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Abstract

In bioinformatics, alignment is an essential technique for finding similarities between biologi-

cal sequences. Usually, the alignment is performed with the Smith-Waterman (SW) algo-

rithm, a well-known sequence alignment technique of high-level precision based on

dynamic programming. However, given the massive data volume in biological databases

and their continuous exponential increase, high-speed data processing is necessary. There-

fore, this work proposes a parallel hardware design for the SW algorithm with a systolic

array structure to accelerate the forward and backtracking steps. For this purpose, the archi-

tecture calculates and stores the paths in the forward stage for pre-organizing the alignment,

which reduces the complexity of the backtracking stage. The backtracking starts from the

maximum score position in the matrix and generates the optimal SW sequence alignment

path. The architecture was validated on Field-Programmable Gate Array (FPGA), and syn-

thesis analyses have shown that the proposed design reaches up to 79.5 Giga Cell Updates

per Second (GCPUS).

1 Introduction

In Bioinformatic, the analysis can be divided into three parts called primary, secondary, and

tertiary analysis [1, 2]. The primary analysis is responsible for generating genomic data infor-

mation from biological material. In the primary analysis, the sequencing machines create raw

genomic data (or raw data). The raw data is composed of several genome reads. The secondary

analysis involves reads alignment and trimming based on quality, and at the end of this step, a

whole genomic is created. Finally, tertiary analysis can be characterized as interpreting results

and extracting meaningful information from the data. In this last step, many algorithms and

techniques can be applied. Also, many applications are created from these analyses. The ter-

tiary analysis covers various applications, from genome characterization to a vaccine or drug

treatment creation [2].
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A large amount of raw data has been generated in recent years due to the replacement of

Sanger sequencing by Next-Generation Sequencing (NGS), also called High-Throughput

Sequencing (HTS) [3, 4], where NGS data analysis includes the three analysis categories men-

tioned above. Each sequencing machine can be created about 7 Tera base pairs (bp) per hour

(Tbp/h) [5]. Intense sequencing of raw data from organisms and sharing data around the

world are critical to monitoring major SARS-CoV-2 viral mutations and viral control [6]. Dis-

ease caused by the SARS-CoV-2 virus has been spreading worldwide and has been declared a

pandemic by the World Health Organization [7, 8].

After sequencing reads, alignment methods can be performed to map and determine the

evolutionary line of the targeted organism, such as its phylogeny. As a result, it is possible to

understand the sample’s action mechanics by comparing them with cataloged samples in exist-

ing databases [2, 9]. The most used meta-heuristic alignment method for the sequences is the

Basic Local Alignment Search Tool (BLAST) due to its fast processing speed and less memory

usage than deterministic alignment algorithms [10].

However, different from the meta-heuristics, deterministic alignment methods offer the

optimal alignment for a given input sequence instead of an approximate solution. The main

deterministic methods are the Needleman-Wunsch (NW) and Smith-Waterman (SW) algo-

rithms for global and local alignment, respectively [11, 12]. Nonetheless, a significant disad-

vantage of these algorithms is their slow processing speed and high memory usage due to the

computational complexity. For example, SARS-CoV-2, commonly vary from 28k to 31k base

pairs (bp) in size. Thus, performing thousands of large-size sequence alignments became a real

challenge for extracting information on the raw data.

Thus, it is essential that the processing of algorithms associated with the bioinformatics

area cover three critical requirements: high processing speed (high-throughput), ultra-low-

latency, and low-power [13–15]. Bioinformatics analysis algorithms are critically dependent

on the computational infrastructure to cover high-throughput, ultra-low-latency, and low-

power requirements. It can be said that there are three categories of infrastructure used, which

are: Central Process Units (CPUs) [16], Graphics Processing Units (GPUs) [17, 18], and Cus-

tom Hardware Architectures (CHA) [19–21].

Genomic analysis solutions associated with the High-Performance Computing (HPC),

which is first (CPUs) and second (GPUs) categories of computational infrastructure, use sys-

tems based only on software that can be implemented using only CPUs and GPUs. According

to results presented in [22–24], these software-only approaches struggle to keep up with the

growing computational demands of genomic analysis, given the barriers to reducing large-vol-

ume latency and power consumption using only CPUs and GPUs. In addition, as the number

of nodes grows to handle increasing amounts of data, performance is not scaled linearly [16,

25–27]. The third (CHA) category of infrastructure has been presenting itself as an exciting

alternative to satisfy high-throughput, ultra-low-latency, and low-power requirements [28–

33].

Therefore, this work presents a parallel FPGA design with a systolic array structure to accel-

erate both the forward and backtracking stages of the SW algorithm. The main contributions

are high-speed data processing implementation and low memory usage that allows for high

scalability. According to [34], the systolic array is a class of parallel computing architecture

that describes an array for dense linear algebraic calculations, proposed by [28]. Its hardware

implementation usually uses a pipeline structure, where the data is propagated between Pro-

cessing Elements (PEs). Besides, its main advantage is to reduce the number of memory

accesses throughout the data flow. Hence, systolic arrays simplify the architecture and improve

the system’s operating frequency [35].
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To overcome the low-speed processing bottleneck and maintain the optimal alignment of

deterministic algorithms, parallel hardware implementations for the SW algorithm have been

proposed in the literature. The main platforms used are Field Programmable Gate Arrays

(FPGAs), Central Processing Units (CPUs), and GPUs. FPGAs are widely known for their flex-

ibility for parallelization and low-power consumption. An FPGA is a matrix of logic blocks

that allows designing different circuits, such as processors, logic circuits, and even algorithm

development [31]. FPGA platforms can be categorized as third generation computational

infrastructure in bioinformatics, as it is a CHA. Also, the logical blocks within the FPGA are

independent, allowing operations to be carried out in parallel and only one clock cycle, unlike

CPUs that operate sequentially based on instructions and GPUs that require constant access to

memories.

1.1 Related works

This subsection briefly discusses hardware-based approaches for the SW algorithm available in

the literature. Usually, the SW is used for protein and DNA sequence alignment, but their par-

allel strategies are quite different. Many hardware implementations targeting protein align-

ment were developed on supercomputers, CPUs, GPUs, and FPGAs, as can be seen in [36–

40]. Due to an extensive number of previous works in the field, we consider the DNA align-

ment implementations, which in turn are commonly based on Resistive Content Addressable

Memories (ReCAMs) [22], Application-Specific Integrated Circuits (ASICs) [41], and FPGAs

[23, 24, 39, 42–53].

GPUs are well-known for their high degree of parallelism and computing intensity. How-

ever, high-performance GPUs have a high cost, and, broadly speaking, GPUs have significant

computing latency, and low energy efficiency compared to custom hardware, but with more

energy efficiency than CPUs, as seen in the results [22, 23, 40]. The high computing latency is

due to the high number of cores and low cache memory to control these cores. In contrast to

GPUs, FPGAs are customizable according to the user’s needs, achieving better computing per-

formance and lower latency [15, 54, 55]. However, FPGA hardware development is usually

complex and takes a long time.

Unlike the conventional platforms previously mentioned, the SW algorithm has also been

implemented on ResCAMs, as can be seen in [22]. ResCAMs is a storage accelerator system

that allows millions of processing units (PUs) to be deployed over multiple silicon arrays. In

[22], the implementation was used to compare the homologous chromosomes between

humans (GRCh37) and chimpanzees (panTro4), and the only SW step performed was the

building of the score matrix. As a result, their proposal achieved 5, 300GCUPS, a 4.8× speedup

over the GPU performance. Besides, it also had a 1.7× better energy efficiency compared to an

FPGA implementation.

In [45], a hardware/software co-design was implemented on FPGA to reduce the execution

time of short-sequence alignment during genome sequence analysis. The analysis was per-

formed using the Shouji method, a highly parallel and accurate pre-alignment filter that

reduces the need for computationally-costly dynamic programming algorithms. The FPGA

was used to boost the algorithm’s performance. As a result, integrating the Shouji and aligner

methods reduced the alignment total execution time by up to 18.8×.

In [48], a systolic-array-based architecture is presented as a DNA sequencer, using the SW

algorithm affine gap penalty score. According to [48], the SW algorithm was implemented on

a Xilinx Virtex-6 FPGA, reaching 465 Giga Cell Update per Second (GCUPS), and reducing

the area occupation by 90% compared to other architectures.
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In [50], an FPGA runtime accelerator is presented to align data information sequences. The

authors’ implementation is based on the seed-and-extend model of Bowtie2, achieving a simi-

lar alignment rate while mapping reads by�2× faster. Meanwhile, it is proposed by [46] an

FPGA implementation of the SW algorithm to replace the GPU used in [40], called SWIFOLD.

The FPGA implementation is based on OpenGL and utilized for long DNA sequences align-

ment. The SWIFOLD approach for accelerating the SW alignment reached an average of 125

GCUPS.

In [41], an ASIC design for traceback recording with penalty scoring is proposed. The

design is implemented on a TSMC 40nm technology, and the aligner strategy can speed up

pairwise alignment by 71× compared to the CPU.

Meantime, in [47] is presented an FPGA approach to meet the alignment operation pro-

cessing requirements. The paper introduces a register-file concept to reduce run-time storage,

and it does not require any sorting or comparison operations to prepare for the final sequence

alignment. As a result, a 128 GCUPS performance was achieved using 256 PEs.

In [56], an FPGA hardware implementation of SW and NW algorithms is presented. The

performance and area occupation is evaluated for different hardware designs. Besides, a con-

volution neural network model is introduced to implement the NW algorithm, achieving

98.3% accuracy.

In [23], a heterogeneous FPGA architecture for sequence alignment is proposed. Unlike

most of the works in the literature, their implementation aims to accelerate the entire SW algo-

rithm with the backtracking process. For this purpose, the architecture can process long strings

of data based on parallelism and partitioning strategies; and the backtracking process was per-

formed by dividing the equal parts of the similarity matrix, while the search started from the

lower right sub-matrix. The tests were performed for 512 Processing Elements (PEs), reaching

76.8GCUPS at 150MHz and 105.9GCUPS (with external memory) for 200MHz. As a result, a

speedup of 3.6× to 25.2× was achieved regarding other SW designs implemented on FPGA

and GPUs. Besides, it reached a 26% reduction in power consumption compared to the GPU

implementation.

Similarly, more FPGA approaches using systolic arrays for the NW and SW with backtrack-

ing sequencing techniques have been proposed, such as [39, 57]. In [39], a VHDL SW imple-

mentation, using Dynamic Programming (DP) with approximation correspondences for two

different strategies, was proposed. It achieved 23.5GCUPS with speedups between 150× to

400× compared to a 2004-era PC. Meanwhile, in [57], the implementation was based on PEs to

perform elementary calculations and a diagonally backtracking search, also developed in

VHDL. Comparisons were made with the linear and affine strategies, achieving 10.5GCUPS.

In [44], the SW forward and backtracking processes were implemented in an FPGA. The

Qnet structure was adopted for communicating with the FPGA, reaching 25.6GCUPS, a

speedup of 300× compared to a desktop computer.

Therefore, it can be noted from the literature that the key points for a high-performance

SW implementation on FPGA are the operating frequency and number of PEs, which in turn

are associated with the hardware capacity and design critical path. Thus, we present an FPGA

implementation for the SW algorithm using systolic arrays, as in [23, 39, 44, 57].

Our approach performs both the forward and backtracking stages of the algorithm. Unlike

the approaches in the literature, we obtain the alignment path distances during the forward

stage processing and the maximum score, reducing the complexity of the backtracking stage

processing. Memories are used to propagate the distances and maximum score, allowing the

backtracking step to follow the path directly. Thus, our architecture achieves good perfor-

mance (short critical path), reduced memory usage and, theoretically, high scalability, and pre-

vents memory access overlap latency, even implementing the two stages of the SW algorithm.
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It is essential to mention that our proposed hardware architecture can perform the alignment

of any sequence length. However, the resources available in the target FPGA are a limiting fac-

tor for the size of the score matrix, as shown in [23, 47, 58]. Nonetheless, we provide a proof-

of-concept and an actual implementation on the Virtex-6 FPGA using a synthetic dataset.

2 Smith-Waterman algorithm

Smith and Waterman originally proposed the SW algorithm in 1981 to performs local

sequence alignment of nucleotides and proteins in the biological field [12]. The sequence

alignment of the SW algorithm includes the forward and backtracking stages, which are per-

formed by the calculation results of the alignment similarity score. Besides, the alignment is

performed based on two input sequences called query sequence, q, and dataset sequence s. The

query sequence can be expressed by

q ¼ ½q1; � � � ; qj; � � � ; qN � ð1Þ

where qj is the j-th nucleotide or amino-acid protein and N is the length of the query sequence.

The dataset sequence can be expressed by

s ¼ ½s1; � � � ; si; � � � ; sM� ð2Þ

where si is the i-th nucleotide or amino-acid protein, and M is the dataset sequence length.

Therefore, the SW algorithm is calculated iteratively for two dimensions, and it has a computa-

tional complexity of O(M × N).

The forward stage calculates the scoring matrix, H, where H is a two-dimensional array that

can only take values greater than or equal to 0 (i.e., H 2 N2
). This matrix is generated by com-

paring the elements of the sequences q and s. Usually, H is generated using DP, and it is initial-

ized with zeros in the first row and column. Subsequently, the DP process is performed to

calculate the sequence scores. Based in works presented in [23, 36, 59], the recurrence relation-

ship can be defined as

HM;N ¼

Hði; jÞ ¼ maxf0;Eði; jÞ; Fði; jÞ;Hði � 1; j � 1Þ þ Pðsi; qjÞg

Eði; jÞ ¼ maxfHði; j � 1Þ þ r;Eði; j � 1Þ þ sg

Fði; jÞ ¼ maxfHði � 1; jÞ þ r; Fði � 1; jÞ þ sg

8
><

>:
ð3Þ

where Hði; jÞfði; jÞ 2 N j 1 � i � M; 1 � j � Ng, P is the score matrix used for obtaining the

similarity score between si and qj, E and F are two assisted matrices when calculating matrix H,

ρ is the gap opening penalty and σ is gap extension penalty. In the particular case of ρ = σ, a lin-

ear gap penalty model is obtained, opening and extending a gap with the cost γ. P is also called

a substitution matrix, where the simplest version is when the diagonal receives the match value

and the rest of the matrix has a mismatch value. When performing all element calculations,

this expression is the HM, N matrix. Therefore, H(i, j) is the maximum alignment score of two

sub-sequences s and q. The initialization condition is

Hði; 0Þ ¼ Hð0; jÞ ¼ Eði; 0Þ ¼ Fð0; jÞ ¼ 08 fði; jÞ 2 N j 1 � i � M; 1 � j � Ng: ð4Þ

The maximum score value of H(i, j) in the forward stage is the last sequence that will be

aligned. To determine the relationship, the previous neighborhood values of the analyzed ele-

ment are required, i.e., the values on the diagonal, horizontal, and vertical positions, as illus-

trated in Fig 1. As can be observed, the score of w can be found based on its neighborhood (x,

y, v), which is H(i − 1, j − 1), H(i − 1, j), H(i, j − 1), respectively. This windowing step occurs

throughout the process of determining all scores in H.
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As shown in Fig 1, the neighborhood values x, y and v, must necessarily be known to deter-

mine the value of w (i.e., H(i, j)). For this purpose, those values are defined based on the

sequences q and s. Thereby, the w score is determined as

w ¼ max

xþ a if qi ¼ sj

xþ b if qi 6¼ sj

y � g
v � g
0

;

8
>>>>>><

>>>>>>:

ð5Þ

where γ, α, and β represent the linear gap, a match, and a mismatch, respectively. A gap is a

penalty that causes an empty element in the sequence (represented by a dash symbol), while

the other sequence continues. It can result from the query or database sequence. The Eq 5 is

equivalent the Eq 3, where x+ (α_β) = H(i − 1, j − 1)+ P(si, qj), y+ γ = F(i, j) and v+ γ = E(i, j).
Finally, when fully populated, the H matrix contains the score and path information.

The backtracking stage starts after determining all the scores in the H matrix, i.e., calculat-

ing the score of all cells H(M, N). Hence, the backtracking begins at the cell with the highest

Fig 1. The direction of the score computation in the matrix during the SW forward stage. To determine a score, such as w, the neighborhood values

(x, y, and v) have to be known. The green-colored cells indicate already computed values, while the yellow cells indicate that the values to be calculated.

https://doi.org/10.1371/journal.pone.0254736.g001
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value in the H matrix (maximum score) and trace-back the next position based on the highest

neighborhood value, according to Eq 5, which can be on the diagonal, horizontal, or vertical

direction. This is an iterative process that repeats until it reaches the limit value, usually set to a

score of 0. Also, a directional flag indicates the path. Finally, the backtracking path determines

the best local alignment. The diagonal direction points to a match in the alignment, while the

horizontal and vertical directions indicate gaps which are represented by dashes in the s and q

sequences, respectively.

3 Implementation description

The hardware architecture for the SW algorithm proposed in this work was developed using

systolic arrays to input two DNA sequences and increase the processing speed of the local

sequence alignment. An overview of the systolic array structure of the proposal for N PEs is

shown in Fig 2. Besides, each PE is divided into 3 modules. These modules are the forward

stage, the storage process, and the backtracking stage, as seen in Section 2. Each module is

illustrated in blue, green, and yellow, respectively. The forward stage has its module named as

Matrix Score Module (MSM), the storage process module is called as Memory Module (MM),

and the backtracking stage has its module as backtracking stage (BS).

The labeled signals shown in Fig 2 are generated outside the modules. Meanwhile, the non-

labeled ones are generated by computations inside the modules and detailed throughout this

Section. The sequences q and s, defined according to Eqs 1 and 2, are external discrete signals

used as inputs of the SW algorithm. Furthermore, each signal in the sequences represents one

of the four DNA nucleotides, i.e., A, G, T, or C (also accepting twenty distinct levels referring

to amino acids or another set of sequences). The design proposed supports any sequence set as

Fig 2. General architecture for the SW algorithm. The forward stage (MSM) is represented by the blue block, the backtracking stage (BS) by the

yellow block, and the Memory (MM) by the green block. Only external signals are displayed, i.e., the q and s signals.

https://doi.org/10.1371/journal.pone.0254736.g002
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in any SW algorithm, but for an efficient alignment, it is necessary to adopt a suitable scoring

matrix that models each possible symbol’s frequencies that can occur in the sequences.

Initially, the circuit starts when the MSM modules propagate the q and s signals. As seen in

Fig 2, each k-th element of the q and s sequences are shifted to each MSM output to shorten

and stabilize the critical path, as well as allowing the computation of scores synchronously,

preserving the systolic array structure. Afterward, the MSM computes the score according to

Eq 3, and propagates the sequence elements to the next MSM; also, the computed results are

sent to the respective MM in their order of entry. During this process, the MM operates exclu-

sively in writing mode while the process has not reached the last computation between the two

sequences.

The forward stage is completed after fully computing the scores of the H matrix. Also, the

last MSM enables the backtracking process. Consequently, the MM switches to the read mode,

and the BS reads the data computed by its respective MSM. The alignment starts from the cal-

culations performed in the MSM. Then, from the respective defined PE in the forward stage,

the process starts and ends according to the definitions of the SW algorithm.

Fig 3 shows the block design that represents each PE of the systolic array, with a detailed

description of the signals between the modules within one PE. As can be observed, besides the

two input sequences to be compared, q and s, the MSM also receives an enable signal, e n.

After computing the score between each k-th element of the two sequences (i.e., an element of

the H matrix), the MSM outputs to the next PE the following signals: the calculated score, Scj;

the maximum score, MaxVal, and its position, AddrRAMi^j; the PE index; along with the

input signals q, s, and en, shifted in time. In addition, the MSM also outputs signals to the

MM, which are the calculated path direction, Direction, and the storage address of that path

wAddrDir.
Subsequently, after fully populating the H matrix and, consequently, the D matrix, the for-

ward stage is finished enabling the Traceback signal, which in turn begins the BS. Firstly, the

BS sets signal BTStart to 1, indicating the start of the backtracking process. Therefore, the

mRAMi^j are propagated back until it reaches the BS with maximum score, which is identified

by the signal index. From this location match, the btcontrol signal is changed to allow the read-

ing of the memory by MM. Thus, the BS receives the path value from the MM at signal dj

when sending the memory address rAddrDirj signal. The dj value allows the BS to calculate the

next requested address and propagate it to the next module through the path(j) signal, repre-

senting the memory address of the request path in MM. Lastly, the alignment value enters val-
Dir, and the process continues until it reaches the complete alignment. All modules are

detailed in the following subsections. All signals present in this Section are shown in Table 1.

3.1 Forward approach

Firstly, based on the principles “divide and conquer” for solving computational problems, we

propose a matrix used to store only the values of the recursive path, called the D matrix. The D

matrix is not widely used in the SW literature. However, it is important to achieve a solution at

lower-level programming. Besides, a matrix with two different types of information, such as

the H matrix, increases the hardware design complexity. Matrix D needs to store only 4 levels

of values which are: 0, 1, 2 and 3. Each element of the matrix D needs 2 bits to be expressed,

delivering a more economical storage process compared to H, which can certainly need more

than 2 bits to represent each element.

As previously mentioned, the alignment process is performed based on the query and data-

set input sequences, q and s, respectively. Also, there can have different sizes, represented by
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Fig 3. Architecture of each PE in the systolic array. The forward stage is represented by the blue block, the

backtracking stage by the yellow block, and the Memory by the green block.

https://doi.org/10.1371/journal.pone.0254736.g003
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N and M, which define the size of the matrices H and D, respectively. The Matrix Score Mod-

ule (MSM) calculates the scores and distances in columns of matrices H and D in parallel.

The systolic array structure developed for the matrices is composed of N PEs. Therefore, for

each j-th element in q, there is a j-th PE. It is based on dividing the construction of the H score

matrix expressed by

H ¼ ½g
0
; . . . ; gj; . . . ; gN� 1

�; ð6Þ

and finding the best path in which the D matrix returns the correct sequence alignment, which

in turn is equivalent to the directional flags that determined the alignment path. Moreover,

for each PEj (which represents a column of the matrix H) there is i-th s(i) that varies from 0 to

M − 1, according to the following

g ¼

gð0Þ

..

.

gðiÞ

..

.

gðM � 1Þ

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

: ð7Þ

The number of MSMs submodules corresponds to the number of elements in q, i.e.,

fj 2 N j 0 � j < Ng, as can be observed in Fig 4. Therefore, H is formed by N columns,

according to Eq 6. Besides, the MSM also calculates the path, the maximum score value and its

position, which are subsequently stored in the Memory Module (MM).

The SW algorithm in this work is initialized by the en(k) signal, which enables the memory

components in the MSM and MM modules to allocate the two sequences q(k) and s(k). The

en(k) is a sequence of pulses of value 1 with size equal to the s sequence. Thus, the sequences

Table 1. Description of signals and the algorithm stage they are used. The forward stage is represented by F, storage

stage by F, and backtracking stage by B. They are shown in the Figs 4, 7 and 8.

Signal Stage Description

q(k) F query sequence, to be compared with the database sequence.

s(k) F database sequence.

en(k) F,S sequence that enables the PE cells.

Sc(i) F vector of scores.

MaxVal F maximum score.

Addr RAMi^k F,B memory address of the highest maximum score.

index F,B corresponding addressing of the modules.

Direction F,S calculated value of the direction to be stored in RAM.

wAddrDir F,S storage address corresponding to the direction in RAM.

Traceback F,B flag to indicate the start of the backtracking in PE N − 1.

btcontrol S,B flag to change the state of the write-to-read memory

rAddrDir S,B choosing the corresponding value for reading in RAM.

d(i) S,B return of the value of the path passed from the RAM.

mRAMi^k S,B addresses of the path to be followed in the alignment.

BTStart B enable flag of the backtracking after Traceback.

BTNext B flag for enabling the internal circuits to choose and process.

valDir B alignment path value for that PE.

path(j) B memory position of the current alignment in the module.

https://doi.org/10.1371/journal.pone.0254736.t001
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are transmitted at each sampling time to the forward module. The signals are received in

MSM, and the respective q(k) is allocated according to its position, while s(k) is propagated to

the MSM based on the internal counter within each module. The counters within each MSM

module are activated with each pulse of the en(k) signal.

Each k-th q element is compared to all elements in s, iteratively, i.e., the s is traversing,

going from the first PE to the last one. If the values are equal, a value from the Match constant

is propagated; otherwise, the value of Mismatch is propagated. Match corresponds to a reward

for similarity, while Mismatch is a penalty for inequality between values. Afterward, the addi-

tion block sum the values according to

gjðiÞ ¼
gj� 1
ði � 1Þ þ a qj ¼ sðiÞ

gj� 1
ði � 1Þ þ b qj 6¼ sðiÞ

;

(

ð8Þ

where α and β are arbitrary values that correspond to the match value and mismatch values,

respectively.

Subsequently, the score value, Scj−1(i − 1), and correspondence value, α ^ β, are added to

define a portion of gj(i). The Scj −1(i − 1) value is equivalent to the H(i − 1)(j − 1) value (i.e.,

gj−1(i − 1)). The values of Sc−j(i), MaxValue(−1), AddrRAMi^j(−1) and index(−1) are initialized

with 0. At the same time, the Scj−1(i), which is the score value of the previous block, it is

received and operated with the value of Gap. In addition, the value of the scoring operation of

this block in the previous time, Scj(i−1), is also operated with the Gap. Thus completing the

computation of gj(i) that can be seen in the Eqs 5 and 9.

Fig 5 shows the submodule that constitutes each MSM module. The three blocks in pink

are used to perform the addition and subtraction operations, representing the SW’s relations

to generate the M elements. Thereby, the process of choosing the maximum value among the

Fig 4. Hardware representation of the H score matrix on the forward stage. The modules are generated from 0 to N − 1.

https://doi.org/10.1371/journal.pone.0254736.g004
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calculated scores is carried out based on Eq 5 as follows

gjðiÞ ¼ max

0

gj� 1
ði � 1Þ þ a qj ¼ sðiÞ

gj� 1
ði � 1Þ þ b qj 6¼ sðiÞ

gj� 1
ðiÞ � g

gjði � 1Þ � g

;

8
>>>>>>><

>>>>>>>:

ð9Þ

where γ is an arbitrary value that represents the chosen linear gap value. This expression is

equivalent to Eq 3.

The output of the pink blocks, called opr, are propagated to the next submodule for choos-

ing the maximum score and distance path, as shown in Fig 5. This submodule is built with a

set of multiplexers and relational circuits that can find the maximum score value with the

coded distance of the path by comparing the opr signals, as seen in Fig 6.

Selecting path distances is based on a simple encoding of three levels representing the align-

ment action to be adopted: 2, 1, and 3. Therefore, the levels 2, 1, and 3 represent a match, a gap

in the target sequence q and s, respectively, as described in Section 2. The encoding process of

directions is performed in the forward step, as illustrated in Fig 6. During this process, the

same signals used to calculate the H score matrix are needed, i.e., the oprj−1(i−1), oprj−1(i) and

oprj(i − 1), as seen in Fig 5. These values are compared in relational circuits and subsequently

chosen according to the criteria of the SW, as seen in the Fig 6.

Fig 5. Submodules that constitute a Matrix Score Module. The representation of the circuit and signals is only related to the forward stage.

https://doi.org/10.1371/journal.pone.0254736.g005
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Then, for demonstrating the realization of the path coding process is done, the information

in Fig 1 is used. When looking at the Fig 1, four variables are distributed in an H score matrix.

The variables x = H(i − 1, j − 1), y = H(i − 1, j) and v = H(i, j − 1) are known values, while w is a

score to be computed. Starting from w = H(i, j) as the observed cell for determining a generic

path and x, y and v as the neighborhood. An integer value is associated with the dj correspond-

ing to the address of w, according to the maximum value determined in the neighborhood,

these values are assigned according to the expression

djðiÞ ¼

1 j y � g > xþ ða _ bÞ; y > v
2 j xþ ða _ bÞ � y � g; xþ ða _ bÞ � v � g
3 j v � g > xþ ða _ bÞ; v > y

;

8
><

>:
ð10Þ

where 1, 2 and 3 is the vertical, diagonal, and horizontal paths, respectively. The Eq 10 is equiv-

alent to the circuit implementation illustrated in the Fig 6, where (x+ (α_β)) = oprj−1(i−1),

(y−γ) = oprj(i−1) and (v−γ) = oprj−1(i). Besides, (α_β) = α for a match and (α_β) = β for a

mismatch.

Algorithm 1: SW foward stage pseudo-code based in structure this proposal
Input: query sequence q
Input: dataset sequence s
Output: distance path matrix D
Output: row position of maximum score posMi
Output: column position of maximum score posMj

Fig 6. Circuits that constitute the submodule for finding the maximum score and distance path within an MSM. The relational circuits are

represented in purple and the multiplexers in yellow.

https://doi.org/10.1371/journal.pone.0254736.g006
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//length query sequence N, length dataset sequence M, match value α,
mismatch value β and linear gap value γ;
for for k = 0 to M × N step 1 do do
Initialize the DP matrix H and D with zeros;

end
//Forward Stage;
for for j = 0 to N − 1 do
for for i = 0 to M − 1 do
if q(j) = s(i) then
sel  α;

else
sel  β;

end
//H(i + 1, j + 1) computation;
x = H(i, j) + sel; y = H(i, j + 1) + γ; v = H(i + 1, j) + γ;
score  0, direction  0;
if x > y

V
x > v then

score  x; direction  2;
else
if y > v then
score  y; direction  1;

else
score  v; direction  3;

end
end
// Stores the score in matrix H and the direction in matrix D

calculated;
H(i + 1, j + 1) = score; D(i + 1, j + 1) = direction;
// checking which is the highest calculated score;
if maxVal < score then
maxVal  score; posMi  i + 1; posMj  j + 1;

end
end

end
return D, posMi, posMj;

After the process of selection the score and direction, it has the choice of the maximum

score based on a logic of multiplexers and relational blocks. There is a counter, called cntR, to

determines the number of times that the selection of the score and direction is carried out, i.e.,

the H matrix row that the process is on. This is necessary to determine the AddrRAMi address.

At the beginning of MSM processing, index(j − 1) is added to 1, just once for each MSM,

becoming index(j) and determining the address of this MSM. For the determination of Max-
val, it is seen whether the previous value is less than the current computed score value, then

the calculated current score value becomes the Maxval, AddrRAMj = index(j) and respective

row process value is AddrRAMi. It is noted the AddrRAMi^j signal are corresponding to the

location of the maximum score value.

In parallel with the process of determining the maximum score value, there is the process of

storing the directions. Thus, the output Direction of the submodule is prepared in set with the

value wAddrDir, which comes from the H matrix row calculated at that moment, allowing to

write in order in RAM memory according to the respective positions of H matrix (i.e., same

position of D matrix).

Finally, according to the systolic structure, after the MSM processing is over, the signals

are parallelly sent to the next MSM. Thereupon, q(k), s(k), and en(k) are shifted in time, that is,

q(k − 1), s(k − 1), and en(k − 1), to match the calculation structure of the H matrix, as seen in

the Fig 4. Besides, the calculated signals Sc(i), MaxVal, AddrRAMi^j and index are also
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propagated to the next MSM to preserve the scores calculating structure. This process repeats

until the last element of s is calculated with the last element of q; a counter in is used to

determine that moment since the values of the sequences are previously informed to all PEs.

The forward stage finishes with the calculation of the last element of the matrix, i.e., H(M − 1)

(N − 1). Consequently, the signal Traceback is enabled, indicating the end of the process in all

MSM, and the addresses AddrRAMi^j corresponding to the maximum score value is sent to

the next step (i.e., backtracking process).

Algorithm 1 presents the SW pseudo-code for forward stage and storage process structures.

The Algorithm 1, is prepared to perform the calculation of scores and storage of matrices H

and D. The input is the signals q and s, which is Eqs 1 and 2, respectively. The first loop, in the

Algorithm 1, represents each N element used, as seen in Fig 2. The second Loop is the interac-

tions made by the signal En to allow the calculation of each element of s in each PE. The first

conditional structure is the multiplexer for making choices in the MSM, as seen in Fig 5. Sub-

module Selection Maximum Value and Direction, Fig 6, is represented by the second condi-

tional structure, which compares variables x, y and v. The outputs are D matrix stored in MM

and the position of the maximum values defined in MSM.

3.2 Memory Module (MM)

The MM communicates with both the MSM and the BS, as shown in Fig 7. During the forward

stage, the data regarding the distance values are written to the MM. Meanwhile, during the BS,

the memory addresses to align the sequences are fetched from the MM. The size of each mem-

ory is defined by the size of the s sequence; also, there is a flag to indicate that the memory is in

write mode while computing the H matrix and, subsequently, in fetch mode, in the backtrack-

ing process.

The MM consists of Random Access Memories (RAMs) used to store the path directions,

Direction, obtained in the MSM that is thereafter needed in the BS module. Hence, the RAMs

are in write mode throughout the forward stage and reading mode during backtracking. The

RAM input ports are the address and data busses and write enable mode. Besides, the memory

size of each memory is defined based on the size of the sequence s, which in turn, the amount

of RAM memories is equal to the number of PEs in the systolic array.

The enable signal, en, is used as write enable for each RAM in the MM. Therefore, en = 1

defines the write mode, while en = 0 the read mode. In addition, the btcontrol signal selects

which module controls the RAM address bus. Hence, for btcontrol = 0 the memory addresses

are defined by the MSM module through wAddrDir signal, while btcontrol = 1 selects the BS

module to define the addresses via rAddrDir signal.

Thus, in write mode (en = 1 and btcontrol = 0) the wAddrDir signal defines the address of

the RAMs where the Direction value is stored by the MSM. Subsequently, after the H matrix is

fully calculated, the Traceback is enabled to indicate the end of the forward stage, and the MM

goes into reading mode (en = 0 and btcontrol = 1). Accordingly, the rAddrDir signal defines

the address space the BS fetches the data corresponding to the value reported by the trace-

back.

3.3 Backtracking approach

The backtracking process starts when the Traceback signal is enabled in the MSM by counters

that determine the last PE and the last processed element of s, as described in forward stage.

As previously mentioned in subsection 3.1, the MSM propagates to the MM the maximum

score address that is used as the starting point for alignment, as shown in Fig 8. Meantime, the

Fig 9 details the submodules used to create each BS module. The submodules in green are
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circuits for controlling and synchronizing all signals during the module operation, while the

blue submodule performs the alignment path described in this section.

Firstly, after Traceback is enabled, the BTStart signal is enabled, and the addresses of the

maximum score element, AddrRAMi(N − 1) and AddrRAMj(N − 1), are sent to the respective BS.

Also, the values of AddrRAMi(N − 1) and AddrRAMji(N − 1) are assigned to mRAMi(N − 1) and

Fig 7. Representation of the simplified Memory Module structure. This model is practically as is the complete processing PE of each column of the H

matrix.

https://doi.org/10.1371/journal.pone.0254736.g007
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mRAMj(N − 1), respectively, by the BT Enable submodule. It is important to emphasize that if

the mRAMj(N − 1) value (i.e., AddrRAMj(N − 1)) is not already in the BS PE, it will trace-back

by checking the Memory Index submodule. This process happens until it reaches the PE corre-

sponding to the maximum score location. Afterward, the Memory Index submodule assigns

Fig 8. Backtracking Module structure in the FPGA. The operation of this block starts after the forward step.

https://doi.org/10.1371/journal.pone.0254736.g008

Fig 9. Submodules that constitute the backtracking stage module. The green submodules represent the control submodules, while the blue

submodule represents the circuit that performs the alignment.

https://doi.org/10.1371/journal.pone.0254736.g009
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mRAMi value to rAddrDir to read the memories in the MM, which in turn, returns the d(i)
value to the Direction Process submodule, as can be seen in Fig 9.

Secondly, the alignment process starts. The circuits used to build the alignment submodule

are shown in Fig 10. As can be observed, the input dj(i) is used as the multiplexer selector to

perform the Eq 10. Therefore, for dj(i) = 3, BS remains in the same memory position and

moves back one BS module, i.e., horizontal displacement. While for dj(i) = 1, only the memory

position decreases by 1, and BS is verified by the Direction Process and Continue Processing

submodules (i.e., vertical displacement). Meanwhile, for dj(i) = 2, the memory position also

decreases by 1, and it moves to the previous module with the displacement in the memory

position. The circuit after the first multiplexer prevents negative addresses in the memory.

Given that the path to align the first element is found, the Alignment Block submodule

receives the rAddrDirj and dj(i) signals to define the path to be followed by the next BS, as seen

in Fig 9. Initially, a logical circuit enables the BT Start and Direction Process submodules to

propagate those signals to the Alignment Block. The Direction Process and Continue Process-

ing submodules carry out checks to define which BS module is active, that is, for dj(i) = 1, the

data processing is held in the current BS module, and for dj(i)6¼1, the signal BTNext is enabled,

indicating the end of data processing in the current PE to start in the next one.

After finding the module for the maximum score, the mRAMi and mRAMj signs finish their

function. Thus, from the determination of the BS with the maximum score, the path(j) sign is

used as a guide for locating the alignment of each module. Then, the data in MM is requested

and the dj value is returned for verification and establishment of alignment. The verification

and establishment of the alignment path is done by the Memory Index, Direction Process, and

Continue Processing submodules. Decisions related to dj value are made in Alignment Block

submodule, as illustrated in Fig 10.

Finally, the Finish Processing and Continue Processing submodules finish the data process-

ing in the module. Thereby, the valDir output of each submodule is used to construct the

alignment path, along with the maximum score position values. The trace-back continues

until it reaches PE0 or finds a path direction with a value of 0.

Algorithm 2 presents the SW pseudo-code for backtracking stage this proposal. The back-

tracking stage, algorithm 2, is ready to perform the alignment in a list using the path informed

Fig 10. Logical circuits used to build the Alignment Block submodule.

https://doi.org/10.1371/journal.pone.0254736.g010
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in D, starting from the positions of the maximum score, as seen in this Section. Inputs for this

step are provided by Algorithm 1. The loop for this step represents all backtracking stage mod-

ules from N − 1 to 0. The conditional structure of Algorithm 2 is the representation of submo-

dule Alignment Block, Fig 10, which allows it to trace-back. And the return of the alignment

path is storing the data, valDir, in RAM memory.

Algorithm 2: SW backracking stage pseudo-code based in structure this proposal
Input: query sequence q
Input: dataset sequence s
Input: distance path matrix D
Input: row position of maximum score posMi
Input: column position of maximum score posMj
Output: alignment sequences list A
Output: alignment path sequences list path
//Backtracking Stage;
auxi = posMi; auxj = posMj,; aux  D(auxi, auxj);A  [];
path  concat(path, aux);
while aux > 0 do
A  concat(A, [q(auxj − 1); s(auxi − 1)]);
if aux = 2 then
auxi = auxi − 1, auxj = auxj − 1;

else
if aux = 3 then
auxj = auxj − 1;

else
if aux = 1 then
auxi = auxi − 1;

else
break;

end
end

end
aux  D(auxi, auxj);
path  concat(path, aux);

end
return A, path;

4 Results and discussion

This section presents the synthesis results for the architecture described in the previous section

and analyses it regarding the following key points: critical path, operation frequency, number

of PEs, and performance. The performance measures the time to calculate an element of the

scoring matrix.

The development of the algorithm was carried out using the development platform pro-

vided by the FPGA manufacturer, in this case, Xilinx [60]. This platform allows the user to

develop circuits using the block diagram strategy instead of VHDL or Verilog. The architec-

ture was deployed on the FPGA Virtex-6 XC6VLX240T and compared to state-of-the-art

works. Usually, hardware implementations of the SW algorithm in the literature were imple-

mented only the forward stage or both the forward and backtracking stages. In our proposal,

both stages were implemented.

The performance for hardware implementations of the SW algorithm is usually measured

in Giga Cell Update Per Second (GCPUS), which in turn is defined as

GCUPS ¼
number of cells

total processingtime� 109
; ð11Þ
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in which a cell can be a matrix element to be computed. This metric can also be described

based on the clock frequency, that is,

GCUPS ¼ number of cells� clock frequency � 10� 9: ð12Þ

The latter equation is often used to compare the systolic array efficiency. Since the number of

cells is equivalent to the number of PEs, and the clock frequency defines the operating fre-

quency, it is unnecessary to measure the total runtime of the algorithm.

4.1 Hardware architecture validation

To validate the architecture proposed in this work, the sequences q and s were randomly gen-

erated and varying the match, mismatch, and linear gap values. Initially, the analysis was car-

ried out for 8 PEs and by varying the size of the sequences q and s from 8 to 32. The number of

PEs also varied according to the size of q. Our architecture works with sequences of varying

lengths, only requiring that the length of s is greater than or equal to the q length.

Firstly, the correctness of the matrices H and D was verified by monitoring the MSM out-

puts, such as Sc and Direction, as described in Section 2. Secondly, it was verified if the D

matrix elements were stored in the correct memory positions in the MM. Lastly, the operation

of the BS modules was also verified by monitoring the path(j + 1) bus and the Memory Index

submodule.

Following, the Alignment Block and Direction Process are observed to check if the memory

accesses are in accordance with the path(j + 1) value, that is, according to Eq 10. Also, the Fin-

ish Processing and Continue Processing submodules are monitored to verify the values propa-

gated for a match (2), horizontal gap (3), and vertical gap (1).

The data bit-width was defined by the maximum size of the input sequences, limited by

FPGA memory capacity. Hence, the input sequence bit-width was set to 3 while constants

were defined according to its value. Besides, the bit-width for the MSM buses that perform

mathematical operations was defined as logtotal − PEs × α. Meanwhile, the sequence counters

for s is logs − size.

Fig 11 shows the architecture deployed and running on the Virtex-6 FPGA. The host com-

puter (i7-3632QM CPU and 8GB of RAM) was used to plot the results and compare them to a

software implementation presented in [61], as shown in Fig 12. In the Fig 12, it can be seen

that the y axis refers to the s sequence, while the x axis refers to the q sequence. To increase the

resolution of the image, only the parts of the sequences that are aligned are used, where the

position at which the alignment starts and the maximum score value are shown in the title of

the illustration. The value of Row refers to the position in the s, whereas Column is related to

the element of the q. The amount of sequence alignment performed is represented by Number

of Alignments.

The architecture parameters for the demo were set to match = 5, mismatch = −5, gap = 1,

and 128 PEs. Hence, the size of the sequence q is also 128. Meanwhile, the size of the sequence

s was set to 8, 192, resulting in a total of 1, 048, 576 calculated cells. Sequence q is loaded into

memory at each iteration, where it can vary between 4 different 128 nucleotide sequences in

the demonstration. The demo is available at [62], and the implementation source code is avail-

able at [63].

The SW architecture was developed using the Xilinx System Generator on Matlab, and the

traffic of data between the host PC and the FPGA was accomplished via Ethernet protocol.

Moreover, we added on the FPGA a buffer to store data and developed a manager circuit to

control the data flow. Therefore, the q and s sequences were transferred to the FPGA (via
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Ethernet protocol) and stored in the buffer, and, subsequently, fed into the SW architecture to

perform the alignment by the manager circuit.

4.2 Synthesis analysis

Analysis of the synthesis results for the SW hardware implementation were carried out for two

FPGAs: Virtex-6 XC6VLX240T and Virtex-7 XC7VX485T. Table 2 presents the hardware area

occupation and frequency for a different number of PEs. The size of the input sequences were

defined according to the number of PEs.

The critical path of the design was�8.34ns and�6.44ns for the Virtex-6 and Virtex-7,

respectively. Therefore, the maximum clock frequency was 120MHz for the Virtex-6 and

155MHz for the Virtex-7. Regarding the FPGA area occupation, increasing the number of PEs

also increases the hardware resources used. For 512 PEs in the Virtex-6, a total of 68% of the

Slice Look-Up Tables (LUTs) were used in contrast to only 7% for 64 PEs. Concerning the fre-

quency, a slight decrease is observed as the number of PE increases due to an increase in the

critical path. Concerning the Virtex-7, there are unused FPGA resources as less than 35% of

Slices LUTs were used. Therefore, it can be used to increase the number of PEs and, thus, the

performance. Note that, increasing the number of PEs and, consequently, the size of the

Fig 11. Photo of the hardware architecture deployed on the Virtex-6 FPGA and the host computer used to plot the results.

https://doi.org/10.1371/journal.pone.0254736.g011
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sequence q, the number of parallel computations will also increase, thus, improving the perfor-

mance. Therefore, according to the resources available in the target hardware, our architecture

can operate with a number significantly bigger than 512 PEs.

4.3 Comparison with other works

Comparisons with state-of-the-art works were also performed. The performance of systolic

array-based implementations increases with the number of PEs. Hence, the comparisons were

carried out for the maximum number of PE in each proposal. We compared our design to the

most relevant and recent works similar to our proposal, i.e., the SW algorithm has to be imple-

mented using a systolic-array structure, deploy the backtracking step, and provide the parame-

ters concerning processing time and area occupation. Given that, we discuss a direct

Fig 12. Illustration of the results obtained from our proposal in co-simulation. The image is the most detailed representation of the monitor in Fig

11. It can see that the y-axis refers to the s, while the x-axis refers to the q. The position at which the alignment starts is indicated by Row and Column.

The maximum score value found is presented by Maximum Value. The amount of sequence alignment performed is represented by Number of

Alignments.

https://doi.org/10.1371/journal.pone.0254736.g012

Table 2. Area occupation results based on the FPGA synthesis of our SW implementation, with forward and backtracking stages.

FPGA Model Array Size (PE) Slice LUTS /(%) Memory /(%) Frequency (MHz)

Virtex-7 512 103, 778 (34%) 8, 192(6%) 155

Virtex-6 512 103, 807 (68%) 8, 192(14%) 120

Virtex-6 256 47, 725 (31%) 2, 048 (3.5%) 112

Virtex-6 128 24, 386 (16%) 512 (1%) 117

Virtex-6 64 10, 803 (7%) 128 (0.2%) 157

https://doi.org/10.1371/journal.pone.0254736.t002
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comparison to the architecture presented in [23, 41, 47]. The remaining works shown in

Table 3 illustrate general results of other FPGA implementations of the SW.

The works presented in Table 3 are available in [23]. The second column indicates whether

the backtracking stage was also developed on FPGA or only the forward. Meantime, the third

to fifth columns present the number of PEs, operating frequency, and performance, respec-

tively. The performance was obtained according to Eq 12. As can be seen, our approach and

the one proposed by [23] were the only ones to implement a high number of PEs. However, in

[23] only the backtracking path was deployed on the FPGA, and a submatrix structure is used

to load the path chosen for alignment. Meanwhile, our architecture relies on a memory storage

structure and the definition of the maximum score to align the sequences. The architecture

proposed by [47] achieved the best performance, as can be seen in Table 3. However, it uses a

register-file concept instead of systolic-array. Therefore, due to the similarity of hardware tech-

niques used to deploy the SW algorithm, we discuss a result comparison with [23], which

achieved the second-best performance.

Furthermore, a comparison with [23] was also carried out regarding the FPGA area occupa-

tion, and it is presented in Table 4. The second and third columns present the FPGA and the

number of PEs used, respectively. Meanwhile, the third and fourth columns present the slices

and memory blocks occupied, and the fifth column the operating frequency.

Table 3. Table adapted from paper [23].

Related Works Backtracking (Yes or No) PE number in array Frequency (MHz) Performance (GCUPS)

2005 [64] No 252 50 13.9

2006 [39] Yes 303 77.5 23.5

2007 [65] No 384 66.7 25.6

2007 [66] No 128 125 16.0

2008 [44] Yes 256 100 25.6

2009 [57] Yes 168 62.5 10.5

2011 [67] No 100 111 11.1 × 12

2012 [68] No – 250 –

2012 [69] No <100 125 16 × 8

2012 [70] No 100 175 17.5

2012 [59] No 128 60 7.62

2014 [71] No 200 200 40

2017 [23] Yes 512 150 76.8

2017� [23] Yes 512 200 105.9

2018 [48] No 776 600 465

2018 [46] No - - 125

2018 [52] Yes - 200 -

2020 [50] Yes - 200 -

2020 [47] Yes 256 500 128

2021 [41] Yes 512 308 79.65

2021 [51] Yes - 582 -

2021 [53] No - 200 51.20

This work Yes 512 155 79.5

It compares the proposed SW using reconfigurable hardware based on the operating frequency, number of PEs and performance in GCUPS. It also shows if the work

use backtracking or not in the implementation.

� indicates the approach uses external memory to accelerate the alignment process.

https://doi.org/10.1371/journal.pone.0254736.t003
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As shown in Table 4, for the same number of PEs, our architecture occupied 35, 286 slices

and 0 BRAMs in contrast to 57, 870 slices and 896 block RAMs (28 Mbits memory) in [23].

Also, the total area occupation was higher than 60%, compared to 46% on ours, due to the sub-

stitution matrix. Therefore, our proposal has high scalability due to the low resource usage

(can reach up to 1, 024 PEs for the XC7VX485T). Besides, our implementation proposal can

be implemented in smaller FPGAs, such as the Virtex-6 XC6VLX240T, with a reasonable

nucleotide sequence.

Regarding the operation frequency, our proposal can reach up to 155 MHz. So, it is

observed that the proposals with the best performances have a similar structure, even with dif-

ferent approaches to the solution. Our proposal and [23] achieving the same performance for

the frequency of 150 MHz. The proposal with the highest frequency achieved was that of [47]

reaching 500 MHz with Virtex-5 XC5VLX50T FPGA.

Therefore, our work uses fewer hardware resources to perform the alignment process due

to the chosen backtracking approach. As the backtracking stage results in high computational

complexity, we simplified the process using the path mapping through the maximum value in

D and H, resulting in linear computational complexity. On the other hand, the architecture

proposed by [23] uses considerably more memory resources due to data partitioning and pre-

fetching for the backtracking step. Despite both works achieving similar performance due to

the systolic array, there are significant differences in the alignment approach chosen for the

FPGA implementation.

The SW proposed by [41] is—to our knowledge—the most recent work on sequence align-

ment with the SW algorithm that also embeds the backtracking process in custom hardware.

Their design achieved similar performance to ours for 512 PEs, as shown in Table 3. However,

our approach can reach up to 1024 PEs embedded in the Virtex-7 XC7VX485T, a lower clock

frequency and, thus, double the performance in GCUPS. Despite that, the design proposed by

[23] achieved the second best overall performance. Meantime, the architecture proposed in

[47], using a register-file concept, achieved 128GCUPS, the best overall performance shown in

Table 4.

The hardware implementation of the alignment process through our approach, developed

based on a chain of directions and the maximum score address, is a key contribution for the

low use of memories. Thus, as we did not carry out tests with real biological datasets, theoreti-

cally speaking, it is possible to achieve high hardware scalability. Besides, the sequence of any

size can be aligned with our approach limited by the hardware resources available. In addition,

the proposed method can compress the data, using only 3 bits in a fixed-point

implementation.

5 Conclusion

This paper presented a parallel FPGA platform design to accelerate both the forward and back-

tracking stages of the SW algorithm. The main contributions were the high-speed data pro-

cessing implementation and low memory usage that theoretically allows high scalability. The

hardware resources available on the FPGA are a limiting factor to the size of the score matrix

Table 4. Table with the summaries of the results of the FPGA synthesis works of SW implementation (hardware SW with backtracking step). The Slice column is

related to the logical distribution and refers to the occupied slices in the synthesis.

Related Works FPGA Model Array Size (PE) Slices /(%) Memory /(%) Frequency (MHz)

This work XC7VX485T 512 35, 286/(46%) 0 BRAM/(0%) 155

2017 [23] XC7VX485T 512 57, 870/(76%) 896 BRAM/(87%) 200

https://doi.org/10.1371/journal.pone.0254736.t004
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but not to the size of sequences to be aligned. Therefore, satisfying the high-throughput, ultra-

low-latency and low-power requirements and to alleviate the raw data processing problem in

bioinformatics. From the strategy of storing alignment path distances and maximum score

position during forward stage processing, it was possible to reduce the complexity of back-

tracking stage processing which allowed to follow the path directly. The proposal architecture

achieved a satisfactory critical path, reduced memory usage and, theoretically, a high scalability

for two-step SW algorithm. Synthesis results showed that the proposed method could support

up to 1, 024 PEs in only one FPGA, using the Xilinx Virtex-7 XC7VX485T. The main advan-

tage is the low hardware resource usage and high performance of 79.5 GCUPS, with an operat-

ing frequency of up to 155MHz, without using external resources.
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