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Abstract: Here, we report a facile production of citral/cyclodextrin (CD) inclusion complex (IC)
nanofibers (NFs) from three types of CDs (hydroxypropyl-beta-cyclodextrin (HPβCD),
hydroxypropyl-gamma-cyclodextrin (HPγCD), and methylated-beta-cyclodextrin (MβCD))
by an electrospinning technique without the need of any polymeric carrier matrix. Self-standing
nanofibrous webs of citral/CD-IC nanofibers (citral/CD-IC-NF) with uniform fiber morphology
have been successfully electrospun from aqueous solutions of citral/CD-IC. Thanks to the inclusion
complex formed with CDs, the efficient preservation of citral (up to ~80%) in citral/CD-IC-NFs was
observed. In addition, the citral/CD-IC-NFs have shown ~50% preservation of citral for 15 days at
room temperature even though citral has a highly volatile nature. The enhanced thermal stability of
citral (~100–300 ◦C) in citral/CD-IC-NFs compared to pure citral (~50–165 ◦C) has been observed.
Moreover, citral/CD-IC-NFs tended to disintegrate in water very quickly. To summarize, citral was
efficiently encapsulated in citral/CD-IC-NFs, and these citral/CD-IC-NFs have been shown to be fast
dissolving. In citral/CD-IC-NFs, citral/CD-ICs have enhanced water solubility of citral along with
high-temperature stability and a longer shelf-life.

Keywords: cyclodextrin; electrospinning; nanofiber; inclusion complex; citral; enhanced water
solubility; high thermal stability; longer shelf-life

1. Introduction

Citral (3,7-dimethyl-2,6-octadienal) is a flavor/fragrance molecule found in lemongrass oil that
possesses a lemon-like odor and a bittersweet taste (Figure 1). Citral is composed of two geometric
isomers, geranial and neral, which have an intense lemon odor and a sweet taste, respectively.
However, citral has low aqueous solubility and is unstable against heat, air, and light [1]. Cyclodextrins
(CDs) (Figure 1) hold exceptional complexation capability due to the relatively hydrophobic cavity of
the interior of these supramolecular structures and offer an excellent feature to encapsulate a variety
of compounds that have appropriate polarity and dimensions that fit into the CD cavity. Similar to
other encapsulating methods, the inclusion complexation with CDs provides many advantages to
the guest molecules, including enhanced water solubility, higher thermal stability, a longer shelf-life,
etc. There are different native CDs and chemically modified CDs (Figure 1a) available on the market
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that can be used to design appropriate CD-IC systems for different guest molecules [2–4]. Modified
CDs are considered an important class of CDs owing to their higher water solubility compared to
native CDs. This feature is also important for achieving nanofibers via electrospinning from highly
concentrated aqueous solutions of modified CDs [5–7]. Thus, CD-IC nanofibers have been produced
from CD-IC systems of an antibacterial triclosan [8,9] and flavors/fragrances such as geraniol [10],
vanillin [11], limonene [12], linalool [13], cineole and p-cymene [14], camphor [15], and an antioxidant
vitamin E [16] from our previous studies.
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Figure 1. (a) The chemical structure of HPβCD, HPγCD, and MβCD, (b) the chemical structure of
citral and the schematic representation of citral/cyclodextrin (CD) and citral/CD-IC, (c) the schematic
representation of electrospinning of nanofibers from a citral/CD-IC solution.

Citral is a clear yellow liquid that is highly volatile and not very soluble in water.
However, the inclusion complexation of citral with cyclodextrin could provide higher stability at high
temperatures and enhanced water solubility. Citral is a common and widely used compound as
a flavor/fragrance and bactericide in food and medical applications. Therefore, encapsulation of
citral in a nanofiber matrix may be quite applicable in the food and medical fields. In this study,
we aimed to achieve higher thermal stability, enhanced water solubility, and a longer shelf-life for citral
through forming a citral/cyclodextrin inclusion complex (citral/CD-IC) and to transform citral/CD-IC
into self-standing solid-state nanofibrous webs by electrospinning.

Electrospinning is a well-known technique for producing nanofibers from various materials.
Polymers are the materials of choice for producing nanofibers by electrospinning due to their fiber
forming property [17–19]. Moreover, electrospinning active additive-loaded polymeric nanofibers
yields functional polymeric nanofibers in one step [20]. Therefore, CD-ICs of volatile active agents
can also be loaded in polymeric nanofibers to control the release of active agents by maintaining their
chemical/biological activities [21,22]. Besides, polymer-free CD-IC nanofibers could be an alternative
to polymeric nanofibers into which CD-ICs are incorporated, since CD-IC incorporated polymeric
nanofibers have drawbacks, such as the use of organic solvents during the production of CD-IC
incorporated polymeric nanofibers and sometimes only limited amounts of active agents can be loaded
into the fiber matrix [8–16].
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The literature studies on citral/CD-inclusion complexes are mostly related to the powder form
of citral/CD-ICs [1,23,24]. In these reports, the inclusion complexes of citral and different CD
types (α-CD, β-CD, γ-CD, hydroxypropyl-β-CD, and monochlorotriazinyl-β-CD) were formed in
the powder form, and the interactions in CD-IC were comparatively studied. As a totally new
approach for citral/CD-IC systems, in the present study, citral/CD-ICs (Figure 1b) were obtained first
with three types of CDs—(hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin
(HPγCD), and methylated-β-cyclodextrin (MβCD)) (Figure 1a)—in highly concentrated aqueous
solution, and then nanofibers (citral/CD-IC-NF) in the form of self-standing webs were produced
from the aqueous solutions of these citral/CD-ICs via electrospinning (Figure 1c). The highly
concentrated citral/CD-IC solutions enabled the electrospinning of citral/CD-IC-NFs without the need
of a polymeric carrier matrix [5,6]. In addition, CD-ICs offer advantages, including enhanced water
solubility and high thermal stability and a longer shelf-life for the hydrophobic and volatile guest
molecules. Here, the water solubility of the citral/CD-IC systems was analyzed by a phase solubility
diagram. The fiber morphology of citral/CD-IC-NF, which is bead-free and uniform, was confirmed
by scanning electron microscopy (SEM) imaging. Nuclear magnetic resonance (1H NMR) was used
to calculate the molar ratios of CDs and citral in citral/CD-IC-NF. Further, the CD-IC formation was
analyzed by X-ray diffraction (XRD) and Fourier-transform infrared spectrophotometer (FTIR) studies.
The thermal stabilities of citral/CD-IC-NFs were evaluated using thermal gravimetric analysis (TGA).
Photographs of the citral/CD-IC-NFs were also taken to show the self-standing characteristic of these
nanofibrous materials. The fast-dissolving nature of the citral/CD-IC-NFs was recorded and compared
to citral/CD-IC in powder form.

2. Materials and Methods

2.1. Materials

Hydroxypropyl-beta-cyclodextrin (HPβCD, degree of substitution: ~0.6, Cavasol®W7 HP
Pharma), hydroxypropyl-gamma-cyclodextrin (HPγCD, degree of substitution: ~0.6, Cavasol®W8
HP Pharma), and methylated-β-cyclodextrin (MβCD, degree of substitution: 1.6–1.9, Cavasol®W7 M
Pharma) were kindly donated by Wacker Chemie (Munich, Germany). Citral (≥95%, Sigma Aldrich,
Hamburg, Germany), deuterated dimethylsulfoxide (DMSO-d6, deuteration degree min 99.8% for
1H NMR spectroscopy, Merck, Germany), potassium bromide (KBr, 99%, FTIR grade, Sigma-Aldrich,
Germany), and poly(vinyl alcohol) (PVA, Mw 85000–124000 g/mol, Sigma Aldrich, 87%–89%
hydrolysed, Germany) were purchased. Above-mentioned materials were used as-received without
any modification. A Millipore Milli-Q ultrapure water system was used to obtain distilled-deionized
water that was used for the experiments.

2.2. Preparation of the Citral/CD-IC

Inclusion complexes (ICs) of cyclodextrins (CDs) (HPβCD, HPγCD, and MβCD) with citral were
synthesized by dissolving 160% (w/v) CDs in aqueous solutions and then adding citral equivalent
to a 1:1 molar ratio to those CD solutions. Initially, the citral/CD-IC solutions were turbid but later
became clear and homogenous with the dissolution of citral over the time. The solutions were kept by
stirring them at room temperature (RT) for 12 h in tightly sealed glass vials. Then, electrospinning
was performed. The composition of the solutions, the viscosity and conductivity measured from the
solutions, the morphological characteristics of citral/CD-IC nanofibers (citral/CD-IC-NFs), and the
average fiber diameter (AFD) of citral/CD-IC-NFs are shown in Table 1. Pure CD nanofibers without
citral (HPβCD-NF, HPγCD-NF, and MβCD-NF) were also prepared according to our previous reports
and used as reference samples [5,6]. Thus, we have managed to produce nanofibers from 160% (w/v)
of HPβCD, 140–160% (w/v) of MβCD, and 160% (w/v) of HPγCD solutions. The powder form
of citral/CD-ICs was also synthesized using the freeze-drying technique for a comparative study.
Initially, 160% (w/v with respect to solution) CD (HPβCD, HPγCD, and MβCD) was dissolved in
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water. Afterward, the required amount of citral was added to the solutions to give a 1:1 molar ratio.
Then, the solutions were freeze-dried (Labconco, Corporation, Kansas City, MO, USA).

Table 1. The properties of the citral/CD-IC (citral/HPβCD-IC, citral/HPγCD-IC, citral/MβCD-IC)
solutions used for electrospinning and morphological characteristics of the resulting citral/CD-IC-NF
(citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, citral/MβCD-IC-NF) samples.

Solutions % CD a

(w/v)
% citral b

(w/w)
Viscosity

(Pa·s)
Conductivity

(µS/cm)
Average Fiber

Diameter (AFD) (nm) Fiber Morphology

Citral/HPβCD-IC-NF 160 9.3 0.27 19.67 105 ± 35 bead-free nanofibers
Citral/HPγCD-IC-NF 160 8.4 0.37 8.26 1380 ± 380 bead-free nanofibers
Citral/MβCD-IC-NF 160 9.9 0.25 15.57 125 ± 35 bead-free nanofibers

a with respect to solvent (water), b with respect to total weight of the sample.

2.3. Electrospinning

To produce citral/CD-IC-NFs, each citral/CD-IC solution (citral/HPβCD-IC, citral/HPγCD-IC
and citral/MβCD-IC) was separately loaded in syringes having a metallic needle of 0.4 mm inner
diameter. Then, the syringe pump (KD Scientific, KDS-101, Holliston, MA, USA) was put on and
pumped at a rate of 0.5 mL/h toward the collector covered with a piece of aluminum foil. The distance
and electric field applied to the system (AU Series, Matsusada Precision Inc., Osaka, Japan) was
arranged as 10–15 cm and 15–20 kV, respectively. The electrospinning was carried out in an enclosed
Plexiglas box at 25 ◦C and 18% relative humidity. The electrospun webs of citral/CD-IC-NFs were kept
in a refrigerator (4 ◦C) prior to analysis. For a comparative time-dependent stability study, a polymeric
system without CD-IC was also tested. That is, PVA (10% w/v with respect to solvent) nanofibers with
only citral (10% w/w with respect to polymer) (citral/PVA-NF)) were also produced from citral/PVA
aqueous solution by electrospinning.

2.4. Measurements and Characterization

To determine the solubility enhancement of citral by complexation with CDs, phase solubility
measurements were performed for citral/CD-IC systems based on the method improved by Higuchi
and Connors [25]. Thus, suspensions were obtained by adding excess amounts of citral to CD (HPβCD,
HPγCD, and MβCD) solutions that were prepared in water (10 mL) and they were stirred at RT for
48 h. Then, a membrane filter (0.45 µm) was used to filter the resulting suspensions. After the filtration,
the absorption of the solutions was measured at 243 nm by UV spectroscopy (Varian, Cary 100).
The phase solubility experiments were repeated three times. The solubility results are given as the
average ± standard deviation by calculating the average and standard deviation.

The stability constant (KS) of each system was calculated from the equation provided below:

KS=slope/S0 (1−slope) (1)

where S0 is the intrinsic solubility of citral (3.8 mM) when there is no CD [26].
The viscosity of each citral/CD-IC solution prepared with three different CD types was measured

at RT via Anton Paar Physica MCR 301 (Graz, Austria) rheometer with a spindle of CP 20-4 at a shear
rate of 100 s−1. The conductivity of the solutions was also measured at RT using Inolab® pH/Cond
720-WTW (Jakarta, Indonesia).

Scanning electron microscopy (SEM, FEI - Quanta 200 FEG, Hillsboro, OR, USA) was used to
capture the images for each nanofiber achieved and the morphology and average fiber diameter (AFD)
(n ≥ 100) of the nanofibers were determined based on the SEM images. Nanofiber samples were
sputtered with 5 nm of Au/Pd (PECS-682, Pleasanton, CA, USA) to minimize charging of the samples
during SEM imaging.

Then, 5 mL of water was added to the citral/CD-IC-NF and citral/CD-IC powders in Petri
dishes and videos were recorded to show the water solubility character of each sample. For a visual
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comparison, pure citral (equivalent to the amount in the nanofibers) was dropped into 5 mL of
aqueous solution.

To decide the molar ratio of CDs to citral by 1H NMR (Bruker DPX-400, Mannheim, Germany),
10 mg of citral/CD-IC-NFs and citral/polyvinyl alcohol-nanofibers (citral/PVA-NF) were dissolved
in 500 µL of d6-dimethyl sulfoxide (d6-DMSO). The characteristic chemical shifts (δ, ppm) of each
compound were determined and the integration of each peak was determined using Mestrenova
software. Finally, the molar ratio of CD and citral in citral/CD-IC-NFs was calculated by the proportion
of the integration of the peaks from CD and citral.

The thermal properties of pure citral, CD-NFs, and citral/CD-IC-NF were studied by
thermogravimetric analysis (TGA) (TA Q500, New Castle, DE, USA) under nitrogen atmosphere
by heating the samples at a heating rate of 20 ◦C/min from 25 ◦C to 500 ◦C. Contrary to other samples,
citral was heated to 200 ◦C due to its volatile nature.

To check the time-dependent release profile of the samples, citral/CD-IC-NF and citral/PVA-NF
were kept in the open air in the laboratory for 15 days (RT, 18% RH). 1H NMR measurements were
performed at definite time intervals to determine the amount of citral remaining in the nanofibers.

X-ray diffraction (XRD) (PANalytical X’Pert powder diffractometer, Texas, USA) was employed to
characterize the crystalline structure of CD-NF and citral/CD-IC-NF from 2θ = 5◦ to 30◦ using Cu Kα

radiation in powder diffraction configuration. XRD analysis could not be performed for pure citral
because of the liquid state of citral at RT.

The potassium bromide (KBr) pellets were prepared to obtain infrared spectra of the samples
by mixing samples with KBr before the measurement. Then, the infrared spectra of citral, CD-NF,
and citral/CD-IC-NFs were obtained in the range of 4000 cm−1 and 400 cm−1 via Fourier-transform
infrared spectrophotometer (FTIR) (Bruker-VERTEX 70, Mannheim, Germany). The parameters for the
measurements were decided as 64 scans and a resolution of 4 cm−1.

3. Results and Discussion

3.1. Phase Solubility Studies

The linear increment in the solubility of citral with increasing concentrations of CDs regardless
of the CD type in phase solubility diagrams of citral/CD systems indicate that the diagrams are
linear (AL) type, which demonstrates that the complexes formed in a 1:1 molar ratio (Figure 2) [27].
In a similar study on citral, Okada et al. [28] suggested that the solubility of citral was improved with
a different type of β-CD. Moreover, Phunpee et al. [1] investigated the phase solubility change of
citral with three native CD types and revealed that the solubility of citral was enhanced because of
complex formation. In our study, the stability constant (KS) values of the complexes were calculated
based on Equation 1. The KS values of citral/HPβCD-IC, citral/HPγCD-IC, and citral/MβCD-IC
were determined as 505 M−1, 219 M−1, and 1375 M−1, respectively. KS values essentially represent
the binding strength between the guest molecules and CD and, based on our results, the stabilities
of the complexes were in the order of MβCD > HPβCD > HPγCD. Here, the bigger cavity size of
HPγCD prevented it from being as efficient as HPβCD and MβCD in stabilizing the interactions
with citral in the dynamic environment of the system. On the other hand, the MβCD-based system
(1375 M−1) indicates a higher stability constant than HPβCD system (505 M−1). Here, the less polar
feature of MβCD compared to HPβCD might be influential for the more stable complexation between
the hydrophobic citral molecules and MβCD in the polar water environment [29].
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systems in water (n = 3).

3.2. Morphology Analyses of Nanofibers

SEM images and the photographs of citral/HPβCD-IC nanofibers (citral/HPβCD-IC-NF),
citral/HPγCD-IC nanofibers (citral/HPγCD-IC-NF), and citral/MβCD-IC nanofibers (citral/MβCD-IC-NF)
webs are given in Figure 3. The production of uniform and bead-free nanofibers was confirmed by
SEM imaging of citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF. Additionally,
electrospun polymeric citral/PVA-NF, which has 185 ± 30 nm of average fiber diameter, was also
obtained with bead-free and uniform fiber morphology (Figure S1). As we reported in our previous
studies [5,6], CDs are capable of forming self-assemblies and aggregations in the highly concentrated
CD solutions, which help the electrospinnability and fiber formation during electrospinning.
Even though citral/CD-IC is a non-polymeric system consisting of small molecules, self-standing and
flexible nanofibrous materials were obtained from citral/CD-IC-NFs (Figure 3d–f).

The average fiber diameters (AFD) of citral/HPβCD-IC-NF (105 ± 35 nm), citral/HPγCD-IC-NF
(1380 ± 380 nm), and citral/MβCD-IC-NF (125 ± 35 nm) were measured from SEM images.
The ultimate fiber morphology and fiber diameter are affected by various electrospinning parameters
and the distance between the needle and collector is one of them. This parameter has been examined
and reported by different studies in the literature, and the main observation is that the increasing
distance between collector and needle leads to thinner fiber formation due to the longer exposure
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time of stretching of the electrospun fibers [30–32]. In our study, we first aimed to obtain bead-free
and uniform fibers from citral/CD-IC, and so we optimized our system at the given range of
collection distance (10–15 cm). During our optimization study, definite fiber diameter differences
were not observed for citral/CD-IC solutions depending on the collector needle distance within
10–15 cm. However, the viscosity and conductivity differences of the citral/CD-IC solutions were the
main reasons for the variation in the AFD of citral/CD-IC-NF samples (Table 1). Since the solvent
type has a significant influence on the viscosity and conductivity of electrospinning solutions, it is
a more dominant parameter for the morphology of the resulting electrospun fibers [5,6,11,19,33].
In one of our previous studies, the electrospinning of vanillin/CD-IC was investigated in three
different solvent types (DMSO, dimethylformamide (DMF), and water) [11]. The results of the study
indicated that it is possible to get fibers from less concentrated CD solutions prepared in DMF
and DMSO compared to a water system. However, thicker fiber diameters were obtained from
organic solvent-based electrospinning of CD-ICs when compared to a water-based CD-IC system.
More importantly, the use of organic solvents creates toxicity problems for food-related applications
of these CD-IC electrospun fibers. Therefore, water was chosen as a solvent system in this study to
support food-related applications of citral/CD-IC-NF samples. Solutions having low viscosity and high
conductivity yield thinner fibers owing to the increased jet stretching in electrospinning [33]. In our case,
the lower conductivity and higher viscosity of citral/HPγCD-IC solutions caused citral/HPγCD-IC-NF
to obtain a much higher AFD (1380 ± 380 nm) compared to citral/HPβCD-IC-NF (105 ± 35 nm)
and citral/MβCD-IC-NF (125 ± 35 nm), because the electrospinning of the citral/HPγCD-IC
system was subjected to less stretching during the electrospinning process. On the other hand,
both citral/HPβCD-IC and citral/MβCD-IC solutions had lower viscosity and higher conductivity
values resulting in a much smaller AFD; citral/HPβCD-IC-NF had an AFD of 105 ± 35 nm and
citral/MβCD-IC-NF had an AFD of 125 ± 35 nm.
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NF, (b) citral/HPγCD-IC NF, and (c) citral/MβCD-IC NF; the photographs of (d) citral/HPβCD-IC-NF,
(e) citral/HPγCD-IC-NF, and (f) citral/MβCD-IC-NF webs.
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Furthermore, the visual water solubility test was performed for pure citral and citral/CD-IC-NF
webs. A volume of 5 mL of water was added to the citral/CD-IC-NF web samples (Video S1) and pure
citral (approximate amount of citral in the nanofibers) was dropped into 5 mL of water (Video S2) for
a comparative study. As seen in the Videos S1–S2 and Figure 4, citral could not be dissolved in water.
However, rapid disintegration and dissolution of citral/CD-IC-NF webs occurred within a very short
time period (in a second or so). The comparative solubility test of freeze-dried citral/CD-IC (powder)
was performed as well. It was observed that citral/CD-IC-NF webs could disintegrate more readily in
water than citral/CD-IC (powder) (Video S3) due to the high surface area and nanoporous structures
of the nanofibrous webs, facilitating the penetration and ultimately interaction of water molecules
within the web samples.Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 16 
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3.3. The Molar Ratio of Citral/CD-IC

The molar ratios of citral:CD in citral/CD-IC-NF samples were calculated by taking the integration
of the protons of citral and CD from 1H NMR spectra of citral/HPβCD-IC-NF, citral/HPγCD-IC-NF,
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and citral/MβCD-IC-NF (Figure 5 and Figure S2). Here, 1H NMR measurements were performed after
the electrospinning process by dissolving citral/CD-IC-NF samples in d6-DMSO. The molar ratios of
citral:HPβCD, citral:HPγCD, and citral:MβCD were found as ~0.60:1.00, ~0.60:1.00, and ~0.80:1.00 for
citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF, respectively. The amount of
citral protected from evaporation calculated from 1H NMR spectra is in agreement with the calculated
amount of citral from TGA results recorded concurrently to 1H NMR measurements, which will be
discussed in the following section.Nanomaterials 2018, 8, x FOR PEER REVIEW  10 of 16 
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The time-dependent stability (up to 15 days) of citral in citral/CD-IC-NF samples was evaluated by
1H NMR measurements, and the results are summarized in Table S1. To show the effect of cyclodextrin
inclusion complexation, the polymeric electrospun nanofiber matrix without CD-IC (citral/PVA-NF
sample) was also tested as a comparative study. After electrospinning (t = 0 day, the storage time is
less than 3 h), the molar ratios of citral:HPβCD, citral:HPγCD, and citral:MβCD were calculated from
1H NMR (0th day in Table S1) as ~0.65:1.00, ~0.60:1.00, and ~0.85:1.00 for citral/HPβCD-IC-NF,
citral/HPγCD-IC-NF, and citral/MβCD-IC-NF, respectively. After 15 days of storing at room
temperature, the molar ratios of citral:HPβCD, citral:HPγCD, and citral:MβCD were ~0.50:1.00,
~0.40:1.00, and ~0.45:1.00 for citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF,
respectively. Although citral has a volatile nature, our results showed that the release of citral from
citral/CD-IC-NF during the storage at room temperature was minimal. Citral/HPγCD-IC-NF had the
least amount of citral in the beginning and it showed slightly lower preservation efficiency in total,
which is most likely because it had the lowest KS, calculated from phase solubility diagrams. The lower
strength of the interaction with HPγCD might be related to the bigger cavity size of this CD type as
compared to β-CD derivatives. In conclusion, β-CD derivatives were able to keep more citral in the
nanofibers than HPγCD. Here, citral/PVA-NF without CD-IC was also electrospun for the comparative
study to examine the effect of inclusion complexation on the stability of citral in the fiber matrix during
and after electrospinning. PVA polymer was chosen because it is comparable to CD based on its
electrospinnability in water and its possession of hydroxyl moieties in its structure. The presence
and the time-dependent stability of citral in citral/PVA-NF were also studied after electrospinning
and storing the sample at RT for up to 15 days (Figure S3). However, the related peaks of citral
could not be observed in the 1H NMR spectrum of the citral/PVA-NF sample, which was tested just
after the electrospinning (Figure S3). The results reveal that citral/PVA-NF could not preserve citral
during either the electrospinning process or the short time storage just after electrospinning. On the
contrary, a significant amount of citral (up to ~50%) was preserved in citral/CD-IC-NF webs even
after 15 days of storage at RT. Therefore, it can be concluded that inclusion complexation provides
time-dependent stability for volatile compounds in CD-IC-NFs compared to the polymeric nanofibrous
matrix without CD-IC.

3.4. Thermal Analysis of Nanofibers

The TGA was used to investigate the thermal stability of citral/HPβCD-IC-NF,
citral/HPγCD-IC-NF, and citral/MβCD-IC-NF webs (Figure 6). The TGA of pure citral and
pure CD-NF samples was also carried out for comparison. HPβCD-NF, HPγCD-NF, and MβCD-NF
exhibited a weight loss of water below 100 ◦C and the main thermal degradation of CD was above
275 ◦C. Citral is a volatile compound and evaporates between the temperature of 50 ◦C and 165 ◦C.
The volatility of citral was reduced when it was inserted in the CD cavity. Thus, the evaporation of citral
increased to a much higher temperature in citral/HPβCD-IC-NF (100–255 ◦C), citral/HPγCD-IC-NF
(100–270 ◦C), and citral/MβCD-IC-NF (80–185 ◦C and 260–305 ◦C). Therefore, it was concluded that
complexation was formed between CDs and citral. Other researchers also reported an improvement in
citral’s thermal stability when complexation is formed with CDs [23,34]. The citral/HPβCD-IC-NF has
a three-step weight loss; below 100 ◦C, at 100–255 ◦C, and at 255–415 ◦C, which is attributed to water
loss, evaporation of citral, and the main thermal degradation of HPβCD, respectively. Accordingly,
the amount of citral remaining in the nanofibers was calculated as 5.96% (w/w) in citral/HPβCD-IC-NF.
Similarly, a three-step weight loss was observed in citral/HPγCD-IC-NF: below 100 ◦C, at 100–270 ◦C,
and at 270–410 ◦C, which was attributed to the loss of water molecules, evaporation of citral,
and HPγCD’s main thermal degradation, respectively. From this result, the amount of citral
was determined as 5.33 % (w/w) in citral/HPγCD-IC-NF. Unlike citral/HPβCD-IC-NF and
citral/HPγCD-IC-NF, citral/MβCD-IC-NF exhibited a four-step weight loss. The first weight loss
below 100 ◦C was due to the water loss and the final weight loss that occurred between 305 ◦C
and 420 ◦C corresponds to the main thermal degradation of MβCD. The second and the third
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weight losses observed at 80–185 ◦C and 260–305 ◦C in citral/MβCD-IC-NF might be due to the
presence of two types of complexes that have interactions of different strengths. Thus, the total
amount of citral in citral/MβCD-IC-NF was calculated as 9.16% (w/w) (6.32% (w/w) from the
first weight loss and 2.84% (w/w) from the second weight loss. To summarize, up to ~65% of
citral was preserved in citral/HPβCD-IC-NF and citral/HPγCD-IC-NF, whereas ~93% of citral was
preserved in citral/MβCD-IC-NF. The molar ratios of citral:HPβCD, citral:HPγCD, and citral:MβCD
were calculated as ~0.65:1.00, ~0.65:1.00, and ~0.90:1.00 from TGA results in citral/HPβCD-IC-NF,
citral/HPγCD-IC-NF, and citral/MβCD-IC-NF, respectively. The results show that the molar ratio
of citral:CD in citral/CD-IC-NF samples calculated from TGA correlates with the results obtained
from 1H NMR. According to 1H NMR and TGA data, it was concluded that MβCD can provide better
encapsulation of citral. These results correlate with the phase solubility studies in which a higher KS

value and a stronger interaction between citral and MβCD was observed.
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Figure 6. Thermogravimetric analysis (TGA) thermograms of (a) citral, HPβCD-NF, citral/HPβCD-IC-NF,
(b) citral, HPγCD-NF, citral/HPγCD-IC-NF, and (c) citral, MβCD-NF, citral/MβCD-IC-NF.

Furthermore, because the water molecules in the cavity of CDs were replaced with guest molecules
during the complex formation, a reduction of water is expected when a guest molecule is complexed
within the cavity of CDs. The amount of water calculated from the water loss below 100 ◦C in
TGA graphs of pure HPβCD-NF, HPγCD-NF, and MβCD-NF was 4.83%, 5.80%, and 2.45% (w/w),
respectively (Figure 6). The amount of water decreased to 1.15%, 1.10%, and 1.40% (w/w) for



Nanomaterials 2018, 8, 793 12 of 15

citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF, respectively. The reduction in
the water content in the citral/CD-IC-NF samples strongly suggests complex formation between with
three CD types and citral in these webs.

3.5. Structural Characterization of Nanofibers

Structural characterization of citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF
was performed by using XRD and FTIR. XRD patterns of HPβCD-NF, HPγCD-NF, MβCD-NF,
citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF are given in Figure 7a.
Citral/HPβCD-IC-NF, citral/HPγCD-IC-NF, and citral/MβCD-IC-NF exhibited an amorphous pattern
similar to pure HPβCD-NF, HPγCD-NF, and MβCD-NF. XRD data for pure citral could not be recorded
since it is in a liquid state at RT; even so, citral/CD-IC-NF also had an amorphous structure. In addition,
there was no crystal formation of citral in citral/CD-IC-NF, suggesting that there was an inclusion
complexation between the two compounds used (Figure 7a).
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Figure 7. (a) X-ray diffraction (XRD) patterns of HPβCD-NF, HPγCD-NF, MβCD-NF, citral/HPβCD-IC-NF,
citral/HPγCD-IC-NF, and citral/MβCD-IC-NF; (b) full and (c) narrow range Fourier-transform infrared
(FTIR) spectra of citral, HPβCD-NF, HPγCD-NF, MβCD-NF, citral/HPβCD-IC-NF, citral/HPγCD-IC-NF,
and citral/MβCD-IC-NF.
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FTIR analyses of citral, HPβCD-NF, HPγCD-NF, MβCD-NF, citral/HPβCD-IC-NF,
citral/HPγCD-IC-NF, and citral/MβCD-IC-NF are presented in Figure 7b,c. CDs exhibited
characteristic absorption peaks at around 1030 cm−1 (coupled C–C stretching vibration),
1080 cm−1 (coupled stretching C–O vibration), 1157 cm−1 (antisymmetric stretching vibration
of C–O–C glycosidic bridge), 1638 cm−1 (H–OH bending), 2925 cm−1 (C–H stretching), and 3401 cm−1

(O–H stretching) [10,12]. The characteristic peaks of citral appeared at 1380 cm−1 of bending (CH3)
vibration, 1443 cm−1 of C=C vibration, 1674 cm−1 of C=O stretching vibration, and 2847 cm−1 and
2916 cm−1 of CH2 and CH3 stretching vibration [23]. Because the characteristic peaks of CDs at 2925
cm-1 and 1638 cm−1 and citral at 2916 cm−1, 2847 cm−1, and 1674 cm−1 overlap, it is difficult to
differentiate them. However, the peaks of CDs are observed at 1036 cm1, 1083 cm−1, and 1155 cm−1 for
citral/HPβCD-IC-NF, 1031 cm−1, 1082 cm−1, and 1155 cm−1 for citral/HPγCD-IC-NF, and 1043 cm−1,
1089 cm−1, and 1171 cm−1 for citral/MβCD-IC-NF (Figure 7c). The shifts of the peaks of CDs indicate
the presence of an interaction between CDs and citral. Similarly, Zhu et al. [23] demonstrated that the
disappearance or shifting in the peaks at 2966 cm-1, 2916 cm−1, 2860 cm−1, 2759 cm−1, and 1674 cm−1

might be attributed to complex formation between citral and CDs. The reported shifts seen in the FTIR
spectra of CD-ICs compared to pure CDs and citral were regarded as inclusion complexation of citral
with the CDs [23,34].

4. Conclusions

The flexible and self-standing citral/CD-IC-NF webs were successfully produced using three types
of CDs (HPβCD, HPγCD, and MβCD) by an electrospinning technique without any polymeric carrier
matrix. Even though citral is quite a volatile molecule, efficient preservation of citral and a longer
shelf-life were successfully achieved for citral/CD-IC-NF samples due to inclusion complexation with
CD. In addition, citral/CD-IC-NF have shown much higher thermal stability for citral when compared
to pure citral. The citral/CD-IC-NF webs had a fast-dissolving character compared to the powder
form of citral/CD-IC. Moreover, the water solubility of citral was enhanced for citral/CD-IC-NF.
To conclude, citral/CD-IC-NF can be easily utilized and provides advantages for food or related bio
applications due to the non-toxic nature of CD and the flavor/fragrance properties of citral.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/10/793/s1.
Figure S1: The representative SEM image of citral/PVA-NF; Figure S2: 1H-NMR spectra of (a) HPβCD-NF, (b)
HPγCD-NF (c) MβCD-NF, and (d) citral dissolved in d6-DMSO; Figure S3: 1H NMR spectra of citral/PVA-NF
sample by dissolving citral/PVA-NF in d6-DMSO at certain time intervals. (Time zero means after the
electrospinning, the storage time is less than 3 h.); Table S1: The molar ratio of citral:CD in citral/CD-IC-NF
samples stored at room temperature for 15 days. (The molar ratio of citral:CD was decided from 1H NMR
measurements by dissolving citral/CD-IC-NF samples in d6-DMSO at certain time intervals). Video S1: The
solubility behavior of citral/CD-IC-NF; Video S2: The solubility behavior of pure citral; Video S3: The solubility
behavior of citral/CD-IC powder.
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