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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a
decline in cognitive function and neuronal damage. Although the precise pathobiology of AD remains
elusive, accumulating evidence suggests that mitochondrial dysfunction is one of the underlying
causes of AD. Mutations in mitochondrial or nuclear DNA that encode mitochondrial components
may cause mitochondrial dysfunction. In particular, the dysfunction of electron transport chain
complexes, along with the interactions of mitochondrial pathological proteins are associated with
mitochondrial dysfunction in AD. Mitochondrial dysfunction causes an imbalance in the production
of reactive oxygen species, leading to oxidative stress (OS) and vice versa. Neuroinflammation
is another potential contributory factor that induces mitochondrial dysfunction. Phytochemicals
or other natural compounds have the potential to scavenge oxygen free radicals and enhance
cellular antioxidant defense systems, thereby protecting against OS-mediated cellular damage.
Phytochemicals can also modulate other cellular processes, including autophagy and mitochondrial
biogenesis. Therefore, pharmacological intervention via neuroprotective phytochemicals can be a
potential strategy to combat mitochondrial dysfunction as well as AD. This review focuses on the
role of phytochemicals in mitigating mitochondrial dysfunction in the pathogenesis of AD.

Keywords: Alzheimer’s disease; mitochondrial dysfunctions; phytochemicals; reactive oxygen
species (ROS); autophagy
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1. Introduction

Several studies have demonstrated that mitochondrial dysfunction leads to several
neurodegenerative diseases, including Alzheimer’s disease (AD) [1–3]. AD shows common
symptoms such as insanity and leads to a morbid state and death in the aged popula-
tion [4]. In both familial and sporadic patterns, AD is characterized by dual unique medical
hallmarks: senile plaques formed via the extracellular accumulation of amyloid-β (Aβ)
peptide and intracellular deposition of neurofibrillary tangles (NFTs) formed via hyper-
phosphorylation of tau proteins [5,6]. These phenomena are accompanied by both pre- and
postsynaptic and neuronal casualty [4,7]; however, the pathogenesis of AD pathogenesis
is still unclear. In addition, multiple reports demonstrate that the alterations in axonal
transport (AT) are the precise culprit for the development of neurodevelopmental diseases
such as AD [8]. AD in mammals involves the atypical decomposition of several abnor-
mal organelles like mitochondria, resulting in the degeneration of senile plaques along
with abnormal neuronal expansion leading to a decline in neurites [9]. Phytochemicals
or plant-derived chemical compounds are currently under research with unestablished
health benefits [10]. Phytochemicals show multiple beneficial effects on mitochondrial
dysfunction [11]; however, enough investigations have not been performed yet examining
their clinical application.

A wide range of studies have demonstrated that numerous bioactive phytochemicals
and other organic compounds may improve the treatment of AD [12]. Phytochemicals,
including polyphenolic compounds that are present in numerous plants exhibit several
essential properties such as anti-inflammatory potential, DNA repair, autophagy, and
antioxidant activities [13]. In the brains of AD patients as well as transgenic AD mouse
models, APP and Aβ are present in mitochondrial membranes, interrupting the mitochon-
drial electron transport system [14]. Potential therapeutic effects of these phytochemicals
include antioxidant and anti-inflammatory activities via modulation of Aβ toxicity. Mito-
chondrial dysfunction discharges excessive quantities of H2O2, which ultimately leads to
irreversible cellular dysfunction and damage in the brain [15]. Aggregated Aβ peptides,
H2O2-induced hydroxyl radical, and mitochondrial dysfunction caused by APP in AD
may restrain in addition to pharmacological approaches using phytochemicals that pre-
serve mitochondrial dynamics [16]. Owing to their therapeutic capabilities, phytobioactive
compounds have been deliberated as favorable beneficial agents for AD and age-related
diseases [17]. Therefore, the current review describes the underlying mechanisms of mito-
chondrial dysfunction in the pathogenesis of AD and discuss how phytochemicals may
mitigate mitochondrial dysfunction.

2. Mitochondrial Dysfunction in AD via ROS Production

Oxidative stress (OS) occurs owing to the imbalance between the generation of reactive
oxygen species (ROS) and cellular antioxidant potential. OS stands for excess quantities of
ROS production that incur damage to nucleic acids and small molecules such as proteins or
lipids. OS can lead to neuronal, specifically causing neurodegenerative diseases and cellular
aging processes [18]. Restrained ROS production has physiological roles, particularly in con-
trolling cellular redox equilibrium and regulating intracellular signal transduction [19,20].
ROS (collectively, H2O2, OH, and O2)·−) may be the causative factor leading to defects
in mitochondrial respiration and the development processes of the human brain that are
accompanied by augmented ROS generation. They also contribute to dynamic changes in
the brain during AD and aging progression (Figure 1).

The primary origins of ROS production in the brain under functional circumstances as
well as in pathological processes (e.g., neurological diseases) are complex I and complex III
of the respiratory chain. Complex I discharge superoxide (O2

·−) into the intermembrane
space such as the matrix, and complex III liberates O2

·− to both sides of the electron
transport chain (ETC) or inner mitochondrial membrane. Hydrogen peroxide (H2O2)
can be generated from O2

·− by an enzyme called superoxide dismutase. Both molecules
can cross the inner membranes and can produce extremely reactive hydroxyl radical
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(·OH). Under physiological conditions, the proton movements and the respiratory state
of mitochondria produce H2O2 and O2

·− from the electron transport chain (ETC) [21].
Complex IV also enhances the generation of ROS, whereas complexes III and V generate a
minimal amount of ROS [22]. Apart from these, defective production and detoxification of
ROS are critically involved in mitochondrial dysfunction [23]. During the aging process, a
high amount of ROS is generated due to defective mitochondria. Likewise, a decline in
antioxidant enzyme activities ensues, leading to increased ROS production [23,24]. Excess
ROS production adversely affects the ETC; complexes I, III, and IV appear to be the most
affected, while complex II remains undisturbed [23,25].
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Figure 1. Mitochondrial dysfunction and oxidative stress in neurons lead to the development
of AD. Typically, ROS are produced via numerous mechanisms such as ER stress, mitochondrial
dysfunction, neuroinflammation, and excitotoxicity. Excessive ROS generation leads to oxi-dative
stress (OS), which is responsible for mitochondrial dysfunction. OS prevents the deg-radation of
protein molecules and impairs the clearance of misfolded proteins, which subse-quently leads to
protein aggregation causing neuronal death and AD.
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3. Mitochondrial Deformity as an Outcome of AD Progression

Accumulating evidence has demonstrated that metabolic alterations play a pivotal
role in AD progression mediated by several pathogenic factors such as ROS, mitochondrial
deformity, and Aβ load [26]. Extensive research has shown that ROS formation mediated
by Aβ and calcium imbalance leads to mitochondrial injuries (Figure 2), which are cate-
gorized as a secondary mitochondrial failure. Hippocampal expression of mutant APP
and Aβ in mouse HT22 cell lines led to impaired mitochondrial dynamics, alterations of
mitochondrial structure, and action in neurons [27]. Amyloid precursor proteins (APP)
can lead to the overexpression of mitochondrial protein import channels in AD sensitive
brain regions, leading to mitochondrial malfunction [28]. Alternatively, several studies
have shown that Aβ precisely disorganizes mitochondrial dynamics and hinders critical
enzymatic functions. Lustbader et al. reported that Aβ-binding alcohol dehydrogenase
(ABAD) directly interacts with Aβ and leads to Aβ-linked apoptosis, mitochondrial toxicity,
and free-radical formation in neuronal cells [29]. Furthermore, voltage-dependent anion-
selective channel 1 protein (VDAC1) is excessively expressed in AD-vulnerable brains,
which combines with phosphorylated tau and Aβ to block mitochondrial intramembranous
pores, accelerating mitochondrial impairment [30]. A distinct number of in vitro analysis
proposed a connection among augmented Aβ levels, mitochondrial abnormal function,
and oxidative burden, collectively leading to AD progression. Nevertheless, the origin of
the impairment of mitochondrial dynamics in AD pathogenesis remains elusive.
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Figure 2. Mitochondrial dysfunction in AD pathogenesis. Aβ and Tau initiate mitochondrial dysfunctions that can result in
the modulation of several factors. ROS is generated, which causes lipid peroxidation and DNA damage to initiate apoptosis.
Damaged mitochondria demonstrate a decrease in mitochondrial membrane potential (∆Ψm) as a result of the activation of
mitochondrial permeability transition pores (mPTPs), which release cytochrome c and apoptosis-inducing factor (AIF), and
consequently, initiate apoptosis pathway. Aβ and pTau improve mitochondrial fission and mitophagy.



Antioxidants 2021, 10, 23 5 of 18

4. Phytochemicals Prevent Mitochondrial Dysfunction and Improve Biogenesis

Several phytochemicals function to neutralize ROS and activate cellular antioxidant
mechanisms. Phytochemicals also enhance mitochondrial biogenesis and protect neu-
rons from toxic damage [31]. Additionally, phytochemicals can stimulate cell survival
pathways by triggering many growths signaling pathways. In this section, we discuss
recently explored phytochemicals that have been shown to protect neurons from mito-
chondrial dysfunction in AD by stimulating numerous signaling pathways. Molecular
targets, experimental model, research outcomes, and molecular signaling systems of these
phytochemicals are summarized in Table 1. Additionally, epidemiological as well as clinical
interventions have been displayed that dietary phytochemicals, for example Mediterranean
diet, exhibit beneficial properties in dementia patients, AD, PD, depressive disorders, and
mild cognitive impairment [32]. Secondary metabolites of phytochemicals from Mediter-
ranean diet contain ω-3 polyunsaturated fatty acids which has been described to maintain
cognitive function in human studies [33].

Anthocyanins control mitochondrial fission/fusion pathways, prevent complex I APP
Swedish K670N/M671L double mutation (APPswe), and promote normal mitochondrial
dynamics [34]. Numerous phenolic compounds exert neuroprotective effects in AD and
other neurodegenerative diseases and. Sulfuretin, a well-known flavonoid glycoside de-
rived from Albizia julibrissin, protects primary hippocampal neuronal cells and SH-SY5Y
neuroblastoma cells from Aβ-mediated neurotoxicity [35]. Dietary (poly)phenols have been
found to cross blood-brain barrier (BBB) in endothelial cells and shown neuroprotective
potential [36]. Polyphenol resveratrol, derived from grapes and black barriers, protects
HT22 and PC12 cells against Aβ toxicity by activating the PI3K/Akt/Nrf2 pathway [37].
In addition, resveratrol prevents cell death and represses ROS production induced by
Aβ toxicity by enhancing PI3K/Akt phosphorylation, the protein levels of SOD, HO-1,
and GSH, and Nrf2 nuclear translocation [38]. Resveratrol also found to cross BBB [39].
Quercetin, a hydroxytyrosol derived from olives, prompts mitochondrial biogenesis and
enhances muscle mtDNA in adult men [40]. Tea polyphenols (TPs) mitigate OS in H2O2-
induced human neuroblastoma SH-SY5Y cells via Keap1-Nrf2 signaling initiation and
decrease in H2O2-mediated cell death, as well as ROS and H2O2 levels to protect against
mitochondrial dysfunction [41]. Liquiritigenin prompts mitochondrial fusion and prevents
mitochondrial cytotoxicity, in addition to the fragmentation induced by Aβ in SK-N-MC
cells [42]. In addition, EGCG and resveratrol increase the levels of Sirt-1 and AMPK along
with mitochondrial biogenesis via PGC-1α, thereby protecting the neuronal cells [43].
Conversely, kaempferol, resveratrol luteolin, wogonin, quercetin, theaflavins, EGCG, cur-
cumin, and baicalein open the mPTP, which activates the apoptosis pathway in cancer
cells via Bcl-2 and Bcl-xL inhibition along with oligomerization of Bax, in addition to
the downregulation of NF-κB signaling pathway [44]. Additionally, curcumin has been
found to cross BBB to enter brain tissue and considerable exhibited neuro-protective as
well as anti-cancer properties [45]. A previous study showed that curcumin protected
against mitochondrial degeneration by mitigating the autophagic pathway via modulation
of the PI3K/Akt/mTOR pathway in the ischemia/reperfusion-induced rat model [46].
Kaempferol passed to penetrate BBB and attenuates neuroinflammation as well as BBB
dysfunction in cerebral ischemia/reperfusion rats in addition to improve neurological
deficits [47]. A ginseng-derived exogenous lysophosphatidic acid receptor ligand, gin-
tonin, improves blood-brain barrier permeability in primary human brain microvascular
endothelial cells (HBMECs) [48].
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Table 1. Different phytochemicals mitigating mitochondrial dysfunctions in AD pathology.

Phytochemicals Experimental Model Pathobiology Research
Outcomes

Molecular
Signaling References

Anthocyanins
APP Swedish
K670N/M671L double
mutation (APPswe)

Mitochondrial
dysfunction and
oxidative stress

Ameliorate
mitochondrial
dysfunction

Increased NADH
levels [34]

Resveratrol Aβ-induced cytotoxicity
in PC12 cells Oxidative stress

Neuroprotection,
Reduction of
memory
impairment

Reduced ROS,
Induced SOD,
PI3K, Akt

[49]

Tea polyphenols SH-SY5Y cells Oxidative stress Neuroprotection Keap1-Nrf2
signaling initiation [41]

Sulfuretin

Aβ neurotoxicity in
primary hippocampal
neurons and
SH-SY5Y cells

Oxidative stress Neuroprotection
Activation of
Nrf2/HO-1 and
PI3K/Akt

[35]

Genistein Transgenic APP/PS1 rat
model of sporadic AD

Impairment of
cognition,
Increased
β-amyloid and
hyperphosphory-
lated tau
protein

Improved learning
and memory
recognition,
Inhibition of
apoptosis and
antioxidant
functions

PPARγ-mediated
increased release
of ApoE,
Autophagy
activation and
reduction in
protein aggregates.

[50,51]

Liquiritigenin Aβ-induced
SK-N-MC cells

Mitochondrial
fragmentation

Inhibited
mitochondrial
fragmentation and
cytotoxicity

Mediated by Mfn1,
Mfn2, and Opa1
signaling

[42]

Kaempferol Porcine embryos Oxidative stress

Prevented
mitochondrial
membrane
potential and ROS
generation.

Induced
autophagy [52]

Curcumin Sprague Dawley
male rats Cerebral Ischemia Neuroprotection

Autophagy and
PI3K/Akt/mTOR
pathway

[46]

Epigallocatechin-3-
gallate
(EGCG)

Rat primary cortical
neuron

Pathological tau
species

Enhanced tau
degradation in an
Nrf2-dependent
manner

Increase
autophagy, tau
clearance

[53]

Quercetin
H2O2-induced
neurotoxicity in
Sprague-Dawley rat

Oxidative stress Neuroprotection Increased Aβ
clearance [54]

4.1. Phytochemical Intervention of Molecular Signaling Pathways Related to Mitochondrial
Dysfunctions in AD

Accumulating evidence has indicated that a large number of phytochemicals are capa-
ble of showing numerous benefits against mitochondrial dysfunction in AD pathogenesis
by modulating molecular signaling pathways. Several polyphenols promote mitochondrial
functions and biogenesis, particularly by regulating ETC activity, redox state modulation,
and apoptosis inhibition. Phenolic acids can scavenge peroxynitrite, superoxide, and
hydroxyl radicals, terminate radical chain reactions, and upregulate several protective
genes that encode extracellular signal-related kinase 1/2 (ERK1/2), heat shock protein 70,
and heme oxygenase-1 (HO-1) [11]. Several in vivo and in vitro studies have revealed that
curcumin can prevent mitochondrial dysfunction in AD by scavenging hydroxyl radicals,
hydrogen peroxide, and peroxynitrite and attenuating lipid peroxidation [55]. Flavonoids
exhibit antioxidant activity and protect neurons via modulation of cellular signaling path-
ways, in addition to the induction of expression of several genes [56]. Flavonoids can also
increase the expression of ROS-eliminating enzymes such as catalase, SOD, and glutathione
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reductase via the activation of the Keap1/Nrf2/ARE-mediated signaling pathway [57].
Polyphenols such as catechin, apigenin, luteolin, kaempferol, curcumin, and quercetin can
inhibit ROS-generating xanthine oxidase (XO), NADPH oxidase (NOX), and MAO [58,59].

Flavonoids exert neuronal effects via several lipid kinase and protein kinase signal-
ing pathways, such as the protein kinase C, MAPK tyrosine kinase, PI3K/Akt signaling
pathways, and NF-κB pathway [60]. The stimulatory or inhibitory properties of these
pathways can significantly modulate gene expression by altering the phosphorylation state
as well as affecting the neuronal properties and function of target molecules. As a result,
this might lead to synaptic protein synthesis, morphological variations, and plasticity in-
volved in neurodegenerative processes in AD. Serine/threonine kinases, known as MAPK
and mitogen-activated kinases, regulate numerous cellular functions via extracellular sig-
nal transduction pathways, generating intracellular downstream signals [61]. Flavonoids
have selectively interacted with MAPK kinases, including ERK, MEK1, and MEK2 signal-
ing, resulting in the activation of downstream cAMP response element-binding protein
(CREB) [62]. These results might lead to alterations in memory function and synaptic
plasticity via the upregulation of neuroprotective pathways in AD.

Blueberry supplementation rich in anthocyanins and flavonols increased memory
performance in rats via CREB activation and promoting pro-BDNF and mature BDNF
levels in the hippocampus [63]. In another study, 12 weeks of blueberry supplementation
activated Akt phosphorylation, mTOR downstream activation, and enhanced activity-
regulated cytoskeletal-associated protein (Arc/Arg3.1) expression in the hippocampus of
aged animals [63]. This might promote morphology and spine density in neuronal cells,
thereby enhancing learning and memory function. In addition, treatment with green tea
catechins ameliorated memory impairments and promoted spatial learning function by
diminishing the oligomers of Aβ (1–42) in senescence-accelerated mice by augmenting
the expression of the PKA/CREB pathway in the hippocampus [64]. Furthermore, EGCG
promoted ERK and PI3K-mediated phosphorylation of CREB as well as stimulated GluR2
levels and modulated synaptogenesis, neurotransmission activity, and plasticity in cortical
neurons [65]. In addition, flavonoids modulate the activity of PI3K via direct interactions
with its ATP binding site [66]. Hesperetin is an activator of the Akt/PKB pathway in cortical
neurons. In contrast, quercetin inhibits the prosurvival Akt/PKB pathways by preventing
the activity of PI3K [67].

Flavonoids prevent certain activities of CDK5/p25 and GSK-3β, which contribute
to the hyperphosphorylation of Tau and accumulation of neurofibrillary tangles in AD
pathogenesis [62]. Indirubins prevent CDK5/p25 and GSK-3β and inhibit abnormal phos-
phorylation of tau in AD pathogenesis [68]. Likewise, GSK-3β activity is inhibited by
flavonoid morin [69]. Morin can prevent GSK-3β-mediated phosphorylation of tau in vitro,
decrease Aβ-induced tau phosphorylation, and protect against Aβ cytotoxicity in human
SH-SY5Y neuroblastoma cells [69]. Furthermore, morin reduces the hyperphosphorylation
of tau in the hippocampal neurons of 3xTg-AD mice [69]. Luteolin reduces soluble Aβ,
interrupted the PS1-APP association, and diminished GSK-3 activity in an AD mouse
model of Tg2576, and rescued cognitive impairments [70].

4.2. Phytochemicals Inhibit AD Specific Protein Aggregation

Neuropathological characteristics of AD involve the accumulation of amyloid-β
plaques, neurofibrillary tangles, and neuronal loss in the limbic neocortical brain re-
gions [71]. Pathobiology of AD encompasses oxidative stress, mitochondrial dysfunction,
neuroinflammation, apoptosis, reduced neurotrophic factors and neurogenesis, loss of
the cholinergic system, autophagy dysfunction, and glutamatergic excitotoxicity [72,73].
Various phytochemicals, anti-inflammatory medications, and antioxidants prevent amy-
loidogenic monomer synthesis, fibrillar aggregates, and oligomeric formation [74]. Phyto-
chemicals also stimulate nontoxic aggregate formation and proteolytic system activation
to ameliorate neuronal mitochondrial dysfunction triggered by Aβ [75]. It is well known
that amyloidogenic Aβ 40–42 is produced via consecutive APP cleavage mediated by



Antioxidants 2021, 10, 23 8 of 18

β-secretase (BACE1) and γ-secretase enzymes [76]. Tannic acid, genistein, ferulic acid,
nobiletin, galangin, sinensetin, and tangeretin inhibit β-secretase activity, in addition
to behavioral enhancement in AD animal models [11]. In addition, resveratrol, EGCG,
icariin, quercetin, luteolin, 7,8-dihydroxyflavine, rutin, and curcumin decrease β-secretase
expression and protect neurons [77]. Furthermore, curcumin, oleuropein, genistein, and
EGCG promote APP cleavage via α-secretase, producing nontoxic N-terminal soluble
APPα product and C-terminal α fragment [78]. Phytochemicals promote α-secretase or
prevent β-secretase activity and inhibit fibril and toxic oligomer production [67]. Curcumin
as well as other polyphenolic compounds have been changed to mature Aβ aggregates,
which make nontoxic molecules as well.

Many phytochemicals inhibit mTOR signaling, thereby inducing the autophagy path-
way [6,79]. Polyphenols inhibit oligomer synthesis and formation, in addition to preventing
tau hyperphosphorylation and aggregation reduction under in vitro and in vivo condi-
tions [80]. Soluble Aβ oligomers along with profibrillar species are produced via the action
of rosmarinic acid, myricetin, and curcumin, which reduce the number of toxic oligomers
and fibrils [81,82]. Aβ aggregation is inhibited by honokiol, myricetin, and luteolin upon
binding to the hydrophobic site of the amyloid pentamer and employed the most promi-
nent Aβ1-42 aggregate inhibition in PC12 cells to protect anti-aggregative properties as well
as neuronal toxicity [83]. Numerous phytochemicals involved in the pathogenesis of AD
are indicated in Figure 3. Another potential benefit of phytochemicals in AD may include
their potential role in tau phosphorylation. Tau oligomers are toxic and cause synaptic
dysfunction in AD. Several findings have revealed that hyperphosphorylation of tau can be
inhibited by treatment with caffeic acid, altenusin, EGCG, curcumin, and resveratrol [84,85].
Moreover, EGCG inhibits the conversion of tau aggregates into toxic oligomers [86]. In
addition, emodin and daunorubicin repress tau aggregation and dissolve paired helical
filaments under in vitro conditions [87]. In another study, epicatechin-5-gallate and myre-
cetin were shown to hinder heparin-mediated tau formation, and EGCG administration
in an AD transgenic mouse model controlled the phosphorylation of sarkosyl-soluble tau
isoform [88,89].
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5. Therapeutic Applications of Phytochemicals in Mitochondrial Dysfunction in AD

Many studies have reported the effective therapeutic potential of antioxidants and
mitochondria-targeting agents such as vitamin C, vitamin E, carnitine, and alpha-lipoic acid
in AD [90]. The coenzyme Q10, piracetam, simvastatin, curcumin, ginkgo biloba, piracetam,
and omega-3 polyunsaturated fatty acids also show effective therapeutic potential [91].
An effective therapeutic strategy can be developed against AD by targeting mitochondrial
proteins. Using these strategies, various types of mitochondria-targeted antioxidants have
been manufactured. The alteration of mitochondrial movement has a negative impact on
mitochondrial function, thereby contributing critically to the pathogenesis of AD [92]. Con-
sequently, approaches to modify defective mitochondrial movement and transportation
may constitute an effective therapeutic strategy for the treatment of AD. Therapeutics that
decrease the activation of the mitochondrial fission proteins such as Drp1, pTau, and Aβ
can rescue the neurons from the toxic effects of those agents and their interconnection. A
diversity of phytochemicals available in numerous plant sources demonstrate various phar-
macological properties, including neuroprotection [93,94], apoptosis induction [95–102],
autophagy activation [79,103–105], antioxidant [106] and anti-inflammatory action [107],
and DNA repair function [13]. Because of these capabilities, phytochemicals are progres-
sively considered as favorable therapeutic candidates for AD therapy [10] (Figure 4).
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Figure 4. Emerging potential therapeutic targets of phytochemicals in mitochondrial dysfunction and AD pathogenesis.
Abnormal APP is proteolyticlly cleaved by β- as well as γ-secretase leading to the accumulation of extracellular amyloid-β
(Aβ). Deficient clearance of Aβ or Aβ production increases aggregation, leading to the accumulation of a diversity of
Aβ assemblies. Accumulation of Aβ directly interrelates with mitochondria as well as ROS generation with different
intracellular pathways. These oxidative stress reactions lead to the impairment of neuronal synapses and dendrite function
with multifactorial mechanisms, in addition to neurological degeneration and dysregulation of synaptic function in the
regions of the brain implicated in learning and memory impairment in AD. Additionally, Aβ aggregates are degraded by
autophagy via the stimulatory action of phytochemicals.
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The therapeutic possibilities of curcumin were considered in various aging-related
pathological disorders, including type 2 diabetes, ocular diseases, cancer, atherosclerosis,
osteoporosis, rheumatoid arthritis, chronic kidney disorders, hypertension, cardiovascular
diseases, and neurodegenerative disorders [108]. The neuroprotective action of curcumin
in AD is well known. Curcumin protects against Aβ-mediated mitochondrial dysfunc-
tion and synaptic toxicity in SH-SY5Y human neuroblastoma cells [109]. However, the
effects of curcumin in placebo-controlled, double-blinded clinical trials with AD patients
were moderately inadequate [110]. Low solubility might be a potential cause. Recently,
several preclinical investigations have claimed the anti-AD potential of quercetin [111].
Treatment with quercetin improved mitochondrial dysfunction by restoring mitochondrial
membrane potential, which led to reduced ROS production, in addition to restoring ATP
synthesis [112]. Furthermore, this treatment significantly enhanced AMPK expression,
decreased scattered senile plaque formation, and inhibited the impairment of learning and
memory [112]. More recently, in triple transgenic AD mice, the long-term oral administra-
tion of quercetin led to reduced tauopathy, astrogliosis, microgliosis, and β-amyloidosis
in the amygdala and hippocampus, which improved cognitive function and performance
of learning and spatial memory function [113,114]. Different phytochemicals and other
chemicals used in mitochondrial-targeted AD treatments in preclinical and clinical studies
are listed in Table 2. ω-3 fatty acid derived from fish consumption prevents coronary artery
disease, stroke, aging, dementia, and AD is addressed in human trails [33]. However, in hu-
man, flavonoids and polyphenols from Mediterranean diets have been shown antioxidant
as well as anti-inflammatory activities in cardiovascular disease, type-2 diabetes mellitus,
cancer prevention, and stroke [33]. Fruits and vegetables which contains polyphenols have
been modulated hyperphosphorylation of tau and Aβ aggregation in animal models of
AD [33].

Genistein, a soy isoflavonoid, has therapeutic implications in many aging-related
mitochondrial dysfunctions in pathological conditions, including neuroinflammation,
oxidative stress, and aggregation of Aβ in AD. This therapeutic effect of genistein was
attributed to its ability to improve function impairments induced by Aβ aggregates in
mitochondrial dysfunctions [115]. However, genistein pretreatment in a primary astrocyte
culture prevented Aβ-mediated production of pro-inflammatory mediators [116]. Recently,
in a streptozotocin-induced rat model, a higher dose of genistein (150 mg/kg/day) was
found to activate autophagy in the sporadic form of AD [51]. Additionally, genistein
treatment resulted in the complete degradation of tau hyperphosphorylation and Aβ
proteins in the brain of mitochondrial dysfunction. Currently, it has been innovated the
designs in nanocomposites with genistein-loaded which has confirmed to develop the oral
delivery system in addition to overcome the toxic effects isoflavonoid [117].

Table 2. Phytochemicals and other chemicals used for mitochondrial-targeted therapies in AD models in preclinical and
clinical studies.

Phytochemical/Drug Candidate AD Model Mitochondrial Effect References

Melatonin HEK293-APPswe AD model
Increase of mitochondrial biogenesis
and mitochondrial membrane potential,
Decrease of APP processing

[118]

Coenzyme Q10

TgP301S mice,
M17 cell line treated with
Aβ1-42 peptide,
HUVEC cell line Aβ25-35
peptide-treated

Decrease of ROS levels,
Reduction of the accumulation of Aβ
peptide, mt∆Ψ protection,
Promotion of ETC

[119,120]

Astaxanthin Mouse hippocampal neurons
treated by Aβ1-42 oligomers

Reduction of mitochondrial
Production of H2O2

[121]

Resveratrol APP/PSEN1 mice Activation of mitophagy,
Reduction of ROS accumulation [122]
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Table 2. Cont.

Phytochemical/Drug Candidate AD Model Mitochondrial Effect References

Pioglitazone APP/PSEN1 mice Reduction of Aβ1-42 level,
Restoration of mitochondrial function [123]

Dimebon Mild-to-moderate AD patients Improvement of cognition and
memory function [124]

Oxaloacetate (OAA) AD cultured cells and mice Activation of mitochondrial biogenesis [125]

2-deoxyglucose Adult rats treated with Aβ
peptides

Increase in mitochondrial biogenesis,
Reduction of mitochondrial stress [126]

Curcumin APP/PSEN1 mice,
APP751SL mice

ROS reduction,
Increase in synaptic function [109]

Epigallocatechin-3-gallate (EGCG) APP/PSEN1 mice Restoration of mitochondria respiratory
rates, Reduction of ROS and Aβ [127]

Catalase MCAT/APP mice Reduction of oxidative damage, Aβ,
BACE1 activity, and APP processing [128]

α-lipoic acid AD patients Increase in cognition function,
Protection against Aβ toxicity [129]

N-Acetyl-cysteine (NAC) A double-blind AD patient Improvement of cognitive and
behavioral functions [130]

Quercetin APP/PSEN1 mice Improvement of ∆Ψ, Prevent
intrinsic apoptosis [54]

G. biloba Older adults and AD patients Prevention of cognition and
memory decline [131]

SkQ1 OXYS rats ROS reduction,
COX increase [132]

SS31 APP mouse model (Tg2576)
Decrease in Aβ production and
dysfunction, Stimulation of
mitochondrial biogenesis and

[133]

Ketones 3xTgAD) Enhancement of mitochondrial
functions and dynamics [134,135]

Rapamycin Aβ treated PC12 cell line Increase in mitophagy [136]

Red ginseng (RG) 5XFAD mice Amelioration of Aβ deposition,
Increase in mitochondrial biogenesis [137]

Thiosemicarbazones AD model of SK-N-MC
neuroepithelioma cells

Inhibition of Aβ deposit formation,
Reduction in ROS levels [138]

Plant polyphenols stimulate mitochondrial biogenesis and diminish mitochondrial
dysfunction in AD [139]. Resveratrol represses the activity of cAMP phosphodiesterases
and augments cAMP via the cAMP/CaMK/AMPA activation pathway [140]. Additionally,
mitochondrial dynamics, biogenesis, and function have been activated by resveratrol via
the activation of AMPK, protein kinase C epsilon (PKCε), along with the improvement in
NAD+ levels [141]. In contrast, EGCG promoted the biogenesis of mitochondrial function
in the AD model with Down’s syndrome through the Sirt1/PGC-1α signaling pathway via
the upregulation of TFAM and Nrf1, in addition to mtDNA content [142]. Several flavones
such as wogonin, quercetin, and baicalein improved the biogenesis of mitochondrial ac-
tivities by enhancing the expression of Sirt1/AMPA/PGC-1α under in vitro and in vivo
conditions [143]. Extra virgin olive oil contains oleuropein, augments mtDNA along with
the expression of PGC-1α, complex II and IV, controlled mitogenesis and mitochondrial
biogenesis in AD, and diminishes oxidative stress [144]. Therefore, pharmacological in-
tervention via polyphenols has been anticipated as a promising therapeutic approach for
mitochondrial dysfunction-associated neurodegenerative disorders.

6. Concluding Remarks and Future Directions

Although the prevalence of AD is increasing tremendously, there is still no specific
therapeutic strategy for curing, slowing the progression, or prevention of AD [145]. Mi-
tochondrial dysfunction plays a crucial role in the pathogenesis of AD. However, the
elusive mechanisms of AD pathobiology further complicate treatment strategies. From this
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perspective, ongoing research is dedicated to underscoring the precise pathomechanism
of AD as well as exploring the possibility of alternative treatment strategies. In light of
the current discussion, pharmacological intervention via natural products, particularly
phytochemicals, is a promising strategy to combat AD-associated pathological factors,
including mitochondrial dysfunction. Phytochemicals and other natural compounds can
prevent mitochondrial dysfunction by regulating several signaling pathways, including
those associated with cellular antioxidant defense, anti-inflammation, autophagy and other
quality control systems, mitochondrial biogenesis, and cell survival. Although several
phytochemicals have shown promise against AD, their clinical application remains elusive.
Since the therapeutic applications of many phytochemicals are limited owing to their
poor pharmacokinetic properties, strategies such as nanoparticle synthesis may potentially
improve their drug-likeness. Moreover, not enough clinical evidence is available compared
to the preclinical data. Therefore, further human trials are necessary to translate the exist-
ing findings into clinical use. Understanding the advanced pathobiology of AD and the
pharmacological mechanism of phytochemical-based therapy may offer an emerging novel
neuroprotective approach for AD in the future.
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