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Extensive exposure to UVB (280–320 nm) is the major risk responsible for various skin injuries. Numerous reports have shown that
natural products could demonstrate photochemopreventive efficacy against UVB damage. We investigated the preventive effects
and associated molecular mechanisms of red raspberry extract upon UVB-caused damage in human epidermal keratinocytes
and a nude mouse model. The protein profiles and immunohistological study on a nude mouse skin indicated that red raspberry
extract could prevent UVB-caused cell death and protect the skin against UVB-exposed injury manifested by wrinkling, scaling,
tanning, and water loss as well as epidermal thickening. In addition, red raspberry extract application effectively abolished
oxidative damage in DNA and attenuated the carbonylation level of proteins, which attributed to the activation of SOD, Nrf2
and its target genes, and HO-1. Red raspberry extract also altered the cells’ apoptotic signaling pathways including caspase-3 as
well as the inflammatory cascade such as c-jun and attenuated UVB-induced activation of NF-κB and COX-2. Red raspberry
extract could alleviate direct photodamage to the skin caused by UVB exposure through the ROS scavenger and protection
against inflammatory responses, which may allow the development of novel strategies in protecting the skin subjected to
UVB radiation.

1. Introduction

Photon energy, especially ultraviolet B (UVB) radiation,
induces many deleterious effects including deoxyribonucleic
acid (DNA) and protein damage, oxidative stress, inflamma-
tion, and carcinogenesis. Previous studies have suggested that
these events are mainly caused by reactive oxygen species
(ROS), which would eventually result in various skin diseases

[1–3]. Application of antioxidants should therefore be the
effective strategy for photoprotection of the skin [4–6].

Compelling evidence showed that berry fruits possess
antioxidative, anti-inflammatory, and anticarcinogenic prop-
erties because berries contain large amounts of phytochemi-
cals, including flavonoids, tannins, stillbenoids, phenolic
acids, lignans, triterpenes, and sterols [7]. The dietary
consumption of whole fruits could reduce ROS, which have
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been implicated in UVB-caused problems [8–10]. The tradi-
tional Chinese medicine book “Essential of Materia Medica”
has descripted that raspberry could exhibit the effect of
moistening the skin and reducing the redness as well as swell-
ing of the skin. As expected, several bioactive constituents,
including polyphenolic compounds, antioxidants, vitamins,
and minerals, have been extracted from red raspberries
(Rubus idaeus) [11–13], while the effects and molecular
mechanisms of red raspberry on skin photodamage have
not been reported. Herein, UVB-exposed hairless mice and
keratinocyte models were applied to investigate the protec-
tive effect of ethanol extract of red raspberry (RBE) on a
photodamaged skin.

ROS generation due to UVB radiation would disturb the
normal redox balance and lead to highly oxidative stress,
which subsequently promotes the carbonylation of specific
groups of proteins and results in physiological dysfunction
[14–16]. When carbonyl groups form, they can react with
2,4-dinitrophenylhydrazine (DNP) and are detected by
two-dimensional electrophoresis (2-DE) oxyblotting; there-
fore, we utilized redox proteomics to prove our hypothesis
concerning the anti-UVB effect of red raspberry.

UVB could also elicit acute inflammatory skin prob-
lems such as erythema and cell apoptosis. UVB-caused
promotion of proinflammatory enzymes and the subse-
quent activation of an associated signaling pathway such
as cyclooxygenase-2 (COX-2) would in turn trigger the
production of specific inflammatory mediators including
prostaglandins (PGs) and various cytokines. COX-2 cascades
mediate the inflammatory process and cause pain, edema,
cell growth, and tumor progression [17, 18]. It has been
implied that inflammation plays a pivotal role in the patho-
genesis of skin diseases under UVB exposure [19].

We performed an immunohistological investigation and
established the redox proteome profiles on a nude mouse
skin to verify the hypothesis that RBE could attenuate the
oxidative stress caused by UVB and protect the skin from
photoinjury. In addition, the associated molecular mecha-
nisms would provide the clinical and commercial utility of
herbal intervention in UVB prevention on the skin.

2. Materials and Methods

2.1. Preparation of Red Raspberry Ethanolic Extract. Com-
mercial dry powder of raspberry was purchased and authen-
ticated by a traditional Chinese medicine dispensary (local
pharmaceutical company, Taiwan). The ethanol-extracted
solution was then concentrated to give brown syrup. The
filtered and sterile extract was stored at −80°C for use in all
subsequent experiments. The concentration used in each
experiment was calculated based upon the dry weight of the
extract which was resuspended in normal saline.

2.2. Cell Viability. HaCaT cells (5× 104) were seeded in
24-well plates for 24 hours (h). UVB radiation (0 or
100mJ/cm2) was exposed to the cells after treating with var-
ious concentrations (0, 62.5, 125, 250, 500, and 1000μg/mL)
of RBE and incubated for 48 h. Isopropanol solution mixed
with tetrazolium salt was then added to the wells and

incubated for additional 4 h at 37°C [20]. The optical density
of the dissolved material was measured spectrophotometri-
cally at 570 nm, and assays were performed in triplicate.

2.3. Western Blot Analysis. HaCaT cells were pretreated with
200μg/mL RBE and exposed to 100mJ/cm2 UVB radiation.
The protein derived from the treatment was isolated using
1x cell lysis buffer (Cell Signaling), and the concentration
was measured using the Bradford Protein Assay Kit
(AMRESCO). Protein lysates were evaluated with Western
blot analyses as previously described [20, 21]. Western blot
analysis was performed using the specific antibodies: PARP,
caspase-3 (DAKO), catalase (Bioss), Cu/ZnSOD (ABBIO-
TEC), GAPDH, MnSOD, Nrf2, HO-1, β-actin, phos-p38,
p38, c-Jun, NFκBp65, and NFκBp50 (Santa Cruz). The levels
of GAPDH or β-actin were used as the internal loading
control. Densitometric analyses of scanned images were per-
formed using GeneTools software (Syngene, UK).

2.4. siRNA and p-38 Kinase Inhibitor Administration.HaCaT
cells were plated onto 24-well plates (2× 104 cells/well),
maintained in antibiotic-free medium for 6 h, and transfected
with a mixture containing Opti-MEM, 8μL/well Lipofecta-
mine 2000 (Invitrogen, San Diego, CA) and 0.5μg/well a
mixture of three Nrf2 siRNAs. At 24 h post transfection, cells
were exposed to UVB and treated with 200μg/mL RBE
dissolved in medium for another 24h. Then, the cells were
harvested for Western blot analyses [22]. HaCaT cells were
preincubated with or without SB203580 for 1 h, irradiated
with UVB, and then treated with or without RBE for 6 h.
The cells were harvested for Western blot analyses [20].

2.5. Assessment for Generation of Intracellular ROS. HaCaT
cells were seeded in a slide chamber, grown to 60% conflu-
ence, and cultured in DMEM medium overnight. Cells were
then incubated with or without RBE for 6 h and irradiated
by 100mJ/cm2 UVB [23]. Carboxy-H2DCFDA (2μM,
dissolved in PBS) was added to the wells and incubated for
30min at 37°C. To terminate the reaction, the cells were
washed with PBS twice. Next, 500μL culture medium was
added to each well and incubated for 20min at 37°C. The
cells were observed and photographed using a fluorescent
microscope (Olympus BX51) with a DP72 PhotoImage
system [21].

2.6. Constitutions Analysis with HPLC. A high-performance
liquid chromatographic (Shimadzu SCL-10A VP) coupled
with an SPD-M10A VP diode array detector was performed
for the qualitative determination of compounds in the
RBE [24].

2.7. Animals. Female nude mice (ICR-Foxn/nu strain) were
purchased from Taiwan’s National Laboratory Animal
Center (Taipei). The laboratory diet and water were given
ad libitum before experiments. The mice were treated
according to the Ethical Guidelines of the Animal Center,
and the experimental protocol was reviewed and approved
by the Institutional Animal Care and Use Committee of
Kaohsiung Chang Gung Memorial Hospital (2017081401).
The mice were randomly divided into three groups (CTL,
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−/UVB, and RBE/UVB) of five mice each. 750μg/mL RBE
was applied on the dorsal region of the nude mice in the
RBE/UVB group. The daily standard erythema dose of
UVB for the human skin is more than 25mJ/cm2. A
Bio-Sun system illuminator (Vilber Lourmat, Marne-la-Val-
lée, France) was applied to generate UVB radiation which
was utilized to irradiate the peak wavelengths of 312nm.
The distance between the nude mice and the lamps was
10 cm, and the spectral irradiance was 30mJ/cm2 for UVB
in the dorsal region of the mouse once a day for five days.
Hence, the total UVB dose received by each mouse during
the irradiation course was 150mJ/cm2. TEWL was calculated
by a Tewameter® (TM300, Courage and Khazaka, Köln,
Germany) to determine the water evaporation rate (g/m2/h)
[16]. A spectrocolorimeter (CD100, Yokogawa, Tokyo,
Japan) was used to quantify skin erythema [25, 26].

2.8. Histologic Examination of the Skin. The skin specimens
were then fixed in buffered formaldehyde solution and sliced
into 5μm sections which were stained with H&E for a histo-
logical assessment. Immunohistochemstry staining with
8-hydroxydeoxyguanosine (8-OHdG) and COX-2 (1 : 100
dilution by PBS; Santa Cruz) was treated as described in a
previous study [16, 27]. The histological changes were evalu-
ated by using optical microscopy (Olympus BX51, Tokyo,
Japan) in nonconsecutive, randomly chosen histological
fields. The digital photomicrographs were then processed
with DP-72. Image-Pro® plus 4.5 (Media Cybernetics,
Bethesda, MD) image analysis software was used to quantify
image signals according to a modified version of a protocol
described by McGinley and Thompson [28].

2.9. Two-Dimensional Electrophoresis (2-DE). The smashed
skin powder was immersed with extraction buffer (7M urea,
2M thiourea, 4% CHAPS, 65mM DTT, and 1mM PMSF) to
homogenize and centrifuge the sample at 10,000 g for 20min
at 4°C (KUBOTA 3500, Japan). The concentration of the
supernatant was measured by using the Bradford Protein
Assay Kit. Protein (200μg) was solubilized in IPG buffer con-
taining 7M urea, 2M thiourea, 4% CHAPS, 65mM DTT,
and 1% IPG buffer to a volume of 350μL. The samples were
then separated by the Immobiline Drystrip (pH4–7, 18 cm
IPG strip, GE Healthcare) on the IPGphor III System for
the first dimension. The 2-DE was carried out on 10%
acrylamide gels (PROTEAN II XL, Bio-Rad, Hercules, CA,
USA) at 30mA/gel. All gels were visualized by silver staining
and then scanned using an Imagescanner (GE Healthcare)
[22, 29]. All experiments were repeated three times to con-
firm the reproducibility.

2.10. 2D-Oxyblot. Following IEF, IPG strips were placed in
15mL test tubes and incubated in 2N HCl with DNPH
(10mM) at 25°C for 20min. After the incubation, samples
were washed with 2M Tris-Base/30% glycerol for 15min.
The protein was separated according to molecular weight as
described above. 2-DE gels were transferred to a PVDFmem-
brane which was incubated overnight at 4°C with the primary
antibody solution consisting of a 1 : 16,000 dilution of the pri-
mary antibody (Molecular Probes) in TBST buffer containing

5% milk. The blots were washed and incubated with goat
anti-rabbit IgG-conjugated HRP for 2 h. Enhanced chemilu-
minescence (Immobilon Western Chemiluminescent AP
substrate, Millipore) was used for detection [29].

2.11. In-Gel Digestion of Proteins and Mass Spectrometric
(MS) Analysis. Spots of interest were excised and in-gel
digested with trypsin according to previously described pro-
cedures [22]. Monoisotopic peptide masses were assigned
and used for database searches with the MASCOT search
engine (http://www.matrixscience.com) (Matrix Science,
London). Search parameters were set as follows: a maximum
allowed peptide mass error of 50 ppm and consideration of
one incomplete cleavage per peptide.

2.12. Statistical Analysis.All values are presented as the mean
± standard deviation (SD). The statistical analysis of the
mean values was carried out with the ANOVA using SPSS
software [SPSS Inc., Chicago, IL, USA].

3. Results

3.1. Cell Viability after UVB Exposure under Pretreatment of
Different Concentrations of RBE. To evaluate the pharmaceu-
tical effects of red raspberry extract in vitro, cell viability was
determined by MTT assays. Different concentrations of RBE
were applied to the HaCaT cells that were then exposed to 0
or 100mJ/cm2 UVB radiation. As illustrated in Figure 1(a),
the results showed that RBE application could effectively
attenuate the cell death caused by the UVB exposure in a
dose-dependent manner. The EC50 of the RBE was
150μg/mL. Next, we determined the signaling marker pro-
teins, caspase-3, and PARP, with Western blot analysis to
further validate the effect of RBE on cell apoptosis. As indi-
cated in Figure 1(b), active forms of caspase-3 (17 kDa) and
cleaved PARP (89 kDa) were significantly increased under
exposure to 100mJ/cm2 UVB compared to the control
whereas administration of RBE could effectively attenuate
UVB-induced cell apoptosis, which was accompanied by
more moderate cleavage of caspase-3 as well as PARP.
Accordingly, UVB irradiation might induce oxidative stress
that results in skin cell apoptosis. Dichlorofluorescein
(DCF) fluorescent intensity showed that UVB treatment
obviously promoted intracellular ROS production compared
with the control group within 6 h whereas RBE application
alleviated the DCF signal (Figure 1(c)).

3.2. Identification of Pure Compounds from RBE. The
ethanol-extracted solution was then concentrated to gener-
ate brown syrup. The filtered, sterile extract was applied in
the subsequent experiments. A high-performance liquid
chromatographic method coupled with ultraviolet (UV)
was conducted for qualitative determination of the com-
pounds in the RBE. The main compounds contained in
RBE were identified by comparing the retention time with
the reference standard as follows: cyanidin, ellagic acid,
pelagonidin-3-sophoroside, methylquercetin-pentose con-
jugate, and cyanidin-3-rutinoside (Figure 2).
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Figure 1: (a) Effects of red raspberry extract on keratinocyte viability with (square) or without (diamond) 100mJ/cm2 UVB exposure as
measured by the MTT assays. The cells were applied with different concentrations of red raspberry extract (x-axis). Data were the mean
± SD of three independent experiments. (b) PARP and caspase-3 and their cleaved forms were detected by Western blot analysis. GAPDH
was used as an internal control. The quantified results were presented by the bar chart. The caspase-3 images were cropped from different
parts and exposures of the same gel. (c) Cells were incubated with or without RBE and irradiated by 100mJ/cm2 UVB. The DCF
fluorescence was observed under a fluorescence microscope and indicated by arrows.
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3.3. Effects of RBE upon UVB-Induced Skin Damage. UVB
radiation (150mJ/cm2) was applied to the back of the mice
once a day for 5 days. Prior to UVB exposure, the experimen-
tal animals were pretreated with or without 750μg/mL RBE
(Figure 3(a)). After a 5-day irradiation course, the control
skin exhibited a flat surface and showed no remarkable wrin-
kle formation whereas significant wrinkling and scaling were
observed in the mouse directly exposed to UVB (Figure 3(b)).
As expected, administration of RBE before UVB exposure
could effectively prevent the skin injury from the UVB irradi-
ation, which was characterized as mild wrinkling and a low
level of scaling as well as dryness on the skin surface
(Figure 3(b)). Transepidermal water loss (TEWL) was mea-
sured to determine the skin barrier function and the baseline
TEWL value of the nude mouse skin, which was about 6–
8 g/m2/h [30]. As indicated in Figure 3(c), UVB application
on day 5 resulted in a 150% enhancement of TEWL com-
pared to the control baseline. Pretreatment of RBE caused a
much milder TEWL increment (p = 0 0276). UVB irradia-
tion also led to a significant promotion in skin erythema
and edema compared to the control. Again, RBE application
could significantly alleviate UVB-caused erythema in the
skin (p = 0 0024; Figure 3(d)). On the other hand, UVB irra-
diation significantly stimulated cell proliferation of epider-
mal keratinocytes and the epidermal thickness of the
control by 2.25-fold. Utilization of RBE could protect the
skin from the abnormal phenomenon (Figure 3(e)). As
expected, global protein profile also showed the
UVB-induced overexpression of keratins K14 and K17,
which may enhance hyperproliferation of keratinocytes
(Supplement Figure 1). These findings imply that pretreat-
ment of RBE could minimize various forms of skin damage
caused by UVB irradiation.

3.4. Antioxidant Ability of RBE in UVB-Irradiated Skin. As
far as we know, UVB exposure induces the production of

oxidative stress, which further attacks DNA and results in
8-OHdGmodification. As shown in Figure 4(a), DNA oxida-
tion manifested by the level of 8-OHdG was elicited in the
UVB-irradiated skin with respect to that in the control while
RBE treatment markedly attenuated the formation of
8-OHdG in the presence of UVB irradiation. Moreover, pro-
tein carbonylation is also a critical parameter of oxidative
stress. Figure 4(b) shows that, in the case of the control, pro-
tein carbonylation was significantly induced in a
UVB-exposed skin. Pretreatment of RBE could effectively
prevent the protein oxidation under UVB exposure. The view
of oxyblots obtained from the UVB group demonstrates that
the extent of oxidation in albumin was dramatically upregu-
lated and there was an obviously decreasing tendency with
respect to the protein oxidation in the RBE/UVB group.
These results suggest that UVB irradiation directly causes
DNA damage and protein oxidation in the skin without the
protection of RBE. The equal amount of β-actin protein
demonstrates that the loading protein volume for all groups
is the same. MS analysis was used to unambiguously identify
albumin as presented in Figure 4(c).

3.5. Signal Transduction Pathways Associated with the
Anti-UVB Property of RBE. Since UVB stimulates the gener-
ation of an excessive level of ROS, we then surveyed the con-
tent of oxidative stress markers, including catalase and
superoxide dismutase (SOD) in different treatments.
Decreased catalase and SOD levels were observed in the
UVB-applied subjects compared with the control group,
while treatments with RBE could enhance the liver catalase
and SOD content, protecting the cell against UVB injury.
To further reveal the molecular mechanism related to modu-
lation of the antioxidant enzymes, we assessed the critical
transcription factor Nrf-2 as a critical contributor to the acti-
vation of the antioxidant system. Again, UVB exposure
remarkably inhibited Nrf-2 expression with respect to the
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control, while RBE administration promoted the level of
Nrf-2. In line with this finding, a marked decrease in HO-1
expression under UVB exposure was observed. The HO-1

level was significantly restored in response to RBE pretreat-
ment (Figure 5(a)). Moreover, we have utilized Nrf2 RNA
interference (siNrf2) to verify RBE-mediated antioxidant
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Figure 3: (a) The red raspberry extract was pipetted on a sheet made of nonwoven polyethylene (1.5× 1.5 cm), and this sheet was applied to
the dorsal region of nude mice. Then, the mice were irradiated with UVB (150mJ/cm2) for continuous 5 days and sacrificed. (b) The changes
of nude mouse skin quality under different treatments including control (−/−), UVB exposure only (UVB/−), and red raspberry extract
application followed by UVB exposure (UVB/R). (c) The effect of red raspberry extract against water loss represented by TEWL. Error
bars: mean± SD. (d) The effect of red raspberry extract against erythema and edema. Error bars: mean± SD. (e) Histological analysis and
assessment of nude mouse skin epidermal thickness from control (CTL), UVB exposure only (−/UVB), and red raspberry extract
application followed by UVB exposure (RBE/UVB). Upper panels: H&E staining. Original magnification: 100x. Lower panels: the
quantified intensity was indicated by the bar chart. Results represent the mean± SD of three independent experiments.
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Figure 4: (a) 8-OHdG levels were measured by immunocytochemistry, and the positive cells are demonstrated by brown color staining. The
quantified results were indicated by the bar chart. (b) Levels of protein carbonylation. Significantly increased expression of carbonylated
proteins were observed in the UVB-exposed group compared to the control, while red raspberry extract could obviously reduce the levels
of carbonylated proteins. β-Actin was utilized as the loading control. (c) The MALDI-TOF spectrum of trypsinized albumin.
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Figure 5: (a) Validation of changes in protein expression after different treatments. Protein levels of catalase, Cu/ZnSOD, MnSOD, Nrf2, and
HO-1 were determined by a Western blot analysis. β-Actin was used as an internal control. The quantified results were indicated by the bar
chart and represent the mean± SD of three independent experiments. The images were cropped from different gels. (b) HaCaT cells
transfected with Nrf2 siRNA were treated with RBE and then exposed to UVB irradiation. Protein levels were measured by Western blot
analysis. β-Actin was used as an internal control. The quantified results were indicated by the bar chart. (c) Western blot analysis for
phosphorylation and total protein levels with different treatments. The phosphorylation levels were normalized by total protein levels.
β-Actin was applied as the internal control. The images were cropped from different gels. (d) HaCaT cells were preincubated with or
without SB203580 for 1 h, irradiated with UVB, and then treated with or without RBE for 6 h. The phosphorylation of p-38 as well as the
protein levels of c-Jun and NF-κB subunits (p65 and p50) was determined by specific antibodies. β-Actin was applied as the loading
control. Quantification of the result was presented as the bar diagram, and the results represent the mean± SD of three independent
experiments. (e) Immunohistochemical staining for the control group (CTL), UVB only group (UVB/−), and RBE/UVB-treated group.
The signal with differently expressed cox-2 was shown with brown color. Original magnification: 200x.
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ability in a cell model. UVB and siNrf2 significantly reduced
the levels of Nrf2, HO-1, and antioxidant enzyme proteins
including SOD and catalase while RBE administration could
obviously recover the expression of Nrf2, HO-1, and antiox-
idant systems under UVB exposure (Figure 5(b)). Treatment
of the keratinocytes with RBE remarkably attenuated
UVB-caused lower expression of Nrf2.

UVB radiation could activate proinflammatory genes
that subsequently trigger ROS. In this regard, we next
explored the contribution of MAPK family protein p38 and
c-Jun signaling to RBE-mediated protection against
UVB-induced cell death and inflammatory responses. Our
results indicated that the phosphorylation of p38 (p-p38)
was significantly upregulated after UVB exposure and
pretreatment of RBE obviously suppressed the expression
of p-p38 while the total protein level of p38 showed no signif-
icant changes under various treatments. Meanwhile, a high
level of c-Jun was induced under UVB administration, but
exposure to RBE could almost completely inhibit the expres-
sion of c-Jun. Moreover, the NF-κB pathway plays a pivotal
role in the modulation of gene expression involved in inflam-
matory responses. The level of NF-κB increased under UVB
stimulation while administration with RBE could suppress
translocation, activation, and the expression of NF-κB in
the mouse skin (Figure 5(c)). Next, we used an upstream sig-
naling p-p38 inhibitor (SB203580) to confirm the molecular
mechanism by which RBE inhibits inflammatory cascades
induced by UVB. Our results showed that UVB strongly
induced the protein expression of p-p38 as well as the inflam-
matory molecules such as NF-κB and c-Jun. RBE treatment
and p-p38 inhibitor could effectively suppress the levels of
p-p38, c-Jun, and activated NF-κB in the presence of UVB
(Figure 5(d)). These findings implied that RBE could amelio-
rate p-p38-mediated NF-κB activation and nuclear transloca-
tion which will lead to skin inflammatory responses.

Consistently, COX-2 protein expression was evaluated
by immunohistochemical analysis to clarify the
anti-inflammatory effect of RBE in the skin. As shown in
Figure 5(e), COX-2 protein was rarely expressed in the con-
trol group. However, the protein expression of COX-2 was
markedly augmented upon UVB treatment, and pretreat-
ment of RBE abrogated UVB-induced COX-2 protein
expression. These results implied that RBE performs
anti-UVB efficacy through modulating the antioxidant and
anti-inflammatory signaling pathways.

4. Discussion

Exposure to UV radiation, particularly UVB (290–
320nm), elicited harmful biological effects on the skin
that could eventually result in histologic and clinical inju-
ries such as skin aging and cancers [31, 32]. Prolonged
exposure to UVB radiation would lead to apoptosis of ker-
atinocytes and consequently destroy the skin’s natural bar-
rier, thus predisposing the skin to inflammation, infection,
and carcinogenesis [33, 34]. Numerous reports have shown
that natural product-derived agents would exhibit photo-
protective efficacy on a UVB-damaged skin due to their
diverse bioactive compounds [35–37]. Moreover, the

extract from berries has been added to various skin prod-
ucts such as creams and lotions because the extract is
believed to have an efficacy on skin care with a low rate of
side effects [38, 39]. In this regard, we investigated the anti-
photodamaging activity of RBE both in vitro and in vivo
because the protective potentials of RBE on the skin have
remained unresolved.

In our study, the administration of RBE was able to
prevent UVB injuries as manifested by the attenuation of cell
death of keratinocytes. Meanwhile, animal experiment
showed that pretreatment of RBE could attenuate the skin
photoaging characterized by skin thickening, erythema,
wrinkles, dryness, tanning, and histologic changes, including
damage to collagen fibers and abnormal growth of keratino-
cytes. Particularly, a previous study has indicated that the
apoptotic dose of UVB is very similar to the minimal
erythema dose (MED) of UVB, implying that UV-induced
erythema might be an inflammatory response to the appear-
ance of “sunburn cells” such as apoptotic cells in native
human epidermis [40]. It clearly suggests that the epidermis
displays abnormal proliferation and differentiation after the
UVB-caused sunburn, which appears to be crucially corre-
lated with the impact on skin barrier function leading to
photoageing or photocarcinogenesis.

The primary compounds of RBE applied here contain
various types of antioxidants including cyanidin, ellagic
acid, pelagonidin-3-sophoroside, and their derivatives.
These bioactive compounds scavenge free radicals, particu-
larly superoxide anions, and therefore may prevent skin
injury since the increased oxygen-derived free radical has
been suggested as a pivotal factor in UVB-caused skin
problems [41–43]. Our findings showed that UVB expo-
sure induced the ROS production that initiates apoptosis
of skin cells and stimulates several genes implicated in
the apoptotic process such as the caspase-3 signaling
pathway. RBE provided protection against UVB-induced
death of skin cells by removal of oxidative stress. Again,
ROS production will induce damage to cellular macromol-
ecules such as DNA and protein1. In the current study,
8-OHdG and protein carbonylation were surveyed as
important hallmarks of oxidative stress. Our results indi-
cated that DNA and protein were highly oxidized in the
UVB-administrated subjects compared to the control sam-
ples while oxidation of protein and DNA characterized by
protein carbonylation and 8-OHdG modification was ame-
liorated by RBE pretreatment, which attenuated skin
injury caused by UVB radiation. Oxidative stress caused
by the UVB would result in increased ROS generation
and reduced antioxidant capacity, leading to a visible dete-
rioration in skin condition. Albumin, with a good binding
capacity for water, was destroyed by carbonylated modifi-
cation, leading to the decrease of TEWL in the
UVB-treated mice [44].

In addition, antioxidant enzymes such as catalase and
SOD are consumed during oxidative stress. Therefore, the
levels of these enzymes could be used as a hallmark of oxida-
tive stress [45, 46]. Our results also showed that the applica-
tion of RBE significantly inhibits UVB-induced oxidative
stress by upregulating the catalase and SOD levels in the
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photodamaged skin. The aforementioned findings implied
that the protective effects of RBE at least partially contribute
to its capability in the ROS-scavenging and antioxidant activ-
ity after UVB irradiation.

The transcription factor, Nrf2, may serve as a critical reg-
ulator responsible for oxidative stress. It is released and trans-
located to the nucleus where it stimulates the expression of
detoxification enzymes and antioxidant proteins [47, 48].
Of the antioxidant enzymes, HO-1 is considered beneficial
for removing ROS in different types of cells. Herein, the levels
of Nrf2 and HO-1 were significantly diminished by UVB
stimulation accompanied by ROS production whereas RBE
remarkably inhibited the Nrf2/HO-1 signaling and inflam-
matory responses indicated by the suppression of c-Jun as
well as NF-κB. UVB-mediated COX-2 expression is associ-
ated with erythema, and therefore, COX-2 could be a feasible
target for preventing photo-inflammation [18, 49, 50]. RBE
remarkably suppressed UVB-promoted protein levels of
COX-2 in vivo. These results provide evidence that RBE
inhibits UVB-induced inflammation and injury in the skin
and is mediated by Nrf2/HO-1 activation as well as suppres-
sion of the NF-κB pathway, thereby promoting its clinical use
in skin therapy. Furthermore, RBE seems to play a functional
role against UVB-induced damage via suppressing the acti-
vation of p38 MAPK kinases induced by UVB irradiation.
Previous research indicated that the blockade of the p38
MAPK pathway inhibited the expression of the proinflam-
matory cytokines and COX-2, which is in line with our find-
ings [51–53]. In addition, we have measured the absorption
spectrum of RBE, which shows that RBE could moderately
absorb the UV and the ABS is approximately equal to 0.5
(Supplement Figure 2). In this regard, RBE should partially
exhibit the anti-UVB effects via the absorption function,
which might explain some of the skin protection effects.

In summary, RBE administration protects against
UVB-induced photodamage via activating Nrf2 signaling
cascade which is referred to as the master regulator of the
antioxidant response, modulating various antioxidant
enzymes. RBE also inhibits MAPK P38 kinase, c-Jun, and

NF-κB to diminish UVB-induced skin inflammation. The
RBE may be a promising reagent used in the prevention of
photodamage in acute UVB-exposed and chronic inflamma-
tory skin diseases (Figure 6).
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quantified by Prodigy SameSpots software and characterized
by MALDI-TOF. Differential expression proteins were listed
in the supplement table. Absorption spectrum of RBE in
methanol had been shown in Supplement Figure 2.
(Supplementary Materials)
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