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ABSTRACT: Resolution is an important index for evaluating the
reconstruction performance of temperature distributions in a
combustion environment, and a higher resolution is necessary to
obtain more precise combustion diagnoses. Tunable diode laser
absorption tomography (TDLAT) has proven to be a powerful
combustion diagnosis method for efficient detection. However,
restricted by the line-of-sight (LOS) measurement, the reconstruction
resolution of TDLAT was dependent on the size of the detection data,
which made it difficult to obtain sufficient data for extreme
environmental measurements. This severely limits the development
of TDLAT in combustion diagnosis. To overcome this limitation, we
proposed a super-resolution reconstruction method based on the
super-resolution residual U-Net (SRResUNet) to improve the
reconstruction resolution using a software method that could take full advantage of residual networks and U-Net to extract the
deep features from the limited data of TDLAT to reconstruct the temperature distribution efficiently. A simulation study was
conducted to investigate how the parameters would affect the performance of the super-resolution model and to optimize the
reconstruction. The results show that our SRResUNet model can effectively improve the accuracy of reconstruction with super-
resolution, with good antinoise performance, with the errors of 2-, 4-, and 8-times super-resolution reconstructions of approximately
5.3, 7.4, and 9.7%, respectively. The successful demonstration of SRResUNet in this work indicates the possible applications of other
deep learning methods, such as enhanced super-resolution generative adversarial networks (ESRGANs) for limited-data TDLAT.

1. INTRODUCTION

The real distributions of temperature and concentration fields
in the combustion environment are powerful instruments for
combustion diagnosis, reflecting the combustion uniformity
and evolution law, which is necessary for an optimized design
for high-efficiency and low-carbon-emission gas turbines.1

Resolution is a significant index for evaluating the richness of
detailed information contained in the optical detection system,
mainly regarding the spatial and temporal resolution, and
reflects the performance of the imaging system in demonstrat-
ing object details. For instance, a higher resolution temperature
field distribution, with a larger pixel density and richer texture
details, will help researchers more precisely analyze the
combustion condition and realize a combustion diagnosis
with higher reliability.
Tunable diode laser absorption tomography (TDLAT),

based on absorption spectroscopy and computerized tomog-
raphy (CT), is one of the most powerful tools for high-speed
combustion flow diagnostics, owing to its noninvasive nature,
quick response, and high sensitivity.2−5 Thus, it is generally
adapted to all complex and bad test combustion environments.
On the other hand, TDLAT can realize the simultaneous
measurement of temperature and gas concentration,6 which

has made it the most popular and necessary technique for
research on combustion diagnosis. However, TDLAT is based
on the line-of-sight (LOS) detection method, and the
reconstruction spatial resolution is mainly dependent on laser
numbers through the region of interest (ROI).7 In practical
engineering processes, restricted by the extremely complex test
environment, which has made it difficult to arrange enough
acquisition equipment, there is a lack of sufficient effective
detection data to reconstruct the original distribution, and this
has become the key factor limiting the development of
TDLAT.8

The most direct way to improve the reconstruction
resolution is to improve the optical hardware system, such as
by optimizing the arrangement of lasers and detectors to
acquire more detection data. In previous studies, researchers
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devoted considerable effort to generating a high-resolution
reconstruction of the temperature or gas concentration in the
combustion environment. The reconstruction system of Doo-
Won Choi et al. obtained data from the optical signals of 8-
laser beams passed on a cross section of the methane flame.9

Xia et al. took advantage of two-step tomographic
reconstructions and realized an 11 × 11 resolution
reconstruction with half the number of detectors.10 Xu, Liu
et al. used a pentagon TDLAS detection system and CT-
TDLAS to realize the two-dimensional (2D) temperature and
H2O concentration reconstruction of swirl combustion.11−14

Choi et al. used multiangle temperature detection equipment
that divides the combustion field into 22 × 22 square mesh
grids.15 Jeon et al. constructed a CT-TDLAS system with 16-
path cells to measure the two-dimensional temperature
distribution of a propane−air premixed flame, covering several
fuel mixing conditions.16 Unfortunately, it is usually difficult to
arrange enough hardware to meet high-resolution reconstruc-
tion requirements for the detection of an extreme combustion
environment. Hardware improvement is limited and the cost is
extremely high, becoming a burning problem that demands
prompt solutions for researchers.
The residual network (ResNet) is a useful super-resolution

method based on a machine learning algorithm with excellent
results and extensive applications, such as single image super-
resolution.17,18 The team of White Chang has introduced a
deep multiscale residual network in infrared aerothermal
nonuniform correction.19 U-Net is one of the typical prevalent
examples of deep learning models and has found extensive
applications.20 For example, a fully dense U-Net has been used
for 2-D sparse photoacoustic tomography artifact removal, and
Zang et al. combined cascaded Dense-UNet with residual nets
to optimize the image super-resolution.21,22 However, to the
best of our knowledge, the combination of both has not been
applied to super-resolution reconstruction for TDLAT.
Therefore, from the perspective of soft measurement, we

propose an optimized deep learning model to realize super-
resolution reconstruction for limited-data TDLAT to compen-
sate for the low reconstruction resolution and inefficiency of
existing tomographic algorithms. In this study, combining the
advantages of ResNet and U-Net, we designed a super-
resolution residual U-Net (SRResUNet) model that has a
strong feature extraction ability and can build a map between
the detection data and temperature distribution, providing a
novel method and supply for high-resolution TDLAT.
The remainder of this work is organized as follows: Section

2 explains the theories and advantages of TDLAT, ResNet, and
U-Net; Sections 3 and 4 present the simulation studies
including the parameter tuning and the structure design of
SRResUNet and the results of the simulation; and finally, the
final section concludes this work and proposes future research
directions.

2. MATHEMATICAL BACKGROUND

2.1. Tunable Diode Laser Absorption Tomography.
Tunable diode laser absorption tomography (TDLAT) is a
popular absorption spectroscopy technique12 that features
quick response and high selectivity. Beer’s law describes the
relationship among temperature T, gas concentration X,
pressure P, and absorbance α(v). It can be defined as
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where It(v) and Io(v) are the intensities of the transmitter laser
and the incident laser, respectively; P [atm] is the total
pressure of the region of interest; X is the concentration of the
material under test; S[T(x)] [cm−2 atm−1] is the line strength
of the molecular transition of the absorbing species, which is
dependent on the temperature;13,14 φ(v,T) [cm] is the line-
shape function, and ∫ −∞

+∞φ(v,T)dv ≡ 1; and L[m] is the length
of the absorption path. To reconstruct the original absorbance
distribution, a series of absorbance arrays should be obtained
by repeating (1) and discretizing as Avn,i for the LOS
measurements, organized as follows

A PS v T X L L i I( , ) ( 1, 2, 3 )v i
j

J

n i i j

J

j i j,
1

,
j 1

,n
∑ ∑ α= [ ] = = ···

= =

(2)

where j represents the jth pixel, J is the total number of pixels
within the discretized field, Li,j is the absorption path length of
the ith beam within the jth pixel, and the total number of
beams is L, as shown in Figure 1. To simplify the calculation, it

can often be substituted into eq 3 and matrix form 4, where L
is the matrix of the length of the absorption path and αvn. is the
matrix of absorbance of laser vn [cm

−1].
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2.2. Residual Networks. Compared with traditional
neural networks, a deep learning method with a deeper
network can extract more abstract and abundant features.23

However, an increase in the number of networks will cause a
saturation or even a decrease in the accuracy rate on the
training set, called the problems of degenerate, mainly because
the structure of the deep network is more complex and the
gradient descent algorithm is more likely to obtain local
optimal solutions. This problem has a negative effect on the
application of deep learning networks.
To overcome this problem, residual networks (ResNet)

were designed to retain the depth of deep networks and take
advantage of shallow networks to avoid degenerate problems.
As shown in Figure 2, the most important characteristic of

Figure 1. Schematic diagram of the Beer−Lambert law.
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ResNet is identity mapping, which skips the interlayer and is
introduced to the final output, whereas the other part is called
residual mapping, sharing the same function as the normal
feedforward neural network.
This connection method is called a shortcut connection,18

and the learning object becomes the residual, which can be
defined as

F x H x x( ) ( )= − (5)

where F(x) and H(x) are the maps before and after
summation, respectively. In this way, the original input can
play a more important role in reflecting the output, retaining
the important information and reducing the loss for the whole
network just needing to learn the difference between the input
and the output with a simplified learning objection and lower
training difficulty.
2.3. Super-Resolution Reconstruction with U-Net. U-

Net is a typical deep convolutional neural network (DCNN)
featuring local receptive fields, feature map fusion, and
lightweight features.20 The distribution structure of the
combustion field is always simple and fixed, which means
that too many complex models, such as most SOTA algorithms
always based on large parallel corpora,24 would reduce the risk
of overfitting. However, unlike a full convolutional neural
network (FCN), the most unique feature is the structure of the
skip connection and splice of feature maps. As shown in Figure
3, the middle connection between downsampling and

upsampling can introduce low-level extractions of the networks
to the final process, which reduces the loss of useful features.
In the study of the reconstruction field, the difficulties are

mainly related to the recovery of the high-frequency signal,
referring to the place of intensity changing drastically, mainly
because of the loss of edge information in each space.
Apparently, U-Net takes advantage of the splice of feature
maps with skip connections and can effectively extract the deep
abstract information (high-level features) and retain the
structural information (low-level features), adapting to few-
feature extraction in the reconstruction combustion environ-
ment.
As depicted in Figure 3, the key processes of U-Net generally

include convolution, downsampling (pooling), upsampling,
and skip connection processes. The typical downsampling
method is max pooling, which is used to reduce the resolution
of images and obtain abstract and high-level features, caring
more about the semantic information of images. The typical
upsampling method is deconvolution, which can also be
described as the backward propagation of normal forward
propagation without updating the gradient. In the field of
super-resolution reconstruction, the function of U-Net can be
described as the prediction and generation of a new high-
resolution image from original low-resolution images. Hence,
the loss function of U-Net usually uses L2 loss and is defined
as

n
y f xloss

1
( ( ))

k

K

k ireconsturction
1

2∑= −
= (6)

where K is the total number of pixels, and yk and f(xi) are the
true and predicted values of the kth pixel, respectively.
By repeating the training and validating the model until the

loss function converges, the parameters of the model structure
can be determined and used to reconstruct the 2D field
distribution.

Figure 2. Schematic diagram of residual blocks.

Figure 3. Typical structure of U-Net.
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3. SETTINGS FOR SIMULATIVE STUDIES
In this section, simulation studies have been conducted to
verify the feasibility of SRResUNet for super-resolution
reconstruction problems of limited-data TDLAT, mainly
regarding the preparation of the data set, the design of the
network, and the standard of quality assessments.
3.1. Preparation of Data Set. TDLAT is an LOS

detection method, and the reconstruction quality is based on
the number of laser paths, consisting of detecting angles and
channels.13 In preliminary research, we found that more
detection angles could improve the imaging quality of TDLAT,
as shown in Figure 4. In particular, the resolution of the

reconstructed image was dependent on the number of channels
for each angle. Hence, to realize super-resolution with limited
data, limited angles and channels were considered.
Primarily, 20,000 samples were artificially created: 12,000 for

training, 4000 for validation, and 4000 for testing. Each sample
contained a high-resolution (HR) temperature distribution
THR (128 × 128) and low-resolution absorbance Adata. To
simulate the limited detectors and projection angle detection
in practice, different small quantity projection angles and
channels were simulated, including 8, 16, and 32 angles with

16, 32, and 64 channels. Hence, we obtained A8×16(8 × 16),
A16×32(16 × 32), and A32×64(32 × 64) LR absorbance arrays
based on eq (4).25 To meet the requirements of complex
multimodal flames encountered in practical combustion
environments, the temperature distribution was generated
with one to three randomly distributed Gaussian peaks on top
of a flat plane, simulating the typical combustion temperature
from 1000 to 2500 K, as shown in Figure 5. THR was set as the
label for identification and Adata was set as the input data for
the network.

3.2. Design of the Network. Because the process and
method of reconstructing both distributions were similar,26 we
illustrated how this SRResUNet model was designed for
temperature super-resolution reconstruction based on TDLAT
in this work. With the aim of comparing different
magnification-time super-resolution reconstruction perform-
ances, the amplification of SRResUNet was set as 8, 4, and 2.
The amplification times NA were determined by the number of
symmetric layers Nl, and the relationship is defined as

N 2N
A

1l= −
(7)

Considering NA = 4 as an example, the overall design of the
SRResUNet architecture is shown in Figure 6a. The input size
was 2# (16 × 32) on behalf of the two absorbance arrays with
16 angles and 32 channels for each angle. To meet the
reconstruction of the (128 × 128) distribution, 4-times super-
resolution and Nl = 3 were required. We set up the first layer
with two 32# (3 × 3) convolution kernels at the beginning to
extract shallow features. The convolution kernel numbers of
the second and third layers were 64# (3 × 3) and 128# (3 ×
3), respectively, with a stride size of 1 and maintaining the size
of the feature mapping. The residual and amplification
networks, including the residual blocks and pixel-padding
network, are shown in Figure 6b. The former was used to
extract hidden features, and the latter was used to create more
pixels and map the features. Copy and amplification
connections were set up to fuse the original and abstract
high-level features. The average pooling operations were all
performed with (2 × 2) filters, called downsampling, as shown
in Figure 6c. The overall design of convolution kernels is
referred to as Nk = 32 + 64 + 128. After the U-shaped
symmetric residual network for feature extraction is designed,
the map of the characteristics can be converted into a vector of

Figure 4. Effects of different numbers of detection angles on the
reconstruction quality.

Figure 5. Simulated distribution of temperature. (a) Temperature distribution example with a randomly distributed Gaussian peak; (b)
temperature distribution example with two randomly distributed Gaussian peaks for the simulation studies.
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temperature distribution (16384), which can be easily
reformed as a (128 × 128) temperature distribution as the
expected HR output.
In particular, the SRResUNet structure designed in this work

has the following characteristics:

(a) Easy to transplant and expand: the structure of each
layer was extremely similar and the amplification times,
which meant that we could realize different magnifica-
tions of super-resolution reconstruction by simply
cropping one model.

(b) Dynamic learning rate adjustment: the exponential
decay mode was used to update the learning rate with
a fast convergence.

l n l e g( ) (0) , 10000n g
r r

/= · =−
(8)

where lr(0) and lr(n) are the learning rates in the 0th and nth
epochs, respectively; and g is the global step designed.
A parametric rectified linear Uni (PReLU) was introduced

as the activation function. This method considers both positive
and negative responses and effectively extracts low-level
features, avoiding the loss of low-level features in the
combustion temperature distribution.
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The loss function of this design was defined in eq 6, and the
adaptive moment estimation (Adam) optimization method
was chosen as the optimizer, which was based on the
momentum and RMSProp methods,27 combining the advan-
tages of inertia retention and situational awareness. Compared
with other adaptive learning rate algorithms, the Adam method
has a faster convergence speed and more effective learning
effect, which can correct the problems existing in other
optimization technologies, such as slow convergence of

learning rate disappearance or large fluctuation of loss function
caused by high-variance parameter updates.
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where β1 and β2 are the exponential decay rates, controlling the
current gradient and the square of the gradient, which were set
as β1 = 0.9 and β2 = 0.99, respectively; m̂t and v̂t are the mean
and variance of the time, respectively; and gt is the first
derivative of the objective function of t. The final optimizer can
be defined as

m
vt t 1

t

t
θ θ α

ε
= − ·

̂
̂ +−

(12)

where α is the learning rate, and ε = 10−8 is used to avoid
dividing 0.
A trained deep learning model, such as SRResUNet, can be

considered as a black box. By extracting the features from the
TDLAT detecting data and building a map between the LOS
data and 2D field distribution, we can quickly generate the
reconstruction distribution with satisfactory accuracy.

3.3. Indexes of the Quality Assessment. To quantify
the reconstruction performance of SRResUNet, we defined
three indices to estimate the errors between the reconstruction
distribution and origin distribution, including the peak signal-
to-noise ratio (PSNR) and the reconstruction error of the
temperature distribution or concentration (Err). These indices
are defined as follows

Figure 6. (a) Design of the SRResUNet architecture (magnification time = 4); (b) one of the designs of residual blocks and amplification; and (c)
one of the designs of copy and amplification.
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where m and n are the height and width of the images; I(i,j)
and K(i,j) represent each pixel in the reconstructed and
original images.
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where Δ is the absolute error; L is the true value; and yk* and yk
are the true value and generated value of the kth pixel of the
128 × 128 distribution, respectively.

4. RESULTS AND DISCUSSIONS
The super-resolution reconstruction accuracy of the SRResU-
Net deep learning model is largely dependent on parameters
such as the learning rate lr, design of the convolution kernels K,
number of training samples NS, and number of amplification
times NA. Hence, the major focus of this section is to
investigate how these parameters affect the performance of
SRResUNet and how they should be determined. The
optimized SRResUNet structure was then used for comparison
with the traditional super-resolution imaging method (inter-
polation, sparse representation) and the deep learning super-
resolution method (SRCNN) for the inversion and super-
resolution reconstruction of TDLAT problems.
All algorithms were implemented on the same computer

with an AMD Ryzen 9 5950X CPU, GeForce RTX 3090-24GB
GPU, based on the Windows 10 Professional Edition operating
system, Python37, and Pytorch19 environments.
4.1. Effects of Number of Training Samples. Deep

learning methods such as DCNN and GANs are data-driven
learning models, and it is important to utilize a sufficient
number of samples to extract meaningful features during the
training and learning process. To explore the effects of the
number of training samples on the super-resolution recon-
struction accuracy of the temperature distribution, four
different sizes of training data sets were generated in the

same way, as described above. The parameters were fixed as
follows: lr = 30e−5, K = 32 + 64 + 128, and NA = 4. The effects
of loss and training time are shown in Figure 7. As shown in
Figure 7a, the loss fluctuated relatively and exhibited a lower
speed of convergence when the number of samples was less
than 12,000. However, when the number of samples was more
than 12,000, the final losses were very close. Combined with
the time cost in Figure 7b, there was a linear correlation
between the training time and sample numbers, and it was
unwise to adopt too many samples. Hence, 20,000 (12,000
training samples, 3000 validation samples, and 3000 test
samples) samples were adopted for the training procedure of
SRResUNet.

4.2. Determination of Network Layers and Kernel
Design. The design of network layers and kernels is an
important factor that determines the feature extraction and
model complexity. More kernel channels were used to improve
the performance of feature extraction and increase the accuracy
of model generation, which increased the time cost and
training complexity. Furthermore, deeper layers indicate that
more abstract features can be extracted. Through these further
characteristics, we realized reconstruction with higher
amplification times.
The relationship between the training time and loss value of

the different designs of the layers and kernels is shown in
Figure 8. Layers 2, 3, and 4 with different kernel designs were
simulated to study the convergent behavior of the loss and
time cost of the training, with the aim of determining the
proper construction of layers and convolution kernels,
facilitating a quicker and more effective feature extraction
and training process.
As shown in Figure 8, the red line indicates the balance

between the time cost and optimal average loss. When NA = 4,
Nl = 3 was used, SRResUNet convolution channels designed
with K = 32 + 64 + 128 performed best during the training
process, with a related better loss value and faster convergence
rate, with K = 64 + 128 and K = 16 + 32 + 64 + 128. In
general, SRResUNet with a few kernels was unable to extract
sufficient features from the training data to make a prediction.
However, the increase in the number of kernels not only
increased the time cost of the training process but also had the
risk of overfitting, which was a disaster for model training and
testing. For example, the training time for the case K = 64 +

Figure 7. Determination of the number of training samples. (a) Relationship between training samples and the training loss; (b) time cost of
training samples.
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128 + 256 + 512 had a quite bad result of the loss.
Consequently, considering both the time cost and speed of
convergence, the SRResUNet layers and convolution kernels
designed were Nl = 2, K = 64 + 128; Nl = 3, K = 32 + 64 + 128;
and Nl = 4, K = 16 + 32 + 64 + 128 for the 2-; 4-; and 8-times
super-resolution temperature distribution reconstructions,
respectively.
4.3. Determination of Learning Rate. The learning rate

is a crucial hyperparameter that affects the model training. An
ideal learning rate was expected to have a fast speed of
convergence and low loss, showing an excellent prediction
performance. In contrast, an improper setting would lead to
the failure of the training process because of vanishing or
exploding gradient problems. The determination of the
learning rate was a slightly mathematically rigorous method.
However, according to the evolution of the loss function, a
proper learning rate can be determined, which is the
commonly adopted method in deep learning training.
Keeping the other three parameters the same (NS = 20000,

Nl = 3, K = 32 + 64 + 128), six different types of learning rates
were used to train SRResUNet, and the evolution of the
respective loss functions is shown in Figure 9. Apparently,

when the learning rate was too small (e.g., lr = 20e−5), the loss
function converged slowly and could not get to a minimum in
a long iteration. With the increase in the learning rate, the
convergence was sped up and reconstruction performances
were improved. However, when the learning rate was too large,
the loss function would produce an abnormal spike (e.g., lr =
3e−3) or be unable to converge (e.g., lr = 8e−3), meaning the
failure of the network training. Therefore, for the super-
resolution reconstruction studied here, lr = 28e−5 was
suggested.

4.4. Experimental Verification and Comparison.
Knowing the influence of the number of training samples NS,
the number of network layers Nl, the design of convolution
kernel K, and the learning rate lr on the SRResUNet super-
resolution reconstruction accuracy, an effective and high
accuracy SRResUNet model to reconstruct the temperature
distribution was designed, with Ns = 15000, lr = 28e−5; Nl = 2,
K = 64 + 128; Nl = 3,K = 32 + 64 + 128; Nl = 4,K = 16 + 32 +
64 + 128 for the 2-; 4-; and 8-times super-resolution
reconstructions, respectively. The results based on our
designed SRResUNet model of 2-, 4-, and 8-times super-
resolution reconstructions are shown in Figure 10. Qualita-
tively, the three reconstructed distributions shared a high
degree of similarity with the original distribution, regardless of
the locations or the magnitudes of the peaks. The results
demonstrated that the designed SRResUNet effectively
extracted the temperature distribution models from the
training samples while retaining the smoothness property
perfectly in 2- and 4-times super-resolutions.
We have also used the generated SRResUNet model for the

reconstruction of some different distributions, such as annular
distributions and multimodal distributions, and the results
showed that the reconstruction errors of the 4-times super-
resolution were all less than 5%, meaning that this super-
resolution reconstruction method could be widely adapted to a
variety of distributions. The results showed that the
reconstruction errors increased with the number of super-
resolutions, but were still less than 10% when the 8-times
super-resolution reconstruction was performed eight times. As
shown in Figure 10, when the super-resolution increased, the
reconstruction error was larger. On the other hand, the errors
of the highest temperature peak, which had a dramatic change
and was called the high-frequency information, were larger
than the place of gentle changes. This may be due to the

Figure 8. Effects of the design of layers and kernels on the training
time and loss function.

Figure 9. Evolution of the loss function for the six kinds of learning rates. (a) Too small learning rate and some relatively suitable learning rates; (b)
too high learning rates.
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limited amount of LOS measurement data and the inherent
lack of spatial resolution, which could not extract enough
features to realize excellent reconstruction.
In addition, the detection of the combustion environment is

always affected by noise interference. The antijamming
capability of the model plays an important role in the super-
resolution reconstruction. We added different levels of impulse
noise, from 0 to 30%, to the original data to verify the
antijamming ability. As shown in Figure 11, the 2-times super-
resolution reconstruction had a great antijamming ability and
low fluctuation with reconstruction errors of less than 10%.
The errors of the 4-times reconstruction were less than 10
when the noise level was less than 25%. In contrast, the
antijamming ability and reconstruction errors had compara-
tively high fluctuations.
To verify the super-resolution reconstruction performance of

our SRResUNet in real applications, combustion temperature
field testing was conducted. The temperature data were
obtained by the TDLAT system consisting of a 760 nm DFB
laser diode and a 64-element Si photodiode array (HAMA-
MATSU) and verified by Infrared Camera ImageIR 5300,
whose resolution was 320 × 256.
In this study, the measured combustion field was generated

through an explosive fireball simulator with three flame-
throwers, and the temperature was around about 2200 K, as
shown in Figure 12. The resolution of the obtained
temperature field was 8 × 8, and the 2-, 4-, and 8-times
super-resolutions were 16 × 16, 32 × 32, and 64 × 64,
respectively. To validate the accuracy of the temperature

distribution, the images of ImageIR with 320 × 256 resolution
were resized and pooled into the size of 16 × 16, 32 × 32, and
64 × 64. The super-resolution reconstruction performances of
the traditional super-resolution method interpolation, sparse
representation based on the GA reconstruction method, and
machine learning method SRCNN(FCN)28−30 were compared
with our SRResUNet.

Figure 10. Reconstructed distribution and errors of 2-, 4-, and 8-times super-resolution reconstructions. (a) Original temperature distribution; (b)
2-times reconstruction result; (c) 4-times reconstruction result; and (d) 8-times reconstruction result.

Figure 11. Reconstructed errors of 2-, 4-, and 8-times super-
resolution reconstructions under different noise levels.
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The original reconstruction errors of the traditional method
were significantly larger than those of SR-FCN and our
designed SRResUNet. In other words, the deep learning model
has a better super-resolution reconstruction, suggesting a good
prospect of deep learning for practical applications. As the
super-resolution reconstruction level increased, the reconstruc-
tion performance of SR-FCN dropped sharply, the PSNR was
only 30.02 dB in the 8-times super-resolution reconstruction,
and the reconstruction error was 19.6%. In contrast,
SRResUNet had a higher PSNR score and lower reconstruc-
tion errors, even with an error of the 8-times reconstruction of
less than 10%, as shown in Table 1.

In addition, compared to other algorithms, SRResUNet has
an overwhelming advantage in terms of computational
efficiency. For the same testing cases, SRResUNet completed
each reconstruction in approximately a millisecond class,
whereas GA took approximately hours. The critical advantage
of SRResUNet is that it is a promising technique for real-time
measurements. It should be noted that although the training
process of SRResUNet took approximately 5−7 h, once the
networks were established, it could be used continuously to
process the data.

5. CONCLUSIONS
In conclusion, we developed a novel inversion method for
solving super-resolution reconstruction with limited-data
TDLAT problems using SRResUNet. The simulation studies
performed in this work have shown that the temperature
distribution can be rapidly and efficiently reconstructed using
our optimized SRResUNet structure with a high antijamming

capability, even if the data were limited. Compared with other
algorithms, SRResUNet in this study can achieve higher
accuracy with a low time cost. The successful implementation
also indicates the possible applications of other sophisticated
super-resolution models, such as very deep super-resolution
convolutional networks (VDSR)31 and enhanced super-
resolution generative adversarial networks (ESRGAN),32 to
TDLAT temperature field super-resolution reconstruction.
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