statin administration one month prior to the

muscle biopsy upon their general practitioner’s approval); other

acute diseases interfering with mobility as indicated by the

participant’s general practitioner. Eligible persons were excluded

if they had contraindications to the execution of magnetic

resonance imaging (MRI), including claustrophobia, heart pace-

maker/defibrillator, metallic stents, aneurysm clips, metal implants

or prosthesis, neurostimulation systems, insulin pumps or other

infusion pumps.

Screening and recruitment procedures
Recruitment of participants was coordinated by the Recruit-

ment Core of the University of Florida Claude D. Pepper Older

Americans Independence Center. Recruitment strategies included

media articles, direct mailings, newspaper announcements, and

presentations to community groups. Following telephone screen-

ing, eligible persons were invited to attend a screening visit during

which the purpose and procedures of the study were explained and

informed consent was obtained. After the participant provided

consent, a general assessment was completed to determine his/her

standing height, body mass, BMI, and blood pressure.

Description of Procedures and Investigations undertaken
Physical function assessment. To assess physical function,

the SPPB and knee extensor strength were determined. The SPPB

is composed of three subtasks: usual gait speed (GS), standing

balance and chair-stand tests [27]. GS was evaluated over a 4-

meter course at the person’s usual pace. The faster of two trials

(m/s) was used for the analysis. For the standing balance test,

participants were asked to stand in three progressively more

difficult positions for 10 s each: a side-by-side feet standing

position, a semi-tandem position and a full-tandem position. For

the chair-stand test, participants were asked to perform five

repetitions of standing up and sitting down from a chair without

using hands and the performance was timed. Each of the three

SPPB subtasks was categorized into a 5-level score, with zero
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representing inability to do the test and four corresponding to the

highest level of performance.

Knee extension strength was determined using a Biodex

dynamometer (Biodex Medical System, Shirley, NY) to measure

the maximal concentric isokinetic strength of knee extensors of the

dominant leg. Participants were asked to exert their maximum

force while extending the knee from 90u to 0u of flexion at 60u per

second with a hip angle of 90–100u. Two practice repetitions were

completed prior to three test repetitions. The maximal peak torque

achieved was used for the analysis both as the absolute value (N?m)

and the ratio between peak torque and BMI.

MRI for the quantification of thigh muscle volume. T1-

weighted MRI was employed to quantify the thigh muscle volume

(MV) of the dominant leg. Images were obtained using a 3.0-tesla

magnet (Philips Medical Systems, Bothell, WA), as detailed

elsewhere [31]. Briefly, three-dimensional data were collected

using a body coil and a fast gradient-echo sequence, with

repetition time (TR) = 100 ms, time to echo (TE) = 10 ms, flip

angle = 30u, and chemically-selective fat suppression. Images were

acquired with an encoding matrix of 2566256, a field of view of

16–24 cm and 7-mm slice thickness. For image analysis, the

maximal cross-sectional area of the biceps femoris was identified.

Subsequently, volumetric analysis was performed on 11

contiguous axial slices (10-mm thickness), five proximal and five

distal from that corresponding to the maximal thigh cross-sectional

area. Muscle tissue was quantified volumetrically, with results

reported as the absolute volume (cm3) and percentage of the total

thigh volume (hereby referred to as percent MV). The ratio

between MV and BMI was also calculated.

Images were analyzed using the freely-available software

package MIPAV 1.3 (Medical Image Processing, Analysis and

Visualization; Center for Information Technology, National

Institutes of Health, Bethesda, MD; http://mipav.cit.nih.gov).

MRI data were also used for muscle quality determination, which

was calculated as the ratio between maximal peak torque and

thigh MV (N?m/cm3).

Muscle biopsy. Muscle samples were obtained from the

vastus lateralis of the dominant leg by percutaneous needle biopsy,

under local anesthesia [32]. Muscle specimens were cleaned of any

visible blood and fat, frozen in liquid nitrogen and stored at

280uC until analysis.

Subcellular fractionation and immunoblotting. Isolation

of cytosolic, mitochondrial and nuclear fractions from muscle

samples was performed as previously described [9]. Electrophoresis

and immunoblotting were carried out as detailed elsewhere [10].

Cytosolic fractions were used to assess the protein expression of

cleaved caspase-3 (Millipore, Temecula, CA), active caspase-8

(Abcam, Cambridge, MA), tumor necrosis factor receptor 1 (TNF-

R1; Abcam) and cytochrome c (Santa Cruz Biotechnology, Santa

Cruz, CA). Expression levels of Bcl-2, Bax and Bak (all from Santa

Cruz Biotechnology) were assayed in mitochondrial fractions.

Finally, endonuclease G (EndoG; Abcam) and apoptosis-inducing

factor (AIF; BD Biosciences, San Jose, CA) protein levels were

assessed in mitochondrial and nuclear fractions. Digital images were

captured with an Alpha Innotech Fluorchem SP imager (Alpha

Innotech, San Leandro, CA) and analyzed using the built-in

software as previously described [10].

Statistical methods
Continuous descriptive variables were analyzed by the Mann-

Whitney U test, whereas the x2 test was used for categorical

variables. To explore correlations between apoptotic signaling

proteins and functional measures (i.e., GS, knee extensor strength

and thigh muscle quality) or MRI data (percent MV), multivariate

regressions were performed via partial least squares (PLS) analyses.

Briefly, the idea beneath multivariate analysis methods, such as the

PLS, is that each subject is represented by a single data point in a

multidimensional space where each measured variable is one of

the coordinate axes. The goal of multivariate PLS regressions is

the reorientation of data points along new axes, that are

algebraically expressed by a linear combination of the original

variables, to guide the projections into meaningful directions by

using an external (‘‘response’’) variable. The new axes are

commonly referred to as ‘‘components’’ or ‘‘factors’’.

PLS was performed on a data matrix where each subject was

represented by a row, with each apoptosis-related variable

corresponding to a column. Functional measures or imaging data

were added as the variables against which multivariate regressions

were run. Matrices were pre-processed by mean-centering and

scaling (i.e., means of each column were set to zero and their

standard deviations were set to one) [33]. This procedure is

commonly applied to data matrices prior to PLS because it allows

the comparison of covariations of variables independent of their

numerical size, while maintaining their factorial structures [33].

PLS was validated by full cross-validation. According to this

procedure, the same samples are used for both model estimation

and testing. In each cross-validation step, one sample is left out

from the calibration data set and the model is calibrated on the

remaining data points. Values for the left-out samples are

predicted, and prediction residuals are computed. The process is

repeated with all other subsets of the calibration set until every

object has been left out once. All prediction residuals are finally

combined to compute the validation residual variance, commonly

reported as ‘‘validation R2’’ or Q2. In addition, in order to assess

the stability of validated models, the Marten’s uncertainty test was

applied, which couples the full cross-validation to the jackknife

principle [34]. For every cross-validation sub-model, a set of model

parameters (i.e., B-coefficients, scores, loadings and loading

weights) were calculated, and variations over these sub-models

estimated to assess the stability of results. The number of

components on which PLS regression models were built was

selected by the statistical software on the basis of the cross-

validation test.

Separate PLS models were constructed for caspase-dependent

(TNF-R1, active caspase-8, cleaved caspase-3, cytosolic cyto-

chrome c) and caspase-independent apoptotic signaling proteins

(mitochondrial and nuclear AIF, mitochondrial and nuclear

EndoG), with mitochondrial Bcl-2, Bax and Bak included in both

models. Apoptotic variables identified as significant by the

uncertainty test were examined via Mann-Whitney U tests to

determine differences between HF and LF subjects. The same test

was used to compare PLS predictive apoptotic proteins between

participants with percent MV or GS above and below the median

value of the study sample. All tests were two-sided with significance

set at p,0.05. All data are presented as mean 6 standard

deviation (SD).

PLS analyses were performed using the Unscrambler X 10.1

software (CAMO Software, Oslo, Norway), whereas the Graph-

Pad Prism 4.0.3 software (GraphPad Software, San Diego, CA)

was used for Mann-Whitney and x2 tests.

Results

Descriptive characteristics of the study sample
A total of 43 community-dwelling older adults (25 HF and 18

LF) were recruited. Muscle biopsies yielded sufficient tissue to

perform all biochemical analyses in 13 HF and 7 LF persons.

Demographic, functional and imaging parameters as well as the
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number of comorbid conditions and medications in this subset of

participants were consistent with the rest of the study sample,

except for containing a higher proportion of males (75% vs. 35%;

p,0.05). The main characteristics of participants with complete

muscle biochemistry data are shown in Table 1. The two

functional groups did not differ with respect to age, sex

distribution, ethnicity, BMI or number of disease conditions and

medications. Compared with LF persons, HF participants

performed significantly better at the walking test and the chair-

stand test of the SPPB [27]. In particular, the 4-meter walking

speed, a functional parameter predictive of several relevant

outcomes in older persons [35], was lower in the LF group

relative to HF persons. No significant difference was determined

between groups for the balance test score. However, HF

participants displayed greater MV compared with the LF group.

Finally, neither knee extensor strength nor thigh muscle quality

(strength per unit volume) differed significantly between HF and

LF persons.

Multivariate PLS regressions of skeletal muscle apoptotic
signaling proteins vs. imaging and functional data

The regression of caspase-dependent apoptotic signaling

proteins versus percent MV yielded a regression model based on

four components, explaining 78.3% of the overall Y variance, with

a cross-validation Q2 of 0.61 (Figure 1A). The uncertainty test

revealed that four of the original variables were mainly involved in

the description of the model, namely active caspase-8, cleaved

caspase-3 and cytosolic cytochrome c (inverse correlation), and

mitochondrial Bak (direct correlation) (Figure 1B). No correlation

was determined between caspase-independent signaling proteins

and percent MV (data not shown). Moreover, neither caspase-

dependent nor caspase-independent apoptotic signaling proteins

were correlated with knee extensor strength or thigh muscle

quality (data not shown). A 4-component model was obtained

from the regression of caspase-dependent apoptotic signaling

proteins versus GS. The model explained 81.3% of the overall Y

variance, with a cross-validation Q2 of 0.56 (Figure 2A). Variables

involved in the description of this PLS model were cleaved

caspase-3 and Bax (inverse correlation), and Bak (direct correla-

tion) (Figure 2B). Caspase-independent apoptotic signaling pro-

teins were not correlated with GS (data not shown).

Comparisons of PLS predictive apoptotic variables between HF

and LF participants via Mann-Whitney U tests revealed no

significant differences (Table 2). However, protein levels of active

caspase-8 and cytosolic cytochrome c were higher in persons with

percent MV below the median value of the study sample (48.6%;

LF = 6, HF = 4; Figure 3). Conversely, levels of apoptotic proteins

predictive of GS were not significantly different in participants

walking faster than the median speed of the study population

(1.01 m/sec; LF = 0, HF = 10) compared with slower walkers

(LF = 7, HF = 3; data not shown).

In summary, multivariate PLS regression analyses identified

significant correlations between caspase-dependent apoptotic

signaling proteins and percent MV as well as GS, in the absence

of clear differences in individual apoptotic signaling proteins

between the two functional groups.

Table 1. Characteristics of study participants with complete muscle biochemistry data according to the level of physical
performance (high vs. low).

HF (n = 13)
n (%) or mean ± SD

LF (n = 7)
n (%) or mean ± SD p value

Age (years) 77.366.4 81.464.2 0.1651

Sex (female) 2 (15) 3 (43) 0.4169

Ethnicity

- Caucasian 12 (92) 6 (86) 0.9012

- Afro-American 0 (0) 1 (14)

- Other 1 (8) 0 (0)

BMI (kg/m2) 27.263.6 27.663.8 0.8121

Number of comorbid conditions* 0.660.8 1.361.0 0.1075

Number of medications 2.261.4 2.461.5 0.6373

SPPB summary score 11.560.5 5.461.9 0.0004

- Balance test subscore 4.060.0 2.661.8 0.0545

- Chair-stand test subscore 3.560.5 0.660.8 0.0004

- 4-meter walking test subscore 4.060.0 2.360.5 0.0004

4-meter walking speed (m/s) 1.1660.21 0.6460.13 0.0006

Knee extensor strength

- Absolute (N?m) 117.9631.2 87.3632.1 0.1131

- BMI-adjusted 4.3461.25 3.2061.21 0.0573

Thigh muscle volume

- Absolute (cm3) 473.46110.0 330.4655.1 0.0044

- % of total thigh volume 52.468.5 37.268.2 0.0044

- BMI-adjusted 17.663.8 12.162.2 0.0056

Thigh muscle quality (N?m/cm3) 0.2560.06 0.2760.09 0.6920

*includes hypertension, coronary artery disease, prior stroke, peripheral vascular disease, diabetes, chronic obstructive pulmonary disease, and osteoarthritis.
doi:10.1371/journal.pone.0032829.t001
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Discussion

Preclinical studies have implicated apoptosis in skeletal myocytes

as a mechanism contributing to sarcopenia. Whether apoptotic

signaling is associated with muscle mass and function in older adults

has yet to be established. Here, we investigated the relationship

between apoptotic signaling and measures of muscle mass and

physical performance in a cohort of relatively healthy, community-

dwelling older persons. Our analyses indicate that signaling proteins

pertaining to caspase-dependent apoptotic pathways are predictive

of percent MV and GS. Conversely, no significant correlations were

determined between caspase-independent apoptotic signaling

proteins and imaging or functional measures. Finally, none of the

apoptotic pathways investigated was correlated with either knee

extensor strength or thigh muscle quality. Noteworthy, our results

indicate that caspase-dependent apoptotic signaling proteins are

predictive of two parameters (i.e., percent MV and GS) that have

recently been proposed by the European Working Group on

Sarcopenia in Older People (EWGSOP) for the screening and

diagnosis of sarcopenia in clinical settings [4].

The loss of muscle mass and function with advancing age is a

major determinant of frailty, disability and mortality [4]. Hence,

the identification of biological pathways underlying muscle aging is

of utmost importance for designing targeted interventions against a

major health issue in the elderly. Accumulating preclinical

evidence suggests that an acceleration of apoptosis in skeletal

myocytes occurs over the course of aging, likely contributing to the

pathogenesis of sarcopenia (reviewed in [7]). Findings from the

present study are consistent with these observations and

demonstrate for the first time that apoptotic signaling is correlated

with a measure of muscle mass in older persons. In keeping with

our previous studies in laboratory rodents [9,10,18], our findings

also suggest that signaling proteins of the death-receptor and

mitochondria-mediated apoptotic pathways may be involved in

Figure 1. Multivariate PLS regression of caspase-dependent apoptotic signaling proteins versus percent muscle volume. (a) The
regression yielded a 4-component model explaining 78.3% of the overall Y variance (Q2 = 0.61). Black triangles correspond to low-functioning
participants; grey squares represent high-functioning subjects. (b) Regression coefficients of apoptotic signaling proteins according to the Marten’s
uncertainty test. Significant variables are represented by grey bars. Error bars indicate uncertainty limits.
doi:10.1371/journal.pone.0032829.g001

Figure 2. Multivariate PLS regression of caspase-dependent apoptotic signaling proteins versus gait speed. (a) The regression yielded
a 4-component model explaining 81.3% of the overall Y variance (Q2 = 0.56). Black triangles correspond to low-functioning participants; grey squares
represent high-functioning subjects. (b) Regression coefficients of apoptotic signaling proteins according to the Marten’s uncertainty test. Significant
variables are represented by grey bars. Error bars indicate uncertainty limits.
doi:10.1371/journal.pone.0032829.g002
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the pathogenesis of human muscle aging. Indeed, caspase-8

becomes engaged in the apoptotic signaling following binding of

TNF-a to its cell surface receptor, and subsequently activates

effector caspases, such as caspase-3 (death-receptor apoptotic

pathway) [36]. Furthermore, through the cleavage of pro-

apoptotic Bid, caspase-8 represents a point of convergence

between TNF-a signaling, mitochondria-driven apoptosis and

mitochondrial dysfunction [37]. Hence, our data may provide a

further explanation to previous reports showing that elevated

circulating TNF-a levels are associated with reduced muscle mass

in advanced age (reviewed in [38]). Moreover, our results are

consistent with the involvement of mitochondrial apoptotic

signaling in muscle loss in old age. Indeed, mitochondrial Bak

and cytosolic cytochrome c were among the variables mainly

involved in the description of the regression between apoptotic

signaling and percent MV (Figure 1B). It is interesting to note that,

while cytosolic cytochrome c levels were inversely correlated with

percent MV, which is consistent with the pro-apoptotic activity of

this molecule upon its release from mitochondria, a direct

correlation was determined for Bak. According to the current

understanding, Bak, in association with other apoptogenic proteins

(e.g., Bax), forms of a pore in the outer mitochondrial membrane,

through which apoptotic factors such as cytochrome c can be

released from the mitochondrial intermembrane compartment

into the cytoplasm [39]. One possible explanation to the

discrepancy between our findings and the pro-apoptotic role

traditionally attributed to Bak arises from the demonstration of the

existence of an anti-apoptotic Bak isoform (N-Bak) generated

through alternative splicing [40]. Although N-Bak appears to be

neuron-specific, the possibility that a similar anti-apoptotic Bak

variant might also be expressed in the skeletal muscle warrants

further investigation.

Several mechanisms may be invoked to explain the relationship

between myocyte apoptosis and muscle loss. In multinucleated

skeletal myofibers, the execution of apoptosis results in the

elimination of individual myonuclei (myonuclear apoptosis) and

a corresponding portion of the sarcoplasm. Over time, this

process, coupled with insufficient satellite cell replenishment, may

eventually lead to fiber atrophy [41]. Furthermore, apoptotic

signaling may induce the degradation of contractile proteins,

resulting in decreased myofiber cross-sectional area without

myonuclear removal or fiber death [42]. In fact, caspase-3 is

required for initiating the proteolytic degradation of actinomyosin

complexes and myofibrils by generating monomeric actin and

actin fragments which are subsequently degraded by the

proteasome [43].

Another major finding of the study is that apoptotic signaling in

the skeletal muscle is predictive of walking speed. In recent years,

GS at usual pace has been increasingly recognized as a powerful

predictor of adverse health outcomes in older persons, including

disability, hospitalization, institutionalization and mortality

[28,30,44]. As such, GS is being advocated as an additional vital

sign in older adults, due to its potential to distinguish chronological

from biological age [35]. Although walking speed is dependent on

multiple organ systems (e.g., cardiovascular, respiratory and

nervous systems), it is undoubted that muscle function is central

in determining how fast an individual can walk. From this

perspective, the correlation between apoptotic signaling proteins

and GS observed in our study is especially intriguing, as it suggests

that this cellular pathway may be involved in the disabling process.

The mechanisms whereby apoptosis may impact GS are

multifaceted. As previously discussed with regard to muscle

atrophy, apoptotic signaling in skeletal myocytes may result in

the degradation of contractile elements, followed by reduced

muscle mass and force generation with or without myonuclear

elimination. In addition, apoptotic signaling may be accompanied

by mitochondrial bioenergetic failure and increased generation of

reactive oxygen species (ROS), resulting in ATP depletion and

oxidative damage to cellular macromolecules [45]. This hypothesis

is supported by the observation that impaired mitochondrial

Table 2. Expression levels of PLS predictive apoptotic
signaling proteins in the two functional groups.

HF (n = 13)
Mean ± SD

LF (n = 7)
Mean ± SD p value

Cleaved caspase-3 1.2060.32 1.5660.61 0.2346

Active caspase-8 1.4660.92 1.0860.61 0.4758

Mitochondrial Bak 0.9960.52 0.8560.24 0.8741

Mitochondrial Bax 0.7060.36 0.8060.23 0.3417

Cytosolic cytochrome c 0.8660.41 1.0160.34 0.4281

Data are expressed in arbitrary optical density units.
doi:10.1371/journal.pone.0032829.t002

Figure 3. Protein expression levels of active caspase-8 and cytosolic cytochrome c according to the median of percent muscle volume.
The content of active caspase-8 (a) and cytosolic cytochrome c (b) was higher in participants with percent muscle volume below (median 2)
the median value of the study sample (48.6%) relative to those with percent muscle volume above the median (median +). AU: arbitrary units.
doi:10.1371/journal.pone.0032829.g003
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function precedes the initiation of apoptosis in skeletal myocytes of

laboratory rodents [46,47]. Noteworthy, in our study sample,

mitochondrial Bax and Bak were among the variables describing

the regression model between apoptotic signaling proteins and GS

(Figure 2B). Furthermore, the regression coefficient of cytosolic

cytochrome c was close to the statistical significance. These

findings suggest that mitochondrial apoptotic signaling, and

potentially mitochondrial dysfunction, may contribute to decreas-

ing physical function at old age.

None of the apoptotic signaling pathways investigated correlat-

ed with either muscle strength or quality. Moreover, these

functional measures did not differ significantly between HF and

LF participants. Indeed, muscle strength was not correlated with

either the SPPB summary score or GS (data not shown). These

findings may be explained by the small sample size analyzed and

possibly by technical difficulties in achieving a true maximal peak

torque. Reasons underlying such limitation include a lack of

confidence of older persons with physical testing and apprehension

toward unfamiliar laboratory devices [48,49]. In addition, the

possibility exists that different levels of co-contraction could have

occurred in the two groups, thus influencing the strength testing

results. Finally, among PLS variables correlated with percent MV,

only active caspase-8 and cytosolic cytochrome c differed

significantly between participants with MV above or below the

median value of the study sample (Figure 3). In the case of GS,

none of the PLS significant variables differed between median

groups. Similarly, no differences in the apoptotic variables

describing PLS models were observed between functional groups.

While the discrepancy between PLS regressions and univariate

tests may be related to the small sample size analyzed, an

alternative explanation for this divergence can be proposed.

Indeed, the impact of apoptosis on functional and imaging

parameters is likely the result of the coordinated actions of multiple

apoptotic signaling proteins, rather than reflecting the effect of

individual mediators. In this scenario, multivariate analyses, such

as PLS regressions, may be better suited to capture the

information resulting from the interaction among multiple

signaling proteins.

In conclusion, findings from this study indicate that apoptotic

signaling in the skeletal muscle is correlated with percent MV and

GS in a cohort of relatively healthy, community-dwelling older

persons. Our data also suggest that specific signaling pathways of

apoptosis (i.e., mitochondrial caspase-dependent and death-

receptor pathways) are linked with measures of muscle mass and

physical function. These findings confirm previous observations in

animal models and suggest a novel biological target for

interventions against muscle aging and physical function decline.

Future larger-scale studies are needed to substantiate these

preliminary results and determine if down-regulation of apoptotic

signaling in skeletal myocytes via behavioral or pharmacological

interventions will provide improvements in the muscle mass and

functional status of older persons.

Limitations
Although reporting novel findings, the present work presents

some limitations that deserve further discussion. First, the study is

of exploratory nature, evident by the small sample size. This might

have hindered the detection of significant correlations between

apoptotic signaling proteins and muscle strength as well as the

observation of differences between functional and median groups

in the apoptotic variables describing PLS models. Moreover,

considering that skeletal myocyte apoptosis occurs throughout the

lifespan and supposedly accelerates in late life, only a ‘‘snapshot’’

of apoptotic signaling could be detected. Despite this limitation,

the present data show that a set of apoptotic signaling proteins

correlates with imaging and functional parameters, which makes

our findings highly relevant. It should also be considered that

recruiting LF older persons without severe comorbidity poses a

significant challenge, which adds further value to our results.

Circulating levels of inflammatory biomarkers associated with

physical performance (e.g., C-reactive protein, TNF-a, interleukin

6) were not measured. Therefore, correlations between inflamma-

tory markers and apoptotic signaling proteins could not be

explored. Although only subjects not engaged in regular exercise

were enrolled, the amount of physical activity of participants was

not quantified. Hence, the relationship between apoptotic

signaling and the overall level of physical activity could not be

established. In addition, due to its cross-sectional design, this study

does not allow to infer causality between apoptotic signaling and

measures of muscle mass and physical function. Future investiga-

tions will have to determine if the mitigation of apoptosis through

behavioral or pharmacological interventions results in ameliora-

tion of sarcopenia and physical performance. Finally, due to tissue

limitation, biochemical analyses were restricted to key components

of specific apoptotic pathways and the extent of DNA fragmen-

tation could not be assessed. However, the quantification of

cleaved caspase-3 expression is considered to be a reliable marker

of apoptosis [50].
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