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Currently, industrial production of L-threonine (Thr) is based on direct

fermentation with microorganisms such as Escherichia coli, which has the

characteristics of low cost and high productivity. In order to elucidate the key

metabolic features of the synthesis pathway of Thr in E. coli to provide clues for

metabolic regulation or engineering of the strain, this study was carried out on

an L-threonine over-producing strain, in terms of analyses of metabolic flux,

enzyme control and metabonomics. Since environmental disturbance and

genetic modification are considered to be two important methods of

metabolic analysis, addition of phosphate in the media and comparison of

strains with different genotypes were selected as the two candidates due to

their significant influence in the biosynthesis of Thr. Some important targets

including key nodes, enzymes and biomarkers were identified, which may

provide target sites for rational design through engineering the

Thrproducing strain. Finally, metabolic regulation aimed at one biomarker

identified in this study was set as an example, which confirms that combined

metabolic analyses may guide to improve the production of threonine in E. coli.
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Introduction

L-threonine (Thr) is one of the eight essential amino acids and mainly used in food

fortification, pharmaceuticals, chemical reagents and feed additives (Komatsubara et al.,

1978; Follettie et al., 1988; Leuchtenberger et al., 2005), with the amount used in feed

additives in particular growing rapidly (Zheng et al., 2020). It is often added to the feed of

immature piglets and poultry and is the second limiting amino acid in pig feed and the

third limiting amino acid in poultry feed. The current methods of producing Thr mainly

include hydrolysis of animal proteins and microbial fermentation. Compared with the

former, the microbial fermentation method has the advantages of low cost and low

pollution (Li et al., 2021;). Among the Thr-producing strains, E. coli is the main host,
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which is ascribed to its simple genetic background and

convenience to modify through metabolic engineering

(Debabov et al., 1981; Song et al., 2000). In addition, it is of

short growth cycle, high cell intensity and low requirement for

equipments. Efficient synthesis of Thr does not only depend on a

large increase in the efficiency of a particular rate-limiting

reaction, but requires a balance of multiple metabolic

pathways in the biosynthetic network, such as intensification

of the target metabolite flow, weakening the competitive branch

metabolite flow, improvement of the extracellular transport

efficiency, etc. (Dong et al., 2011; Lee et al., 2009).

Metabolic flux analysis (MFA) is a metabolic network

analysis method via the intracellular reaction stoichiometry

model, which is based on the pseudo-steady state assumption

that the metabolic flux distribution of all metabolites is estimated

in a dynamic equilibrium between the rates of production and

consumption in the metabolic pathway (Lee et al., 2003; Park and

Lee, 2010). This method has been successfully applied to the

metabolic analyses of some amino acids and has resulted in

significant savings in experimental costs. Since metabolite

synthesis in the metabolic pathway is controlled by various

enzyme-catalyzed reactions, it is necessary to investigate the

control effect of these enzymes on carbon flux. Metabolic

control theory believes that the change of metabolic pathway

reaction at each step will cause the change of system parameters,

so there is no stable rate-limiting step for biochemical reaction in

metabolic pathway (Toya et al., 2011; Wang et al., 2014; Zhu

et al., 2021). Flux control coefficient (FCC) and elasticity

coefficient constitute the genetic theory of metabolic control

analysis, which describe the global parameters in the whole

metabolic network, and are also the bridge between enzymatic

activities and metabolic fluxes. Another method for cell

metabolic analysis relies on metabonomic technology, which

detects the change of metabolites through GC/MS or LC/MS

and accurately reflects the metabolic change under different

conditions (Yang et al., 2018; Park et al., 2021).

Metabonomics research now penetrated into many fields, such

as medicine (Schmid et al., 2004; Antoniewicz, 2021), food

(Picone et al., 2011; Antoniewicz, 2021) and microbiology

(Luo et al., 2020).

In this study, phosphate was observed as a significant factor

affecting the biosynthesis of Thr (Liu et al., 2020), thus was

selected as an environment disturber to elucidate the biosynthesis

pathway by metabolic flux analysis. The effect of phosphate on

the metabolic flux distribution of Thr biosynthesis was

investigated under fed-batch mode. On the other hand, the

enzyme activities involved in Thr synthesis were measured

and the metabolic control coefficients on fluxes were

calculated by multivariate statistical analysis, which may

provide a theoretical basis for the modification and metabolic

regulation of key enzymes. Furthermore, the influence of genetic

modification on the synthesis pathway of Thr through

metabonomic analysis was investigated. The differential

metabolites and metabolic pathways were observed in two

strains with different genotypes and some biomarkers were

obtained through multivariate statistical methods. Then

metabolic regulation on a target obtained from the above

metabolic pathway analyses was set as an example to improve

the production of Thr.

Materials and methods

Strains, reagents and instruments

Thr over-producing srain E. coli TWF001 was used for the

metabolic analyses for the biosynthesis pathway of Thr and

W3110 was used as a control (Zhao et al., 2018). Methanol

and acetonitrile with chromatographic grade were used as mobile

phase in the determination by high performance liquid

chromatography (HPLC). Pre-column derivatizer

o-phthalaldehyde, sodium hydroxide, ammonia and 10%

trichloroacetic acid were purchased from local market.

Biosensor SBA-40C (Shandong Academy of Sciences, China)

and Agilent HPLC were used for determination of glucose and

other metabolites, respectively.

Culture media

Basic seed medium contained 10 g L−1 peptone, 5 g L−1 yeast

extract and 10 g L−1 sodium chloride, which was adjusted to

pH 7.0 and sterilised at 115°C for 30 min. Initial fermentation

media (Zhao et al., 2020) contained 20 g L−1 glucose, 6.4 g L−1

beet molasses, 3 g L−1 maize pulp, 0.7 g L−1 betaine HCl, 0.4 g L−1

MgSO4, 0.9 g L−1KCl, 0.011 g L−1 MnSO4·H2O, 0.011 g L−1

FeSO4·7H2O and 0.9 g L−1 H3PO4 at pH 7.0.

Seed culture and L-threonine
fermentation

The conserved strains from the tube were picked out,

streaked onto the prepared activation medium slant, and

incubated at 37°C for 8–10 h a 250 ml flask supplemented

with 50 ml of seed medium, which was incubated at 37 °C for

14 h in a shaker with 200 r·min−1. For batch fermentation, 250 ml

shake flasks supplemented with 50 ml of fermentation medium

were inoculated with seed culture at 1% pitching rate and

incubated at 37°C for 48 h in a shaker with 200 r min−1.

Fed-batch fermentation of Thr was conducted at 37°C in a 5 L

fermentor by continuous feeding 500 g L−1 glucose to maintain

its concentration between 5 and 20 g L−1. Dissolved oxygen was

adjusted by ventilation rate and agitation speed at around 30% of

the solubility saturation and pH was maintained at between

6.8 and 7.2 with 25% ammonia (Wang et al., 2014).
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Metabolic flow analysis

According to the literatures (Park and Lee, 2010; Su et al.,

2018), Embden-Meyerhof-Parnas (EMP), tricarboxylic acid

(TCA), hexose monophosphate pathway (HMP), anaplerotic

route and phosphotransferase system (PTS) are present in

E. coli. HMP pathway is important for amino acid synthesis

since large amounts of reducing substances NADH/NADPH are

produced to maintain cytoplasmic redox equilibrium. In

addition, the glyoxalate cycle does not occur in E. coli when

glucose is used as the substrate, indicating that the TCA cycle is

still the main oxidative pathway in E. coli. Therefore, pathways of

EMP, HMP and TCA were set as the main network pathways

when constructing the Thr metabolic network.

According to Thr synthesis pathway in the KEGG database,

some references (Schmid et al., 2004; OlafKrömera et al., 2006)

and the metabolites detected in strains TWF001, the metabolic

network was established based on the following principles, 1)

Cells in the period of pseudo-steady state are of non-growth and

the biomass changes can be ignored; 2) the total amount of

NADPH consumed in the reaction pathway is equal to the total

amount of NADPH produced by the TCA cycle and the HMP

FIGURE 1
Metabolic network of Thr synthesis. 1) Glc: Glucose; 2) Glc6P: Glucose-6-phosphate; 3) PEP: Phosphoenolpyruvate; 4) Pyr: Pyruvate; 5) Fru6P:
Fructose- 6-phosphate; 6) GAP: Glyceradehyde-3-phosphate; 7) P3G: 3-phosphoglycerate; 8) AcCoA: AcetylcoenzymeA; 9) Ribu5P: Ribulose-5-
phosphate; (10) Xyl5P: Xylulose-5-phosphate; 11) Rib5P: Ribose-5-phosphate; 12) Sed7P: Sedoheptulose-7-phosphate; 13) E4P: Erythrose-4-
phosphate; 14) OAA: Qxaloacetate; 15) α-KG: α-ketoglutarate; 16) NADPH: Nicotinamide adenine dinu-cleotide phosphate; 17) Glu: Glutamate;
18) αKiv: α-ketoisovalerate; 19) Asp: Aspartate; (20) Hom: Homoserine; 21) DAHP: 3-deoxy-d-arabi-noheptulosonate-7-phosphate.
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pathway, i.e. the balance of NADPH supply and demand; 3) the

glyoxalate cycle does not exist during cell metabolism; 4)

reactions that proceed in a fixed ratio and intermediate

reactions without branching points are simplified to a reaction

equation; 5) during the stagnation phase of cell growth, the total

cellular maintenance energy is not equal to the ATP

consumption due to the presence of a large number of invalid

cycles, so the balance of total ATP is not considered; the network

of Thr biosynthesis metabolism is shown in Figure 1.

According to the assumption that the intermediate

metabolites is in the pseudo-steady state, the change rate of

intracellular metabolites is 0. The accumulation rate of

metabolites is calculated according to the following equation,

ri(t) � ∑
M

i�1
zijrj(t) − ∑

i�N

i�1
zikrk(t)

In this rate equation, ri(t) is the rate of accumulation of

intermediate metabolite i (mmol·(Lh)−1); rj(t) is the reaction rate

of the reaction step j for the synthesis of i (mmol·(Lh)−1]; rk(t) is
the reaction rate of the reaction step k for the synthesis of i

(mmol·(Lh)−1); zij is the stoichiometry coefficient of the reaction

step j; zik is the stoichiometry coefficient of the reaction step k.

The rate equations at the metabolite nodes in the metabolic

network were shown in Supplementary Table S2. The set of rate

equations constructed consists of 21 equations with 26 unknowns

and a degree of freedom of 5. The contents of glucose, Thr,

L-tyrosine (Tyr), L-valine (Val) and L-methionine (Met) were

measured, which were used as known parameters and substituted

into the above set of metabolic rate equations to obtain the

metabolic flow distribution using lingo software.

Determination of enzyme activities

When the cell growth entered stationary phase (under pseudo-

steady state), samples were collected and centrifuged at 10,000 rpm

for 5 min in a refrigerated centrifuge at 4°C. 0.5 g wet weight of the

cells was washed by 10 ml of sterile 0.01 M PBS phosphate buffer

for twice. Then 10 ml enzyme extraction solution were added for

sonication and fragmentation treatment was under the following

conditions, sonication power (PW) of 80%, working time of 2 s,

intervals of 1 s, repeated 30 times. The samples were then

centrifuged at 4°C for 5 min at 8,000 rpm to remove the

precipitates and the enzyme solution was kept at a low

temperature before determination of enzyme activities. The

activities of pyruvate kinase (PK), malate dehydrogenase

(MDH), fructose 1,6-diphosphate aldolase (FBA), glucose-6-

phosphate dehydrogenase (G6PD), phosphoenolpyruvate

carboxylase (PEPC) and hexokinase (HK) were determined by

kits purchased from Solarbio Biotechnology Ltd. Protein

concentrations were measured using the Coomassie Brilliant

Blue G250 staining method at 595 nm and protein content was

detected according to the increase in peak absorption.

Principal component analysis

For correlation analysis of the activities of different enzymes in

the Thr synthesis pathway, the complex, multidimensional nature

of the data requires the use of a multivariate data analysis method,

i.e., principal component analysis (Antoniewicz, 2021), when the

correlation between variables is significant. The six enzyme activities

in the Thr synthesis pathway were measured under fed-batch mode

and submitted to principal component analysis, which were set as

initial indicators and noted as in order, X1 to X6. The screening

conditions for principal component analysis were set as follows,

the eigenvalues λ > 1, the principal components cumulatively

reflecting more than 85% of the original information. Using

SPSS25.0 software, the equation Fj = a1jX1+a2jX2......+a10jX10 (j =

1, 2, 3......10) was obtained, where the coefficients of the expression

of the principal component reflect the combined influence of each

enzyme on the principal (Vo et al., 2018). This analysis excludes the

effect of enzyme synergy on Thr flux, as the principal component

eliminates the correlation of the initial indicators.

Metabolism quenching and metabolites
pre-treatment

Samples were collected and centrifugated at 4°C, 10,000 rpm for

5 min to remove the precipitates, and the supernatant was mixed

with cold methanol with a volume ratio of 1:3. The mixes were

shaked and precipitates occurred during this process were removed

by centrifugation at 4°C, 10,000 rpm for 5 min. All samples were

kept in an ice box throughout the operation and this process was

repeated twice.

The extracted metabolites were quantified using an internal

standard method (Luo et al., 2020) and the detailed operation steps

are as follows. 500 µL of the extract were added with 30 µL of the

internal standard reagent ribitol (1 mgmL−1), and the mixes were

shakenwell and blowndry in a nitrogen blower. Thenderivatization of

metabolites was conducted by reactions of oximation and silylation.

For the former, the samples were mixed with 350 µL of pyridinium

methoxide hydrochloride solution (20mgmL−1) for 2 h at 30°C.

Afterwards, 350 µL of BSTFA-TMCS (99:1, V/V) solution were

added into the solution and the reaction was carried out at 70°C

for 1 h. Then samples were blown dry with a nitrogen blower, and

1ml of hexane/dichloroacetic acid was added to re-dissolve them. The

samples were treated with a 0.22 µm filter membrane and detected on

a gas chromatograph-mass spectrometer (GC-MS) machine (Jonsson

et al., 2004; Koek et al., 2010).

Gas chromatograph-mass spectrometer
condition

Metabolomic detection was conducted on Thermo GC-MS

(TSQ8000; Thermo Scientific, United States) with a column (TG-
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5, 30*0.25 mm*0.25 µm), using a helium carrier gas at a flow rate of

1.2 ml min−1 and operating at splitting ratio of 5.0. Electron energy

and emission current were set to 70 eV and 25 μA, respectively. GC

oven temperature was raised to 65°C, maintained for 2 min and

then increased to 280°C at a constant speed in 13 min. Interface,

transmission line and ion-source were kept at 300°C, 280°C and

300°C, respectively. The mass spectral scan range was set at

35–650 mz.

Data analyses

The metabolites were qualitatively analyzed by searching the

spectrum in the GC-MS database or comparison with standards,

and the relative contents of metabolites were determined according

to the peak area of the internal standard ribitol in the solution.

The data obtained were collated into csv format and imported

into SIMCA-P software for principal component analysis and

discriminant analysis. Cluster analysis made by Origin software

was used to resolve intra- and inter-group relationship.

Metabolite determination by high
performance liquid chromatography and
biosensor

Samples were centrifuged at 10,000 rpm for 2 min to remove

the precipitates and then treated with 10% trichloroacetic acid at

equal volume for 4–8 h to remove proteins from the samples.

The determination of Thr and other amino acids was carried

out by HPLC with a C18 column (5 μm, 250 mm × 4.6 mm) (Luo

et al., 2021). The mobile phase was divided into two parts, A and B.

The mobile phase A contained 10 mmoL·L−1 disodium hydrogen

phosphate and sodium tetraborate, and the mobile phase B

consisted of methanol: acetonitrile: water = 45:45:10 (v/v/v). The

gradient elution program was (volume ratio of mobile phase B) 5%

for 0–0.35 min, 5%–57% for 0.35–13.40 min, 57%–100% for

13.40–13.50 min, 100% for 13.50–15.70 min, 100–5% for

15.70–15.80 min and 5% for 15.80–18 min at 40°C with a flow

rate of 1 ml min−1 and a detection wavelength of 338 nm.

Glucose concentration was determined using a biosensor (Su

et al., 2018).

Results and discussion

Effect of phosphate concentration on
L-threonine synthesis in fed-batch culture
mode

From the results of the PB experiments in shake flask,

phosphate is the most significant factor affecting Thr synthesis

(Supplementary Table S3). In order to more truly show the

effect of phosphate on Thr synthesis, effect of addition of

phosphate on Thr accumulation in 5 L fermentor was

investigated.

As can be seen from Figure 2A, when 4.8 g L−1 phosphate

was added, the maximum biomass (OD600) and Thr

production were 56 and 42.3 g L−1, respectively. With the

increment of phosphate amounts up to 24.8 g L−1, the

biomass (OD600) was improved to 76, while the change of

Thr did not keep increasing (Figure 2E). The optimal

concentration range of phosphate for the maximum Thr

production is 9.8–14.8 g L−1 (Figures 2A–E), which

indicates that the increased phosphate concentration may

cause the migrating of C metabolic flow to the growth of

biomass rather than the increase of target products.

Phosphorus element is one of the core elements in

microbial growth and metabolism (Anandan et al., 2014),

which is involved in the composition of nucleic acids, cell

membranes and high-energy phosphate compounds in life

activities, and is also an important player in central metabolic

pathways (Lai et al., 2012). The present study confirms that

the addition of phosphate promotes the growth of cell and

affects the accumulation of Thr. However, the details of

phosphorus affecting metabolic flux are not very clear,

which should be solved by determination of the metabolic

flow distrubution.

Calculation of the metabolic flow at
different phosphate concentration

Cells were cultured under fed-batch mode with different

initial phosphate concentration and samples were collected at

the pseudo-steady state period. Contents of glucose, Thr,

L-Val, L-Tyr and L-Met were measured and the rates of

metabolite consumption and accumulation were calculated

as shown in Supplementary Table S4. Lingo software was used

to estimate the metabolic flow distribution in the metabolic

network and linear programming was performed in Excel to

obtain the ideal metabolic flow distribution for Thr

biosynthesis (Table 1). It can be calculated that the

conversion rates of glucose to Thr are 45.4% under

9.8 g L−1 phosphate and 27.9% under 24.8 g L−1 phosphate,

which are much lower than that value (73.3%) under ideal

condition. With the increase of phosphate concentration, the

flow rate on the branch of Thr synthesis decreases, causing the

increase of by-products.

Metabolic flow analysis of key nodes in
L-threonine synthesis pathway

At Glc6P nodes, when phosphate concentration changed

from 9.8 g L−1–24.8 g L−1, the r8 flow [C/mmol·(L h)−1] to the
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HMP pathway decreased from 24.6 to 15, while the r2 flow [C/

mmol·(L h)−1] increased from 75.4 to 85 (Figure 3A).

Considering the ideal metabolic flow (r2 = 0), it is inferred

that enhancement of the HMP pathway metabolic flow can lead

to an increase in the target metabolic flow (r26), which causes the

conversion rate of glucose to Thr increased from 28% to 45%. At

FIGURE 2
Profile of Thr production under different initial phosphate concentration. (A) (4.8 g L−1), (B) (9.8 g L−1), (C) (14.8 g L−1), (D) (19.8 g L−1), (E) (24.8 g L−1).
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TABLE 1 Metabolic flow distribution of Thr biosynthesis network.

Reaction no. Metabolic flux
distribution calculated
[mmol·(L h)−1]

Theoretical metabolic
flux distribution
[mmol·(L h)−1]

Reaction no. Metabolic flux
distribution calculated
[mmol·(L h)−1]

Theoretical metabolic
flux distribution
[mmol·(L h)−1]

9.80 g L−1 24.80 g L−1 9.80 g L−1 24.80 g L−1

r1 100.00 100.00 100.00 r14 1.08 7.083 0

r2 75.40 84.79 0 r15 1.08 7.083 0

r3 91.44 92.57 66.67 r16 0.16 9.72 0

r4 181.80 178.06 166.67 r17 0.16 9.72 0

r5 181.80 178.06 166.67 r18 46.05 44.17 73.33

r6 134.67 126.81 93.33 r19 134.52 117.08 93.33

r7 134.52 117.08 93.33 r20 134.36 107.36 93.33

r8 24.60 15.208 100 r21 134.36 107.36 93.33

r9 16.04 7.78 66.67 r22 46.05 44.17 73.33

r10 8.56 7.43 33.33 r23 45.89 34.44 73.33

r11 8.56 7.43 33.33 r24 45.89 34.44 73.33

r12 7.48 0.35 33.33 r25 0.54 6.53 0

r13 8.56 7.43 33.33 r26 45.35 27.92 73.33

FIGURE 3
Metabolic flux distribution at Glc6P node (A), PEP node (B) and α-KG node (C) under different conditions; (A) 9.8 g L−1 phosphate, (B)
24.8 g L−1 phosphate, (C) ideal condition. Enzyme control analysis for metabolic flux in Thr biosynthesis network.
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PEP node (Figure 3B), 74.1% and 71% of the carbon flux (100%

PEP) went to Pyr in the presence of phosphate at 9.8 g L−1 and

24.8 g L−1, respectively. However, metabolic flow distribution

under the ideal condition is 44% of the carbon flux going into

OAA and 56% going to the Pyr, indicating that reduction of the

flux to the TCA may help improve the synthesis of Thr. An

increase in the metabolic flow of aromatic amino acid synthesis

through overexpression of phosphoenolpyruvate synthase has

been reported (FARMER and LIAO, 1997), thereby indirectly

increasing Thr production and reducing by-product production.

From Figure 3C, it can be seen that 25.5% and 5% of α-KG are

catalyzed by L-glutamate dehydrogenase and L-glutamate

synthase to form L-glutamate in the presence of phosphate at

9.8 g L−1 and 24.8 g L−1, respectively. The remaining 74.5% and

95% of α-KG enters the TCA cycle under the above conditions,

respectively. However, 56% metabolic flow enters the TCA cycle

(r20) and 44% is used for the synthesis of L-glutamate (r22) under

the ideal condition. Thus, L-glutamate is a key intermediate to

provide sufficient substrate for the transamination required for

the synthesis of the aspartate group of amino acids, the precursor

of Thr.

Firstly, correlation analysis was performed for the six enzyme

in Thr biosynthesis network and correlation coefficients were

calculated for them (Table 2). The correlation coefficient between

PK and PEPC is 0.915, which shows statistically significant.

To avoid the overlap of information between these enzymes,

their activities of six enzymes selected in Thr metabolic network

were subjected to principal component analysis (Table 3). The

cumulative contribution of the first three principal components

reached 95.9%, thus they are able to represent the information of

all the initial indicators.

To illustrate the range of the respective original variables

represented by each principal component, an analysis was

performed using the principal component matrix, as shown in

Table 4. PEPC, PK and G6PD show higher indices on the first

principal component, indicating that information on these

enzymes in the first principal component may act as

descriptive indicators of Thr flux; Fructose-1,6-bisphosphate

aldolase and MDH show higher indices on the second

principal component, indicating that information on these

enzymes in the second principal component may act as

descriptive indicators of Thr flux. The higher indices shown

for HK on the third principal component indicate that the

information of this enzyme on the third principal component

is able to serve as a descriptive indicator of Thr flux. These three

linearly unrelated principal components mainly cover the full

range of information and are able to replace the initial six

variables.

Each score in the score coefficient matrix only represents the

correlation coefficient between the principal component and the

corresponding variable, which cannot represent the control effect

of each enzyme on Thr flux. Under these circumstances, the

coefficient matrix corresponding to each indicator in the

principal component can be obtained by dividing the data in

Table 5 by the corresponding eigenvalue of the principal

component and opening the square root. Then the proportion

TABLE 2 Correlation analyses between variable enzymes.

Enzyme PEPC HK FBA MDH PK G6PD

PEPC Pearson correlation coefficient 1 −0.706 −0.066 −0.421 0.915a 0.776

Sig. (2-tailed) 0.117 0.901 0.405 0.010 0.070

Number 6 6 6 6 6 6

HK Pearson correlation coefficient −0.706 1 0.008 0.602 −0.673 −0.390

Sig. (2-tailed) 0.117 0.989 0.206 0.143 0.445

Number 6 6 6 6 6 6

FBA Pearson correlation coefficient −0.066 0.008 1 0.669 −0.133 −0.077

Sig. (2-tailed) 0.901 0.989 0.146 0.801 0.885

Number 6 6 6 6 6 6

MDH Pearson correlation coefficient −0.421 0.602 0.669 1 −0.370 0.019

Sig. (2-tailed) 0.405 0.206 0.146 0.470 0.972

Number 6 6 6 6 6 6

PK Pearson correlation coefficient 0.915a −0.673 −0.133 −0.370 1 0.804

Sig. (2-tailed) 0.010 0.143 0.801 0.470 0.054

Number 6 6 6 6 6 6

G6PD Pearson correlation coefficient 0.776 −0.390 −0.077 0.019 0.804 1

Sig. (2-tailed) 0.070 0.445 0.885 0.972 0.054

Number 6 6 6 6 6 6

aDenotes significance at 0.05 level (two-tailed).
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of the eigenvalue corresponding to each principal component to

the sum of the total eigenvalues of the extracted principal

components was used as the weight to calculate the

comprehensive expression coefficient of each principal

component, which integrates the control effect of each

enzyme on Thr flux. Their values were normalized and

recorded as the control coefficient (CCP), as shown in

Table 6. G6PD played the most dominant role in controlling

Thr flux, while fructose-1,6-bisphosphate aldolase negatively

regulated Thr flux. In conclusion, the control coefficients

constructed based on quantitative genetic methods reflects the

metabolic regulation of Thr flux by the six enzymes.

Metabolomic analysis of L-threonine
synthesis pathway

Differential metabolite analysis
With the detection of GC-MS, the metabolites were

determined by qualitative and quantitative analyses (Table 7).

Organic acids, amino acids, sugars and alcohols represent the

main part of metabolites on the aspect of contents. An

unreplicated two-way ANOVA was performed to determine

whether significant differences exist between strains

TWF001 andW3110 in terms of the contents of each metabolite.

Principal component analysis was carried out for the

experimental strain (sample T) and the control strain (sample

W) and Figure 4A shows that the differences between the two

groups of metabolites are significantly obvious. The principal

component interpretation rate R2(X) = 0.868 > 0.5 indicates a

good model fit, and Q2 = 0.5651, which is less different from

R2(X), indicating the stability of the fitted equations. PCA is an

unsupervised analysis method that cannot ignore the errors of

each group and eliminate random errors, so it is necessary to

adopt a supervised approach to identify differences between

groups. Orthogonal partial least squares discriminant analysis

(OPLS-DA) is a supervised analysis method that combines

partial least squares and discriminant analysis. OPLS-DA

classifies the sample variable matrix X as both correlated and

uncorrelated with Y, and removes the irrelevant variation

variables, which enables a comprehensive analysis of between-

and within-group variance. From Figure 4B, here R2(X) and

R2(Y) describe the explanatory rate of the model, and Q2 =

0.899 represents the predictive power of the model. These three

indicators are close to 1, indicating a good reliability of this model

(Li et al., 2021). The samples in the Figure 4B are all within the

95% confidence interval and the two class of samples are

significantly differentiated with the dispersion in the T sample

being greater than the dispersion in the W sample.

TABLE 3 Principal ingredient extraction.

Ingredients Initial eigenvalue Extraction of sum of squares of loads

Total Percentage variance Cumulative % Total Percentage variance Cumulative %

1 3.408 56.799 56.799 3.408 56.799 56.799

2 1.549 25.824 82.623 1.549 25.824 82.623

3 0.797 13.283 95.906 1.549 13.283 95.906

4 0.159 2.653 98.559 0.159 2.653 98.559

5 0.086 1.441 100.000 0.086 1.441 100.000

6 −5.053E-16 −8.421E-15 100.000 −5.053E-16 −8.421E-15 100.000

TABLE 4 Matrix of principal components.

Enzyme Ingredients

1 2 3

PEPC 0.946 0.198 −0.007

HK −0.808 0.051 0.533

FBA −0.266 0.815 −0.507

MDH −0.580 0.778 0.218

PK 0.941 0.198 0.099

G6PD 0.754 0.446 0.445

TABLE 5 Matrix of principal component scoring coefficient.

Enzyme Ingredients

1 2 3

PEPC 0.278 0.128 −0.008

HK −0.237 0.033 0.669

FBA −0.078 0.526 −0.636

MDH −0.170 0.502 0.273

PK 0.276 0.128 0.125

G6PD 0.221 0.288 0.558
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TABLE 6 Comprehensive express coefficient matrix and control coefficients based on principal component analysis.

Enzyme Principal component expression coefficient
matrix

Principal component control
expression coefficients

CCP

A1 A2 A3

PEPC 0.151 0.103 −0.009 0.116 0.058

HK −0.128 0.265 0.749 0.1 0.05

FBA −0.0423 0.422 −0.712 −0.01045 −0.005

MDH −0.0921 0.403 0.306 0.096 0.048

PK 0.15 0.103 0.140 0.136 0.068

G6DH 0.12 0.231 0.625 0.22 0.11

TABLE 7 Metabolite distribution in experimental and control strains.

Retention time 12 h 24 h 36 h

(min) metabolites W3110 TWF001 W3110 TWF001 W3110 TWF001

7.79 Carbamic acid 0.0423 ± 0.016 0.0843 ± 0.015 0.0668 ± 0.017 0.0468 ± 0.005a 0.0667 ± 0.027 0.0542 ± 0.005b

8.02 Lactic acid 0.3162 ± 0.027 1.8662 ± 0.26b 5.3 ± 0.47 4.1 ± 0.66 4.4571 ± 0.33 2.1569 ± 0.47

8.31 Glycolic acid 0.0061 ± 0.00029 0.0114 ± 0.00304b 0.0534 ± 0.007 0.0357 ± 0.006 0.061 ± 0.0037 0.0474 ± 0.01a

8.49 Valine 0.0454 ± 0.01764 0.0468 ± 0.024 0.0218 ± 0.015 0.0826 ± 0.031 0.0372 ± 0.1302 0.0329 ± 0.011

8.96 Alanine 0.0477 ± 0.01 0.0527 ± 0.01 0.1164 ± 0.033 0.0203 ± 0.012 0.124 ± 0.03 0.03449 ± 0.005b

9.75 Acetic acid 0.0876 ± 0.008 0.1356 ± 0.02 0.0628 ± 0.011 0.1007 ± 0.016 0.0752 ± 0.0025 0.0794 ± 0.017

10.49 Pentanoic acid 0.004 ± 0.0006 0.0688 ± 0.014a 0.0189 ± 0.0027 0.081 ± 0.011b 0.0144 ± 0.0028 0.0340 ± 0.006

10.65 Leucine 0.0164 ± 0.015 0.0148 ± 0.022 0.012 ± 0.002 0.0095 ± 0.007 0.0127 ± 0.0022 0.0945 ± 0.016b

11.42 Ciniic acid 0.0047 ± 0.00056 0.0344 ± 0.00714a 0.0073 ± 0.0018 0.0804 ± 0.0272a - 0.0477 ± 0.006

13.75 Thr 0.1033 ± 0.038 5.73 ± 1.16a 0.1058 ± 0.046 14.64 ± 1.03a 0.0557 ± 0.05 12.1 ± 1.48b

13.98 Succinic acid 0.0238 ± 0.00247 0.8841 ± 0.07b 0.9643 ± 0.098 1.4598 ± 0.128 0.9193 ± 0.035 0.7538 ± 0.1129a

14.49 Glycolic acid 0.0188 ± 0.00654 0.1003 ± 0.00472 0.2145 ± 0.036 0.2412 ± 0.02a 0.2056 ± 0.03 0.1332 ± 0.02

14.93 Homoserine - 0.0913 ± 0.005 - 0.2784 ± 0.05 - 0.2620 ± 0.065

15.40 Malic acid 0.5801 ± 0.05 0.0067 ± 0.001a 0.0362 ± 0.0078 0.2784 ± 0.05 0.0528 ± 0.0025a 0.0399 ± 0.014

17.52 Citric acid 0.0136 ± 0.0037 0.0248 ± 0.002 0.1563 ± 0.01 0.0383 ± 0.007 0.1640 ± 0.01 0.0322 ± 0.006a

18.20 L-Glutamic acid 0.0475 ± 0.0056 0.0129 ± 0.00412 0.8073 ± 0.103 0.0512 ± 0.007b 1.5650 ± 0.52 0.0753 ± 0.016a

18.44 Sucralose alcohol 0.0067 ± 0.00028 0.0243 ± 0.037a - 0.0168 ± 0.003 - 0.0234 ± 0.002

21.57 Arabinose 0.1378 ± 0.201 0.0556 ± 0.043 0.1337 ± 0.14 0.0717 ± 0.068 0.1197 ± 0.03a 0.0437 ± 0.004b

24.48 Tartar 0.0281 ± 0.0035 0.0052 ± 0.001 0.0472 ± 0.011 0.0237 ± 0.002b 0.0418 ± 0.0042 0.0315 ± 0.011

27.60 Palmitic acid 0.4538 ± 0.15 0.3034 ± 0.09 0.4939 ± 0.127 0.1728 ± 0.08 0.4113 ± 0.188 0.3219 ± 0.114

27.79 Aspartic acid 0.1493 ± 0.02 0.0029 ± 0.00026a 0.1425 ± 0.12 0.0152 ± 0.005b 0.2632 ± 0.05 0.0201 ± 0.0022b

28.82 Inositol 0.0152 ± 0.00072 0.0088 ± 0.0005 0.0347 ± 0.007 0.0173 ± 0.006 0.0237 ± 0.003 0.0177 ± 0.0032

30.56 Stearic acid 0.2889 ± 0.12 0.1933 ± 0.06 0.2829 ± 0.15 0.1345 ± 0.039b 0.2882 ± 0.143 0.2281 ± 0.03a

32.80 Mannitol 0.0124 ± 0.0008 0.56 ± 0.11b 0.045 ± 0.007 0.148 ± 0.013 0.3133 ± 0.017 0.3995 ± 0.026

35.37 Monopalmitin 0.2102 ± 0.039 0.2334 ± 0.063 0.2153 ± 0.11 0.1428 ± 0.07 0.3178 ± 0.1 0.1639 ± 0.1062

37.72 Glyceryl monostearate 0.1450 ± 0.018 0.1636 ± 0.022 0.1193 ± 0.03 0.1281 ± 0.03 0.5383 ± 0.063 0.1409 ± 0.07

Note: Metabolite contents are g L−1.
aRefers to p < 0.05.
bRefers to p < 0.01.
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AnOPLS-DAmodel with good predictability and fit has been

developed, while a 200-response permutation test model was also

necessary to be constructed to prevent the model from over-

fitting (Figure 4C). Here R2(Y) (interpretability of the Y variable)

and Q2 (model predictability) are important parameters for

model evaluation, and their regression lines are crossed with

the horizontal coordinates or less than 0, which indicates that the

model is relatively accurate. The R2(Y) value (0.94) in the OPLS-

DA model is approximately equal to 1, indicating that the model

is relatively reliable and is able to reflect the real situation of the

sample data. The intercept of Q2 on the Y-axis is negative, and the

R2 = 0.218 and Q2 = -0.483 obtained from the replacement test

are smaller than the initial values of R2 and Q2 in the OPLS-DA

model, which suggests that the model is not over-fitted.

The data set was scaled by the heatmap package in Origin

2018 and a cluster analysis was made based on the differential

metabolites and their contents to further reflect the metabolic

differences between the two strains. Figure 4D shows that the

same strain is more correlated even at different culture times,

while the metabolic differences between TWF001 andW3110 are

high, which is consistent with the results of the principal

component analysis.

Difference analysis of L-threonine
metabolic network and potential
biomarkers

Figure 5A shows that the main metabolites contents that

differed between TWF001 and W3110 include amino acids,

organic acids, fatty acids, sugars, alcohols and other substances.

The contents of L-alanine, L-glutamic acid, L-aspartic acid and fatty

acid compounds were significantly lower in TWF001 when

compared with the control strain. TWF001 produced higher

content of Thr with less carbon metabolic flow to other by-

product amino acids. However, L-glutamate plays an important

role in the pathway of L-aspartate, the precursor of Thr synthesis,

thus up-regulation of the relative genes of glutamate synthesis has

several sets of effects on Thr synthesis (Zhao et al., 2020). As a by-

product, the increased concentration of L-leucine is detrimental to

Thr synthesis, so Lee (Lee et al., 2007)et al. weakened the enzyme

activity by site directed mutation of ilvA (encoding Thr

dehydratase), and thereby reducing L-isoleucine and L-leucine

concentrations to prevent Thr degradation. In addition, the

higher C flow to by-product amino acids and fatty acid branched

pathways in W3110 eventually led to lower Thr level in that strain.

FIGURE 4
Metabolite difference in strain TWF001 and W3110. (A) Score plot of metabolite principal component analysis. (B) OPLS-DA score plot of
metabolite principal component analysis. (C)OPLS-DA displacement test plot. (D)Cluster analysis of the two strains. Red represents the zone of low
concentration of differential metabolites and blue represents the zone of high concentration of differential metabolites.
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When the intracellular environment is disturbed by the

external factors, the metabolic change will occur to adapt to

this disturbance and a new metabolic equilibrium is achieved. In

PCA analysis, the load diagram represents the magnitude of the

contribution made to differentiate between experimental and

control groups, with the further away from the origin simply

indicating that the metabolite is making a more significant

contribution and can be regarded as a biomarker. As shown

in Figure 5B, citric acid, L-glutamic acid and inositol are the

furthest from the origin, and the levels of these metabolites are

proportional to the synthesis of Thr within a certain range.

Therefore, these metabolites can be good biomarkers to be

added in the medium to regulate the synthesis of Thr.

A case of metabolic regulation based on
metabolic analysis of Thr biosynthesis
pathway

From above analyses, some key nods, enzymes and biomarkers

have been identified as important targets for the production of Thr.

Here, we selected addition of L-glutamic acid as an example to verify

FIGURE 5
(A)Difference in metabolic level between TWF001 andW3110. (B) Load plot for metabolite principal component analysis between TWF001 and
W3110.
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the reliability of the biosynthesis pathway analyses. L-glutamic acid

was added into medium and fed-batch fermentation was conducted

to evaluate the performance. As can be seen from Figure 6, the

highest OD600 value of was not improved, but the Thr production

was promoted up to 77 g L−1, 10% higher than that without addition

of L-glutamic acid. This fact indicates that L-glutamic acid may

function by migrating the metabolic flow to Thr rather than

enhancing biomass.

Some metabolic regulators, such as glycine, sodium nitrate

and sulphate, are activators or inhibitors of key enzymes in the

pathway. However, addition of them is often not sufficient to

achieve the desired effect. In addition to environmental

disturbance, some key enzymes need to be engineered to

change the flow of metabolic flux in order to achieve the most

reasonable flux distribution for Thr synthesis.
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