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Poor bone mineral density
aggravates adjacent segment’s
motility compensation in
patients with oblique lumbar
interbody fusion with and
without pedicle screw fixation:
An in silico study
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Zhong-Xin Fang4, Zhi-Peng Xi3* and Jing-Chi Li1,3*
1Department of Orthopedics, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou,
China, 2Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University,
Shanghai, China, 3Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese
and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, China, 4Fluid and Power
Machinery Key Laboratory of Ministry of Education, Xihua University, Chengdu, China

Objective: Motility compensation increases the risk of adjacent segment
diseases (ASDs). Previous studies have demonstrated that patients with ASD
have a poor bone mineral density (BMD), and changes in BMD affect the
biomechanical environment of bones and tissues, possibly leading to an
increase in ASD incidence. However, whether poor BMD increases the risk of
ASD by aggravating the motility compensation of the adjacent segment
remains unclear. The present study aimed to clarify this relationship in
oblique lumbar interbody fusion (OLIF) models with different BMDs and
additional fixation methods.
Methods: Stand-alone (S-A) OLIF and OLIF fixed with bilateral pedicle screws
(BPS) were simulated in the L4–L5 segment of our well-validated
lumbosacral model. Range of motions (ROMs) and stiffness in the surgical
segment and at the cranial and caudal sides’ adjacent segments were
computed under flexion, extension, and unilateral bending and axial rotation
loading conditions.
Results: Under most loading conditions, the motility compensation of both
cranial and caudal segments adjacent to the OLIF segment steeply
aggravated with BMD reduction in S-A and BPS OLIF models. More severe
motility compensation of the adjacent segment was observed in BPS models
than in S-A models. Correspondingly, the surgical segment’s stiffness of S-A
models was apparently lower than that of BPS models (S-A models showed
higher ROMs and lower stiffness in the surgical segment).
Abbreviations

AFD, additional fixation device; ASD, adjacent segment diseases; BEP, bony endplate; BMD, bone mineral
density; BMI, body mass index; BPS, bilateral pedicle screw; CEP, cartilage endplate; DD, disc
degeneration; FE, finite element; GB, grafted bone; HU, hounsfield unit; IVD, intervertebral disc; LDD,
lumbar degenerative diseases; LIF, lumbar interbody fusion; OLIF, oblique lumbar interbody fusion; S-
A, stand-alone; ROM, range of motion; ZJ, zygapophyseal joint.
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Conclusion: Poor BMD aggravates the motility compensation of adjacent segments
after both S-A OLIF and OLIF with BPS fixation. This variation may cause a higher risk
of ASD in OLIF patients with poor BMD. S-A OLIF cannot provide instant
postoperative stability; therefore, the daily motions of patients with S-A OLIF should
be restricted before ideal interbody fusion to avoid surgical segment complications.

KEYWORDS

adjacent segment diseases, oblique lumbar interbody fusion, motility compensation, bone

mineral density, finite elemant analysis
Introduction

Lumbar interbody fusion (LIF) surgeries are widely used to

treat lumbar degenerative diseases (LDDs) (1, 2). Adjacent

segment diseases (ASDs) are a common complication of

spinal fusion surgery (3, 4). Motility compensation is an

essential mechanism of biomechanical deterioration of the

adjacent segment (5, 6). The stiffness of the interbody cage

and grafted bone (GB) is higher than that of intervertebral

disc (IVD) components. During LIF surgeries, the nucleus,

cartilage endplates (CEPs), and parts of the annulus are

replaced by the cage and GB (1, 7). Thus, the fusion

segment shows higher stiffness than the original IVD.

Consequently, the stiffness of the fusion segment is

increased, and its range of motions (ROMs) is decreased

under the same moments. ROMs of adjacent segments

must be increased to achieve similar ROMs of the lumbar

spine in different body positions (5, 6). This pathological

process increases the risk of accelerated disc degeneration

(DD) and instability in adjacent segments, leading to a

poor prognosis for LIF patients (3, 4).

As mentioned above, biomechanical deterioration leads to

an increased risk of developing ASDs (8, 9). According to

surgeons, the demographic characteristics of patients with

ASDs are closely related to certain types of biomechanical

deterioration. Specifically, clinical follow-up studies have

shown that patients with high body mass index (BMI) have a

higher incidence of ASDs; correspondingly, biomechanical

studies have confirmed that overweight patients have higher

intradiscal pressure and annulus shear stress, which leads to

annulus tear risk (3, 4). Elderly patients are at a greater risk

of developing ASD; correspondingly, preexisting DD is

confirmed as a risk factor for annulus stress concentration

and further acceleration of DD (5, 10). Clinical studies have

also shown that patients with osteoporosis have a higher risk

of DD and ASD, but the biomechanical significance of poor

bone mineral density (BMD) remains unclear (3, 4, 11).

Our previous study showed that poor BMD leads to stress

concentration in adjacent segments; however, Zhang et al.

reported a contrasting finding by using an approximate research

method (8, 12). The indicator selected in both these studies was,

however, limited to the stress distribution of IVDs, and there
02
was a lack of explanation of how changes in BMD affect the

motility compensation of the adjacent segment. Additional

fixation devices (AFDs) are also commonly used to provide

instant stability to the LIF segment (13, 14). The bilateral

pedicle screw (BPS) is an extensively used AFD. Although

BPS removal after interbody bone integration will alleviate

biomechanical deterioration of the adjacent segment (5, 6,

15), no study has assessed whether the use of BPS aggravates

motility compensation of the adjacent segments in the early

postoperative period as compared to the stand-alone (S-A)

surgical method (i.e., LIF without any AFD fixation).

On the basis of the abovementioned theoretical and

practical knowledge, we hypothesize that poor BMD may

cause a high risk of ASD by aggravating pathological motility

compensation of the adjacent segment. To confirm this

hypothesis, we simulated S-A oblique lumbar interbody fusion

(OLIF) and OLIF with BPS fixation in well-validated finite

element (FE) models with different BMDs. ROMs and

stiffness in both surgical and adjacent segments were

computed and recorded to identify surgical segment stability

and motility compensation of the adjacent segments.
Methods

Model construction and validation

We simulated S-A OLIF and OLIF with BPS fixation in a

well-validated FE lumbosacral model. In this process, we

performed a multi-indicator model validation to verify the

computational credibility of the FE model (16, 17). To

construct bony structures, reconstructed bony outlines were

inputted into 3D CAD software, and outlines of bony

structures were drawn by fitted curves to construct bony

structures with fitted surfaces. In this process, bony structures,

including cortical, cancellous, and bony endplates, were

constructed separately. The cortical thickness was set to

0.5 mm, and the thickness, concave angles, and depth in both

coronal and sagittal planes were defined according to the

measurements of imaging data and anatomical samples (18–

20). Nonbony components were constructed in the same 3D

CAD software. IVD components comprise the annulus,
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nucleus, and CEPs, and the outline of the CEP covers the

nucleus and inner parts of the annulus (21, 22). Facet cartilages

were defined as contact-to-contact surfaces, and ligament

structures were defined as cable elements (23, 24). To validate

whether the current model represents actual biomechanical

situations, computed intradiscal pressure, facet contact force,

disc compression value, and different directional ROMs were

calculated and compared with the average values of the

indicators recorded in in-vitro tests. Given that the differences

between the computed and tested values were less than one
FIGURE 1

Schematic for surgical simulations in the lumbo-sacral model. (A) The intact lu

Frontiers in Surgery 03
standard deviation, we believe that the current model

adequately represents actual biomechanical situations and can

be used in current surgical simulations.
Surgical simulations

We performedOLIF simulations in the L4–L5 IVDbecause of

the highest incidence of LDDs in thismotion segment. The length

of the OLIF cage was defined according to the measurement of
mbo-sacral model; (B) Simulations for S-A OLIF and OLIF fifixed by BPS.
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TABLE 1 Material properties of FE models’ components.

Components Elastic modulus
(MPa)

Poisson’s
ratio

Cross-
section
(mm2)

Cortical (normal
BMD)

Exx= 11,300 Vxy = 0.484
Eyy= 11,300 Vyz = 0.203
Ezz = 22,000 Vxz = 0.203
Gxy= 3,800
Gyz = 5,400
Gxz = 5,400

Cancellous (normal
BMD)

Exx= 140 Vxy = 0.45
Eyy= 140 Vyz = 0.315
Ezz = 200 Vxz = 0.315
Gxy= 48.3
Gyz = 48.3
Gxz = 48.3

Bony endplates
(normal BMD)

12,000 0.3

Cortical (slight
reduction of BMD)

Exx = 9,436 Vxy = 0.484
Eyy = 9,436 Vyz = 0.203
Ezz = 18,370 Vxz = 0.203
Gxy = 3,173
Gyz = 4,509
Gxz = 4,509

Cancellous (slight
reduction of BMD)

Exx = 93.8 Vxy = 0.45
Eyy = 93.8 Vyz = 0.315
Ezz = 150 Vxz = 0.315
Gxy = 32.36
Gyz = 36.23
Gxz = 36.23

Bony endplates
(slight reduction of
BMD)

10,035 0.3

Cortical (significant
reduction of BMD)

Exx = 7,571 Vxy = 0.484
Eyy = 7,571 Vyz = 0.203
Ezz = 14,740 Vxz = 0.203
Gxy = 2,546
Gyz = 3,618
Gxz = 3,618

Cancellous
(significant reduction
of BMD)

Exx = 47.6 Vxy = 0.45
Eyy = 47.6 Vyz = 0.315
Ezz = 100 Vxz = 0.315
Gxy = 16.42
Gyz = 24.15
Gxz = 24.15

Bony endplates
(significant reduction
of BMD)

8,070 0.3

Annulus Hypoelastic material

Nucleus 1 0.49

Cartilage endplates 10 0.4

Anterior longitudinal
ligaments

Calibrated load-
deformation curved
under different
loading conditions

0.3 60

Posterior longitudinal
ligaments

Calibrated load-
deformation curved
under different
loading conditions

0.3 21

(continued)

TABLE 1 Continued

Components Elastic modulus
(MPa)

Poisson’s
ratio

Cross-
section
(mm2)

Ligamentum flavum Calibrated load-
deformation curved
under different
loading conditions

0.3 60

Interspinous
ligaments

Calibrated load-
deformation curved
under different
loading conditions

0.3 40

Supraspinous
ligaments

Calibrated load-
deformation curved
under different
loading conditions

0.3 30

Intertransverse
ligaments

Calibrated load-
deformation curved
under different
loading conditions

0.3 10

Capsular 7.5 (25%) 0.3 67.5
32.9 (25%)

PEEK OLIF cage 3,500 0.3

Titanium alloy screw 110,000 0.3
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vertebral body sizes. An OLIF cage model of 50 mm length was

constructed in the same 3D CAD software. The nucleus, CEPs,

and two lateral sides of the annulus were removed to simulate

the discectomy and endplate preparation, and the OLIF cage

fully covered with GB was inserted into the interbody space

(Figure 1) (25, 26). The long axis of the OLIF cage was parallel

to the coronal plane of the lumbosacral models. The height of

the interbody space and lordotic angles of the surgical segment

were kept identical to the corresponding postoperative models

to eliminate their biomechanical effects (26, 27). S-A OLIF

simulations were accomplished by performing these procedures.

For simulating percutaneous BPS fixation, cannulated pedicle

screw models of 6.5 mm diameter were constructed. Four

identical pedicle screws were inserted into the L4 and L5

vertebral bodies (Figure 1) (28, 29).
Boundary and loading conditions

The boundary and loading conditions of the current models

were defined according to in vitro biomechanical tests. The

inferior surfaces of S1 were completely fixed, while different

directional moments were applied to the superior surfaces of L3

(8, 21). Models were computed under identical loading conditions,

including 8 Nm flexion, 6 Nm extension and bending, and 4 Nm

axial rotation (30, 31). Because current models are symmetrical in

the central sagittal plane alone, bending and axial rotation loading
frontiersin.org
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conditions can be computed unilaterally. The contact between facet

cartilageswas set as frictionless.The frictional coefficientbetween the

OLIF cage and BEPs was set as 0.2, and that between the GB and

BEPs was set as 0.46 to simulate the instant postoperative

biomechanical environment (32, 33).

Mesh generation strategies used in the present study were

consistent with those reported in our previous studies, and

the mesh convergence test was also performed to eliminate

the effect of mesh size on the biomechanical performance of

the models (16, 17). The annulus was defined as a hypoelastic

material, and the nucleus was set as a semifluid incompressible

bag (15, 34). Pedicle screw material was defined as titanium
FIGURE 2

ROMs and stiffness of the motion segment cranial to the surgical segment (

Frontiers in Surgery 05
alloy (Ti6Al4 V), and the OLIF cage was defined as polyether

ether ketone (PEEK); the elastic modulus of the GB was

calculated based on the measurement of Hounsfield unit (HU)

values immediately after the CT scan (34, 35). The material

properties of cortical and cancellous bones were defined

according to anisotropic laws, and BEP was set as an isotropic

material (36, 37). For constructing postoperative models with

normal BMD, osteopenia, and osteoporosis, the stiffness of

cortical, cancellous, and BEPs was adjusted according to the

same numerical simulations and tests used for bony material

properties (Table 1). The morphological parameters of bony

structures remained unchanged (37–39).
L3–L4).
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Results

Motility compensation of adjacent
segments in models with different BMDs

ROMs and stiffness in adjacent segments were computed

and recorded in the present study. Both cranial and caudal

motion segments exhibited identical overall variation.

Specifically, one step decrease in BMD aggravated motility

compensation (i.e., ROMs increased and stiffness decreased

with the decrease in the bony elastic modulus). Contrary to

the common belief, motility compensation was greater on

the caudal side than on the cranial side in both BPS and S-A
FIGURE 3

ROMs and stiffness of the motion segment caudal to the surgical segment (

Frontiers in Surgery 06
models. Under the flexion loading condition, the most

significant motility compensation was observed in S-A

models. Compared to the model with normal BMD, ROMs

increased by nearly 80% in both cranial and caudal side

motion segments (Figures 2, 3).

Only a few exceptions were observed in osteopenia models

under axial rotation loading conditions, in which ROMs

decreased by 6.73% and 1.99% in BPS and S-A OLIF models,

respectively, and decreased by 4.93% in the osteoporosis

model with BPS fixation. In addition, under the extension

loading condition of BPS models, ROMs increased by 47.35%

and 15.99% in osteopenia and osteoporosis models,

respectively; compared to osteoporosis models, this was the
L5–S1).
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only loading condition in which the motility compensation was

more severe in osteopenia models (Figures 2, 3).
Instantly postoperative stability in the
surgical segment

BPS models showed smaller ROMs and higher stiffness in

the surgical segment than S-A models. Under the flexion and

axial rotation loading conditions, the ROMs of the S-A models

were smaller than 3°, except for the osteoporosis model, whose

ROM was slightly larger than 3° under the flexion loading

condition. In contrast, poor instant postoperative stability of
FIGURE 4

ROMs and stiffness of the surgical segment (L4–L5).

Frontiers in Surgery 07
S-A models was observed under extension and lateral

bending loading conditions, in which ROMs were larger

than 5° under bending and even larger than 10° under

extension loading conditions. As shown in the nephograms,

apparent separations were observed between the BEPs and

OLIF cage in the S-A models under extension and bending

loading conditions (Figures 4, 5).
Discussion

To investigate the biomechanical effects of BMD reduction

on motility compensation of segments adjacent to the LIF
frontiersin.org
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FIGURE 5

Nephograms for BEPs and the OLIF cage under different loading
conditions.
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operative segment, S-A OLIF and OLIF with BPS fixation were

simulated in well-validated lumbosacral FE models with

different BMDs. Computational results showed that the

decrease in BMD leads to severe motility compensation of

both cranial and caudal adjacent segments. This may be a

reasonable explanation for the higher incidence of ASD in

patients with poor BMD after LIF surgeries.

ASD is a widely reported complication after LIF surgeries.

The recurrence of symptoms and the resulting reoperations

adversely affect the clinical outcomes of patients.

Biomechanical deterioration is an important cause of ASD

(40, 41). Stress concentration and motility compensation are

two types of biomechanical deterioration. Specifically, LIF

surgery induces stress concentration in adjacent segments’

IVDs and facet cartilages of zygapophyseal joints (ZJs).

These changes increase the incidence of annular tears and

cause acceleration of DD and degenerative osteoarthritis of

ZJs (6, 23). These pathological changes are common types

of ASDs. Additionally, LIF surgeries increase the stiffness of

the surgical segment (decrease ROMs under the same sizes

of moments). Thus, during daily activities, the reduced
Frontiers in Surgery 08
ROMs of the surgical segment should be compensated by

adjacent segments, which is also a common cause of ASD

(3, 4, 9).

In the present study, the extent of motility compensation of

adjacent segments steeply increased with the decrease in bony

elastic modulus. This computational result partially explains

the reason why patients with osteoporosis have a high risk of

ASD biomechanically. Moreover, regular antiosteoporosis

therapy is recommended in osteoporotic patients after LIF

surgery. Generally, surgeons believe that this patient

management strategy could reduce the incidence of surgical

segment complications (e.g., screw loosening and cage

subsidence). On the basis of current computational results,

the significance of postoperative anti-osteoporosis has been

further emphasized, and we believe that it could optimize

clinical outcomes of patients by reducing the risk of both

surgical segment and adjacent segment complications.

The pathological process of stress concentration in adjacent

segments after LIF surgery has been widely reported. Previous

studies have shown that the incidence rate of ASD in the segment

cranial to the surgical segment was higher than that in the caudal

segment, and the biomechanical mechanism of this phenomenon

was the shorter force arm, resulting in higher grades of stress

concentration of the cranial side IVD (5, 6, 15). However, the

variation in motility compensation was inconsistent with stress

concentrations. In the present study, the variation in motility

compensation in the caudal segment was overall comparable to

that in the cranial segment and even more pronounced in the

caudal segment under some loading conditions. Considering the

exact effect of motility compensation on the risk of ASD, the

incidence of ASD on the caudal side adjacent segment should not

be ignored in future clinical studies (Figures 2, 3).

The difference in instant postoperative stability between S-A

OLIF and OLIF with BPS fixation was also compared.

Consistent with the consensus, as the gold standard of AFD,

BPS fixation provides excellent fixation stability (13, 42).

However, the apparent separation between the OLIF cage and

BEPs in the S-A models was considered for daily size

moments (especially under extension and lateral bending

loading conditions) (Figure 5). Therefore, although the BPS

models show more severe motility compensation, we

recommend using AFDs in OLIF patients to reduce the

incidence of complications related to the separation between

BEPs and the OLIF cage (e.g., cage migrations and

nonunions). We also recommend restricting daily motions or

AFDs (e.g., semirigid waistline) in S-A patients in the early

postoperative period to reduce complication risk.

In conclusion, although no consensus was noted on the

relationship between poor BMD and ASD incidence by

computing stress concentration grades in adjacent segment

IVDs and ZJs, a clear variation in motility compensation was

observed in current models, and a reasonable explanation

can be derived from the biomechanical perspective.
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Specifically, following the reduction in bony BMD, differences

in stiffness between the LIF motion segment with insertional

devices (e.g., OLIF cage, GB, and AFDs) and adjacent

segment IVDs and more severe motility compensation can be

deduced.

The conclusion of this study should be accepted only after

acknowledging the following limitations. As an inherent

defect of FE studies, the present study could not simulate

in vivo biological and morphological changes during the

interbody fusion process. Therefore, it is difficult to

simulate the influence of BEP damage, cage subsidence, and

screw loosening on adjacent segments of biomechanical

environments. More significantly, spinal instability could

induce in vivo self-adaptation mechanics, leading to the

generation of osteophytes that affect local biomechanical

environments, which was also ignored in this study (43,

44). We hope to address these limitations in future studies

by further calibration and optimization of FE models.
Conclusion

Poor BMD aggravates the motility compensation of the

adjacent segment after S-A OLIF and OLIF with BPS fixation;

this variation may increase the incidence of ASD. The S-A

surgical method cannot provide instant postoperative stability;

hence, daily motions of S-A patients should be restricted, or

AFDs (e.g., semirigid waistline) should be used in the early

postoperative period to avoid surgical segment complications.
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