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Abstract
Approximately 10%-20% of patients with clinically localized clear cell renal cell 
carcinoma (ccRCC) at time of surgery will subsequently experience metastatic pro-
gression. Although considerable progression was seen in the systemic treatment of 
metastatic ccRCC in last 20 years, once ccRCC spreads beyond the confines of the 
kidney, 5-year survival is less than 10%. Therefore, significant clinical advances are 
urgently needed to improve overall survival and patient care to manage the growing 
number of patients with localized ccRCC. We comprehensively evaluated expres-
sion of 388 candidate genes related with survival of ccRCC by using TCGA RNAseq 
(n = 515), Total Cancer Care (TCC) expression array data (n = 298), and a well 
characterized Moffitt RCC cohort (n = 248). We initially evaluated all 388 genes 
for association with overall survival using TCGA and TCC data. Eighty-one genes 
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1 |  INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common renal 
malignancies, with an estimated 73,750 new cases and 14,830 
deaths in US in 2020.1 Recent studies showed that incidence 
and mortality rates of RCC are increasing in the United 
States.2 These increased rates may, in part, be due to increas-
ing obesity rates and incidental detection during increased 
abdominal imaging for nonspecific reasons.2,3 Interestingly, 
obesity also provides an improved survival.4 The majority 
of RCC subtypes are classified as clear cell renal cell car-
cinoma (ccRCC), which account for almost 70-75% of all 
RCCs.5 Cancer-specific survival rate at 5  years for ccRCC 
patients is 68.9% and ccRCC has a poorer prognosis com-
pared with other RCC such as papillary and chromophobe 
RCC (p < 0.001).6,7

The standard of care for localized ccRCC remains surgical 
excision, and if detected early, ccRCC patients can be cured 
by surgery. However, about 10%-20% of ccRCC patients de-
velop metastasis or recurrence following surgical treatment 
and ultimately die.7,8 Although considerable progression 
was seen in the systemic treatment of metastatic ccRCC in 
last 20  years, once ccRCC spreads beyond the confines of 
the kidney, 5-year survival is less than 10%. Therefore, the 
identification of reliable biomarkers for ccRCC progression 
is greatly needed. We and others reported candidate bio-
markers, such as long non-coding RNAs,9 gene expression 
signatures,10–15 epigenetics16 for ccRCC progression and/or 
survival.17–19 However, there is currently no clinically ac-
cepted molecular biomarker for ccRCC progression.

In this study, we determined the potential expression sig-
nature of 388 candidate genes in predicting survival in pa-
tients with ccRCC. The association between the expression 
of candidate genes and overall survival in ccRCC patients 
was first evaluated in a discovery phase comprising two inde-
pendent datasets: a cohort of 515 ccRCC patients from The 

Cancer Genome Atlas (TCGA) and 298 patients from the 
Total Cancer Care (TCC) data from Moffitt Cancer Center. 
Eighty-one genes identified from the discovery dataset were 
further evaluated as independent predictors of ccRCC sur-
vival specifically in a different cohort of 248 ccRCC cases 
from Moffitt Cancer Center.

2 |  MATERIAL AND METHODS

2.1 | Discovery datasets

2.1.1 | The Cancer Genome Atlas (TCGA)

TCGA KIRC RNAseq data were downloaded from https://
gdc.cancer.gov/about -data/publi catio ns/panca natlas and log2 
transformed. Overall Survival (OS) for the TCGA KIRC 
samples was retrieved from the publication by Liu et al.20 
This resulted in 515 ccRCC tumor samples with overall sur-
vival (OS) data (Table 1). Methylation data was downloaded 
as RAW IDAT files and normalized.

2.1.2 | Total Cancer Care (TCC)

Under the TCC protocol, 298 ccRCC tumor tissue samples 
were collected from patients treated at the Moffitt Cancer 
Center in 1991-2009 (Table 1). Tumor RNA was extracted 
at the centralized Moffitt Tissue Core. Global gene expres-
sion assays were performed using a custom Affymetrix 
HuRSTA (Affymetrix, Santa Clara, CA) GeneChips 
(HuRSTA-2a520709, ~60,607 probesets). The expression 
profile for each sample was extracted from the IRON [32] 
normalized and de-batched TCC gene expression database, 
managed by the Cancer informatics Core (CIC). CIC per-
forms strict quality control and pre-processing of ccRCC 

were selected for further analysis and tested on Moffitt RCC cohort using NanoString 
expression analysis. Expression of nine genes (AURKA, AURKB, BIRC5, CCNE1, 
MK167, MMP9, PLOD2, SAA1, and TOP2A) was validated as being associated with 
poor survival. Survival prognostic models showed that expression of the nine genes 
and clinical factors predicted the survival in ccRCC patients with AUC value: 0.776, 
0.821 and 0.873 for TCGA, TCC and Moffitt data set, respectively. Some of these 
genes have not been previously implicated in ccRCC survival and thus potentially 
offer insight into novel therapeutic targets. Future studies are warranted to validate 
these identified genes, determine their biological mechanisms and evaluate their ther-
apeutic potential in preclinical studies.

K E Y W O R D S

biomarkers, clear cell renal cell carcinoma, gene expression, survival

https://gdc.cancer.gov/about-data/publications/pancanatlas
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samples, including normalization and removal of RNA-
quality dependent batch effect. Sequence based gene annota-
tion of all probesets on the HuRSTA chip was also obtained 
from CIC.

2.2 | Validation dataset

2.2.1 | Moffitt RCC cohort

Patients in the validation dataset were 248 ccRCC patients 
who were surgically treated at the Moffitt Cancer Center 
between 1992 and 2009 (Table 1). We selected 72 short-
term survivors (<2  years survival after treatment) and 
176 long-term survivors (minimum 5 years survival after 
treatment). A pathologist (SD) carried out a blinded com-
prehensive review of all primary tumors to confirm histo-
logical subtype (1997 AJCC/UICC classification), tumor 
stage, 2012 ISUP tumor grade, tumor size, and coagula-
tive tumor necrosis. Representative formalin-fixed paraf-
fin embedded (FFPE) block with the highest grade was 
chosen from each resected tumor and tumor region was 
demarcated for histologic macro-dissection, which was 
performed on 10  μm sections. Total RNA was extracted 
from FFPE tissue sections using the AllPrep DNA/RNA 
FFPE kit reagents (Qiagen) following the vendor's stand-
ard protocols. RNA integrity was assessed via the 260/280 
ratio using nanodrop. Gene expression profiling was per-
formed using NanoString platform as described below. 
Medical records were abstracted and clinical data includ-
ing age at diagnosis, stage, tumor grade. and metastatic 
tissue site were recorded. This study was approved by the 
Moffitt Institutional Review Board.

2.3 | NanoString platform for gene 
expression:

The NanoString platform was used to quantify gene ex-
pression of genes selected for follow-up analysis. HADHA, 
MAEA RBM4, and TRIM39 were used as house-keeping 
genes. Two hundred nanograms of total RNA from each 
sample was used for the expression according to the man-
ufacturer's instructions. We determined background hy-
bridization using spiked-in negative controls. Signals were 
considered to be below the limits of detection if they were 
lower than two standard deviations above the mean back-
ground. Gene expression was quantified and normalized 
(positive control normalization and housekeeping gene 
normalization using geometric mean) using NanoString 
nSolverTM 4.0 software. Expression values were log2 
transformed and exported to MATLAB R2020b software 
for further analysis.

2.4 | Gene selection

Candidate ccRCC-related genes were selected based on pre-
vious published literature.,9–19 including our review article 19  
and pathways described in the Cancer Genome Anatomy 
project. A total of 388 candidate genes were evaluated in 
the discovery sets. A subset of 81 genes were selected from 
the discovery sets for further evaluation in the validation set 
based on the reproducibility in the two discovery datasets 
(n  =  52 genes), prognostic value, and biological relevance 
(n = 29 genes, e.g. known function in ccRCC or other can-
cers) (Table S2).

2.5 | Statistical analysis

Participants’ demographic and clinical characteristics were 
summarized using descriptive statistics, counts, and percent-
ages for categorical variables and means and standard devia-
tions or median and ranges for numeric variables. All genes 
in the discovery datasets were tested for association with 
overall survival using Kaplan-Meier (K-M). For the K-M, 
the median expression was used as a cutpoint to dichotomize 
expression. In the validation dataset, we compared differen-
tial gene expression (of the identified genes in the discovery 
datasets) between aggressive and indolent cases of ccRCC 
using t-test. P values were used to select candidate genes. 
Genes with p < 0.01 in both sets were considered to be dif-
ferentially expressed. Univariate and multivariate Cox pro-
portional hazards regression models were sequentially built 
with genes and clinical prognostic factors (tumor stage and 
grade) for TCGA and TCC data set and followed by time-
dependent receiver-operating characteristic curve (ROC) 
analysis at year 5. Logistic regression was used along with 
ROC analysis for Moffitt dataset analysis. Area under ROC 
curve (AUC) were calculated to compare prognostic values 
of the models.

3 |  RESULTS

3.1 | Results from Discovery phase using 
TCGA and TCC data

We screened 388 ccRCC-related candidate genes for their as-
sociation with overall survival in two independent discovery 
datasets. A total of 148 genes were associated with OS using 
RNA-seq data of 515 ccRCC patients from the TCGA data 
portal and 99 genes using Affymetrix data for 298 ccRCC 
patients from TCC (log rank p-value <0.01). A subset of 81 
genes was selected for further evaluation using NanoString 
in the Moffitt validation set. The selection of these genes 
was based on overlap between the two discovery datasets 
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(n = 52) and manual curation that integrated statistical and 
biological information (n = 29), with function in ccRCC or 
other cancers were favored known).

3.2 | Results from validation set, Moffitt 
cohort using NanoString assay

The demographic and clinical characteristics of participants 
are in Table 1. The expression of the resulting 81 genes 
were measured using NanoString on 72 short (<2 years sur-
vival after treatment) and 176 long-term survivors (mini-
mum 5  years survival) (Figure 1). Nine genes (AURKA, 
AURKB, BIRC5, CCNE1, MK167, MMP9, PLOD2, SAA1, 
and TOP2A) were confirmed based on expression level be-
tween short- and long-term survivor cases (Figure 2). All the 
nine genes were overexpressed in short survivors compared 
to long-term survivors. SAA1 (Log2 fold change (FC)=3.52, 
p = 1.01E-10) was the most highly overexpressed, followed 
by MMP9 (FC=1.82, p  =  3.82E-09), BIRC5 (FC=1.40, 
p  =  2.39E-14), PLOD2 (FC=1.42, p  =  9.79E-10), TOP2A 
(FC=1.24, p  =  7.32E-14), MKI67 (FC=1.13, p  =  7.41E-
11), AURKB (FC=0.99, p  =  2.86E-11) CCNE1 (FC=0.71, 
p = 8.01E-09), and AURKA (FC=0.49, p = 1.90E-9) (Table 
2). Overexpression of these nine genes were associated with 
poor overall survival in the TCGA and TCC datasets with 

hazard ratios (HRs) ranging from 1.49-2.99 (Figure 3). The 
association between expression of AURKB, BIRC5, CCNE1, 
MMP9, SAA1, TOP2A, and overall survival was slightly 
lower in the TCC dataset compared to that of TCGA, while 
the association was higher in TCC compared to TCGA for 
AURKA, MKI67, and PLOD2.

3.3 | Testing the prognostic risk models 
using ROC analysis

Cox regression models with nine genes, or clinical prognos-
tic factors (tumor stage and grade) showed AUC of 0.731, 
0.737 in TCGA (Figure 4A), 0.783, 0.716 in TCC data set 
(Figure 4B). Incorporating 9 genes into clinical factors re-
gression models yielded non-significantly increased AUC 
values of 0.776 in TCGA and 0.821 in TCC. On the other 
hand, combining nine genes with the clinical factors signifi-
cantly improved AUC from 0.702 to 0.873 in Moffitt valida-
tion dataset (Figure 4C; Table S1).

3.4 | Epigenetic regulation of 
SAA1 and PLOD2

To investigate whether any of these nine genes was epige-
netically regulated by methylation, we used the TCGA data-
set, combining RNAseq and Illumina 450  K methylation 
data. Two of the nine genes, SAA1 and PLOD2 showed a 
negative correlation between methylation level and gene ex-
pression level, indicating that these genes are regulated by 
methylation. Figure 5A shows a box-plot for each of the 8 
CpG-probes for SAA1 comparing tumor tissue vs normal 
samples. The data suggested that many tumor samples show 
hypomethylation compared to normal samples. Three of 
the probes showed a clear negative correlation between the 
methylation level and the expression level (Figure 5B) and 
these probes also showed a high degree of correlation be-
tween each other (Figure 5C). The hypo-methylation of these 
three probes led to an increased expression (Figure 5D).

PLOD2 showed a more complicated methylation profile 
(Figure 6). There are 21 CpG-probes available for PLOD2 
(Figure 6A) with three probes being negatively correlated 
(r < −0.3) with expression value (Figure 6B). These three 
CpG-probes are also correlated (Figure 6C). The average 
methylation for these CpG-probes was negatively correlated 
with the expression level of PLOD2 (Figure 6D).

4 |  DISCUSSION

In this study, we used a multi-stage design to identify genes 
associated with ccRCC survival. First, we evaluated, in 

F I G U R E  1  Outline of overall study design. Data from 515 and 
298 patients, respectively, were obtained from TCGA and TCC. A 
COX regression analysis identified genes with expression levels 
associated with overall survival. Expression levels of 81 genes were 
further evaluated using NanoString in 248 cases

Nine validated genes

Discovery 1
TCGA (n = 515)
# genes = 388

Method: RNA-seq
Outcome: overall survival

Discovery 2
TCC (n = 298)

# genes = 388
Method: Affymetrix array
Outcome: overall survival

146 genes 139 genes

81 genes selected for valida�on (52 
overlapping and 29 based on 
sta�s�cal and biological significance)

Valida�on
Moffi� (n = 248)

# genes = 81
Method: Nanostring
Outcome: Aggressive
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two independent datasets, the association between overall 
survival and 388 genes identified through literature search. 
We then selected 81 genes based on the magnitude of the 
association with outcome, overlap in the two discovery 
datasets and biological relevance for validation using the 
NanoString platform in an independent cohort that in-
cluded 72 short-term survivors. Differential expression 

for nine genes (AURKA, AURKB, BIRC5, CCNE1, MKI67, 
MMP9, PLOD2, SAA1, and TOP2A) was validated on the 
NanoString platform. Six of these validated genes (BIRC5, 
MK167, MMP9, PLOD2, and TOP2A) have previously 
been implicated ccRCC,21–34 while the others have been 
implicated in other cancers.35–38 The prognostic value of 
models with nine genes and clinical prognostic factors are 

F I G U R E  2  Boxplots of nine genes. Nine genes (AURKA, AURKB, BIRC5, CCNE1, MK167, MMP9, PLOD2, SAA1, and TOP2A) were 
confirmed based on expression level between short- and long-term survivor cases in validation set. All the nine genes were overexpressed in short-
term survivors (aggressive) compared to long-term survivors (indolent). ****p < 0.0001
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T A B L E  2  Discovery and Validation of genes associated with survival.

Gene Location

TCGA TCC Moffitt

HR p value HR p value FC* p value

AURKA 20q13 2.15 (1.59-2.91) 1.30E−06 2.42 (1.73-3.37) 2.38E−07 0.49 1.90E−9

AURKB 17p13.1 2.71 (2.00-3.66) 8.63E−10 1.50 (1.07-2.08) 1.68E−02 0.99 2.86E−11

BIRC5 17q25 2.51 (1.85-3.39) 1.06E−08 1.69 (1.22-2.36) 1.70E−03 1.40 2.39E−14

CCNE1 19q12 2.65 (1.96-3.59) 8.01E−10 1.89 (1.36-2.64) 1.53E−04 0.71 8.01E−09

MKI67 10q26.2 1.65 (1.22-2.23) 1.29E−03 2.05 (1.47-2.86) 2.24E−05 1.13 7.41E−11

MMP9 20q11.2-q13.1 1.77 (1.31-2.39) 2.44E−04 1.49 (1.07-2.07) 1.78E−02 1.82 3.82E−09

PLOD2 3q24 1.74 (1.29-2.35) 4.27E−04 2.99 (2.14-4.17) 2.31E−10 1.42 9.79E−10

SAA1 11p15.1 2.47 (1.82-3.34) 1.64E−08 2.90 (2.08-4.04) 6.24E−10 3.52 1.01E−10

TOP2A 17q21-q22 1.87 (1.38-2.52) 7.43E−05 2.10 (1.51-2.92) 1.19E−05 1.24 7.32E−14

*Log 2-fold change. 
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0.776, 0.821, and 0.873 in TCGA, TCC and Moffitt data 
set, respectively.

BIRC5, Baculoviral IAP Repeat Containing 5, or sur-
vivin plays a role in apoptotic cell death. Differential ex-
pression is associated with survival in ccRCC.21 Survivin 

expression is increased in ccRCC compared to adjacent nor-
mal renal tissues and the expression is positively correlated 
with pathological grade and clinical stage.22 Expression of 
the survivin protein is associated with ccRCC progression 
and poor survival.23,24

F I G U R E  3  Overexpression of these nine genes was associated with poor overall survival in the TCGA and TCC datasets with hazard ratios 
(HRs) ranging from 1.49 to 2.99 in discovery set
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F I G U R E  4  Analysis of survival prognostic risk models: three models (nine genes, stage/grade, and combined) for TCGA, TCC, and Moffitt 
data. 4A. multivariate Cox regression models showed time-dependent AUC of 0.731, 0.737, and 0.776 in TCGA. 4B. AUC of 0.783, 0.716, and 
0.821 in TCC. 4C. logistic regression model for Moffitt data showed AUC of 0.852, 0.702, and 0.873

TCGA TCC Moffi�

A B C

F I G U R E  5  Methylation driven 
expression of SAA1. 5A. A box-plot for 
each of the eight CpG-probes for SAA1 
comparing tumor vs normal samples. 
5B. A negative correlation between the 
methylation and the expression level. 
5C. A high degree of correlation between 
methylation and the expression level. 5D. 
Hypomethylation of these CpG sites leads to 
an increased expression
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MKI67, marker of proliferation Ki67, is a nuclear protein 
associated with cellular proliferation. It has also been impli-
cated in poor outcomes for patient undergoing surgery for 
localized ccRCC,25 metastasis of ccRCC,26 and recurrence 
of ccRCC after surgery.39 It is also upregulated in ovarian 
cancer cell lines treated with estradiol or genistein suggesting 
a role in drug response.27

MMP9, Matrix Metallopeptidase 9, plays a role in the 
breakdown of extracellular matrix during cancer metastasis. 

It is highly expressed in ccRCC40 and implicated in the 
pathogenesis of ccRCC.28 Upregulation of MMP9 is also 
associated with migration and invasion29 and progression of 
ccRCC.30 MMP9 was recently included in a 4-gene prognos-
tic prediction set for predicting the prognosis of ccRCC.31

PLOD2, Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 
2, is a hypoxia-induced membrane-bound homodimeric en-
zyme  that is involved in collagen synthesis  and  extracellular 
matrix degradation. PLOD2 is overexpressed in ccRCC and 

F I G U R E  6  Methylation driven expression of PLOD2. 6A. A box-plot for each of the 21 CpG-probes for PLOD2 comparing tumor vs normal 
samples. 6B. A negative correlation between the methylation and the expression level. 6C. A high degree of correlation between methylation and 
the expression level. 6D. Hypomethylation of these CpG sites leads to an increased expression
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downregulation significantly inhibits cell migration and inva-
sion.32 Overexpression of PLOD2 is also associated with lymph 
node metastasis and poor recurrence-free and overall survival in 
biliary,41 breast,42 hepatocellular carcinoma (HCC),43 cervical,44 
lung.45,46 gastric,47 glioma48 and bladder49 cancers.

TOP2A, DNA Topoisomerase II Alpha, plays an im-
portant role in transcription through controlling and altering 
topologic states of DNA. It is upregulated in ccRCC and as-
sociated with progression and prognosis, especially survival 
among patients undergoing surgery, with a more prominent 
prognostic value among patients with low-risk disease.30,33,34 
It is also important for the progression of prognostic marker 
for papillary RCC.50

Aurora-A (AURKA) and Aurora-B (AURKB) are kinases 
that play key roles in the regulation of cell-cycle progres-
sion.51–53 In addition to cell cycle regulation, Aurora-A is 
involved in contributing to epithelial-mesenchymal transition 
(EMT) and stem-like properties of cancer cells.54 It is im-
plicated in the activation of the mTOR pathway in sarcoma-
toid RCC.55 A recent study showed that it is overexpressed 
in metastasis compared to primary RCC tumors.56 In addi-
tion, AURKA is involved in the pathogenesis or progression 
of hepatocarcinoma,35 bladder,36 breast,37 liver,38 gastric,57 
colon,58 non-small cell lung,59 and pancreatic60 cancers. 
AURKB modulates drug response in non-small cell lung,61 
and breast cancers.62 It is implicated in chronic myelocytic 
leukemia63 gastric cancer,64 and leukemia.65

CCNE1 and SAA1 have not been previously implicated in 
RCC, but are implicated in other cancers. CCNE1 is a major 
G1/S phase cyclin. It is associated with aggressive potential 
in endometrial cancer.66,67 Upregulation of CCNE1 is associ-
ated with worse prognosis of ovarian clear cell carcinoma68 
and treatment resistance and poor outcome in high grade 
serous ovarian cancer.69 Upregulation of CCNE1 is also ob-
served in aggressive osteosarcoma70 and also implicated in 
cisplatin resistance in bladder cancer.71 Differential expres-
sion of CCNE1 is also observed in other cancers including 
non-small cell lung cancer (NSCLC),72 bladder,73 breast74 
and hepatocellular carcinoma.75

Serum Amyloid A1, SAA1, is an apolipoprotein that is 
highly expressed in response to inflammation and tissue 
injury. It is overexpressed in glioblastoma (GBM),76,77 cer-
vical carcinoma,78 NSCLC,79 AML,80 and gastric cancer81 
and associated with progression and poor prognosis in these 
cancers.

Previous studies reported differential expressions of 
various genes in clinical specimens of ccRCC compared to 
adjacent uninvolved renal tissues and suggested that these 
genes may serve as promising ccRCC risk stratification 
biomarkers.19,82 Nuclear HIF expression, elevated expres-
sion of Ubiquitin Protein Ligase E3C (UBE3C), reduced 
expression of phos-Akt in the nucleus and CAIX and loss 
of p27 expression are reported as significant independent 

prognostic factors for poor ccRCC outcomes.83–87 A gene 
signature with five protein markers (Ki-67, p53, endothelial 
VEGFR-1, epithelial VEGFR-1, and epithelial VEGF-D) 
was proposed to predict survival for ccRCC with AUC of 
0.838.88 CXCL13 was upregulated in ccRCC tumor tissues 
and CXCL13 expression was associated with advanced 
stage and poor prognosis in ccRCC. Therefore, CXCL13 
expression was proposed as a diagnostic biomarker for 
ccRCC with AUC of 0.809.82 Receptor tyrosine kinase 
(TEK) plays an important role in angiogenesis and remod-
eling. Downregulation of TEK expression was observed in 
ccRCC tissues and associated with poor outcome with AUC 
between 0.637 and 0.839.89 Recently, seven differentially 
expressed autophagy-related genes (PRKCQ, BID, BAG1, 
BIRC5, ATG16L2, EIF4EBP1, and ATG9B) were included 
in a recent prognostic survival assessment tool for ccRCC 
with AUCs of 0.752 and 0.783 for overall and disease 
free survival, respectively.90 Similarly, 10 differentially 
expressed genes (AGR3, CSF2, GAL3ST2, IGLL1, PLG, 
SAA1, SBSN, SOX2, WFDC13, and ZIC2) were included 
in a recent prognostic risk assessment tool for ccRCC with 
AUC of 0.99 without a validation set.91 The results from 
previous studies are not consistent with one from the cur-
rent study. Potential reasons for inconsistency can be small 
sample sizes, different racial/ethnic background, potential 
environmental factors and more importantly, lack of vali-
dation set.

Dysregulation of gene expression in ccRCC could be 
caused by various genomic aberrations, such as methylation. 
We observed that two of the nine genes SAA1 and PLOD2 
gene expression is partly regulated by DNA methylation lev-
els in the promoter region. This is similar to what we have 
seen in our other studies using the TCGA gene expression 
and methylation data.92,93

Strengths of our study include a multistage design that 
consisted of two discovery independent discovery datasets 
and a validation dataset; the use of NanoString platform that 
allows for accurate and reproducible measurement of RNA 
from FFPE samples; selection of candidate genes based on 
a thorough literature search9–19; and validation of the role of 
identified genes previously implicated in ccRCC and are po-
tential targets for novel cancer therapies.  Indeed, inhibitors 
of some of these genes are already in early phase I trials.94–96 
We also identified genes that have not been previously identi-
fied in ccRCC and represent possible targets for therapy and 
warrant further evaluation.

A limitation of our study is the selection of the 29 out 
of the 81 genes for validation based on biological signif-
icance. This selection process could potentially introduce 
selection bias. Thus, candidate gene approach may ex-
clude critical genes for ccRCC survival. In addition, spatial 
heterogeneity could result in different clonal populations 
within the same tumor and affect the expression profiling 
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of the evaluated genes in the tumors. Future studies are 
therefore required to validate our results, use immunohisto-
chemistry to assay the corresponding protein expression, as 
well demonstrate that therapeutic targeting of the identified 
genes will result in inhibition of tumor growth. Another 
limitation is the use of RNA extracted from FFPE tumor tis-
sue. RNA from FFPE may be degraded, but the NanoString 
platform allows accurate and reproducible measurement of 
RNA from FFPE samples. The discovery and validation co-
horts differed in that the validation cohort was comprised 
largely of aggressive cases. Furthermore, the gene expres-
sion in the discovery datasets was generated on RNA-seq 
(for TCGA) and Affymetrix array (for TCC), while the 
validation study utilized NanoString platform. Despite the 
differences in the platforms, we identified genes that were 
consistently differentially expressed in the three different 
cohorts. In summary, our study identified nine genes as 
prognostic biomarkers of aggressive ccRCC that are dif-
ferentially expressed during progression. Some of these 
genes have not been previously implicated in ccRCC and 
thus potentially offer insight into novel therapeutic targets. 
These biomarkers may help to identify aggressive ccRCC 
patients, who need more intensive treatment. Future studies 
are warranted to validate the identified genes, determine 
their biological mechanisms, and evaluate their therapeutic 
potential in preclinical studies.
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