
PROCEEDINGS Open Access

Prediction of genetic contributions to complex
traits using whole genome sequencing data
Chen Yao1, Ning Leng2, Kent A Weigel1, Kristine E Lee3, Corinne D Engelman4, Kristin J Meyers3*

From Genetic Analysis Workshop 18
Stevenson, WA, USA. 13-17 October 2012

Abstract

Although markers identified by genome-wide association studies have individually strong statistical significance,
their performance in prediction remains limited. Our goal was to use animal breeding genomic prediction models
to predict additive genetic contributions for systolic blood pressure (SBP) using whole genome sequencing data
with different validation designs.
The additive genetic contributions of SBP were estimated via linear mixed model. Rare variants (MAF<0.05) were
collapsed through the k-means method to create a “collapsed single-nucleotide polymorphisms.” Prediction of the
additive genomic contributions of SBP was conducted using genomic Best Linear Unbiased Predictor (GBLUP) and
BayesCπ. Estimates of predictive accuracy were compared using common single-nucleotide polymorphisms (SNPs)
versus common and collapsed SNPs, and for prediction within and across families.
The additive genetic variance of SBP contributed to 18% of the phenotypic variance (h2 = 0.18). BayesCπ had slightly
better prediction accuracies than GBLUP. In both models, within-family predictions had higher accuracies both in the
training and testing set than didacross-family design. Collapsing rare variants via the k-means method and adding to
the common SNPs did not improve prediction accuracies. The prediction model, including both pedigree and genomic
information, achieved a slightly higher accuracy than using either source of information alone.
Prediction of genetic contributions to complex traits is feasible using whole genome sequencing and statistical
methods borrowed from animal breeding. The relatedness of individuals between the training and testing set
strongly affected the performance of prediction models. Methods for inclusion of rare variants in these models
need more development.

Background
The genetic architecture underlying complex traits is
hypothesized to involve numerous individual loci, of
varying frequency, each with small to moderate effects.
Genome-wide association studies (GWAS) have gener-
ally focused on single nucleotide polymorphisms (SNPs)
occurring at a minor allele frequency (MAF) >0.05 with
strict statistical criteria for inclusion in the predictive
models (eg, individual SNPs with pvalue <5 × 10−8).To
date, loci from GWAS for quantitative traits such as
blood pressure and height have provided only limited

ability to explain the variability of complex traits, result-
ing in “missing heritability” [1], and their usage for dis-
ease prediction has been limited [2].
An alternative approach for explaining the heritability

and improving prediction of the additive genetic contri-
butions (known as “breeding value” in animal breeding)
to complex traits is the use of whole genome markers
jointly [3,4]. As reviewed by de los Campos et al, whole
genome prediction methods, borrowed from animal
breeding, provide the potential to greatly improve the
prediction of genetic risk for complex traits in humans,
as compared to prediction using only specific susceptibil-
ity loci from GWAS [2]. Further improvement in predic-
tion models might come from the inclusion of rare
variants. Through whole genome sequencing, there is an
unprecedented opportunity for predicting the individual
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additive genetic contributions for complex traits through
the inclusion of variants across the frequency and effect
size spectrums.
In this study, we applied animal breeding whole gen-

ome prediction methods to data provided by the Genetic
Analysis Workshop 18 (GAW18) to predict the additive
genetic contributions of a complex trait, systolic blood
pressure (SBP), in humans. As part of this study, we
explored 2 methods for validation and the k-means
method to collapse and include rare variants into the
prediction model.

Methods
Phenotypic values
We used the real data provided by GAW18, including
information from up to 4 measurements of SBP per
individual. Observed variation in SBP is a function of
genetic and environmental factors [5]. A linear mixed
model was applied to partition variance of SBP after
accounting for 5 fixed effects (b and p = 5).Variance is
partitioned into the additive genetic effect (u) and the
repeated environmental effect (c) of each individual. The
additive genetic effect (u) was estimated based on degree
of additive relatedness determined from pedigree struc-
ture. The repeated environmental effect was the envir-
onmental effect on an individual’s phenotype that is
constant across (or common to) repeated measures on
that individual, and independent between different indi-
viduals, which was defined by fitting individual identity
as an additional random effect [6].The linear mixed
model below was applied to 2189 records (n) of 916
individuals (q) without missing phenotype, and included
information from every examination,

y = Xβ + Zu + Tc + e (1)

where y is an n × 1 vector of SBP measurements; X is
an n × p matrix containing fixed effects variables including
year of examination, age, sex, medications usage, and
tobacco smoking; β is a p × 1 vector of fixed effects para-
meters;Z is an n × q matrix containing dummy variables
and relating each of the additive genetic effect to an indivi-
dual’s phenotype; u ∼ N(0, Aσ 2

u ) is a q × 1 vector of addi-
tive genetic effects for all individuals where A is a q × q
pedigree-based kinship matrix; T is an n × q matrix con-
taining dummy variables and relating each of the repeated
environmental effect to an individual’s phenotype;
c ∼ N(0, Iσ 2

c ) is a q × 1 vector of random repeated envir-
onmental effects where I is a q × q identity matrix assum-
ing independent repeated environmental effects among
different individuals; and error term e ∼ N(0, Iσ 2

e ). The
mixed model equation was solved with the restricted
maximum likelihood method using the “pedigreemm”
R-package version 0.2-4. The estimated additive genetic

contributions were taken as the estimated random additive
genetic effects û, and were used as the independent vari-
able in the genomic prediction models.
The narrow-sense heritability [5] (hereafter “herita-

bility”) was calculated from the variance components
estimated in model (1) as shown in model (2):

ĥ2 =
σ̂ 2

u

σ̂ 2
u + σ̂ 2

c + σ̂ 2
e

(2)

Whole genome sequencing data
Based on 139 unrelated founders from all 20 families,
the whole genome sequence markers provided in
GAW18 were pruned using PLINK 1.07 [7], keeping
markers with linkage disequilibrium coefficient r2<0.9.
The whole genome prediction models were applied to
835 individuals from 20 families with both genotype and
phenotype data. Common SNPs with MAF ≥0.05 were
coded to an additive genetic model (0, 1, or 2 minor
alleles) using the rounded dosages given by GAW18.
Even though many approaches have been developed

for collapsing rare variants to test in association studies
[8], approaches for including rare variants in prediction
models have not been explored. In this study, a “col-
lapsed SNP” was generated from a vector of 100 rare
SNPs based on physical position within the chromosome
with k-means method [9], which is a popular clustering
method in the fields of statistical learning and pattern
recognition [10].
To be consistent with the 3 level genotypes of com-

mon SNPs, the k-means method was applied to each
100-rare-SNP vector generated to partition genotypes
into 3 clusters, in which each of 835 individuals
belonged to the cluster with the nearest mean of indivi-
duals in that cluster to minimize the within-cluster sum
of square error. After clustering, individuals in the same
cluster are expected to be genetically closer to each
other compared to individuals from different clusters.
Individuals in the cluster with the largest, medium, and
smallest cluster size were assigned a collapsed SNP gen-
otype to be 0, 1, and 2, respectively, and the MAF was
calculated. A total of 26,845 collapsed SNPs were
formed from 2,683,921 rare SNPs.
By testing different window sizes across all chromo-

somes, we found that the number of collapsed SNPs
with a MAF<0.05 decreased as the window size
increased (Figure 1). A larger window size, however, will
provide less information after collapsing. The window
size, 100, was chosen to minimize the number of col-
lapsed SNPs with a MAF<0.05, and keep information
after collapsing maximally. When applying the predic-
tion models, 2sets of SNPs were considered: “set 1” with
964,208 common SNPs and “set 2” with 991,053 SNPs,
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including both common and collapsed SNPs formed by
rare variants.

Whole genome prediction models
The whole genome prediction models, genomic Best
Linear Unbiased Predictor (GBLUP) and BayesCπ, were
trained using 2validation designs described in the next
section. The general statistical model is below, and the
predicted genomic value of each individual was defined
as the fitted value ŷ′:

y′ = μ + Ma + e′ (3)

where y′ is the estimated genetic value û from model (1),
μ is the overall mean, a is a vector of random additive
effects of all loci (of SNP set 1 or set 2) with genotype
matrix M, and error term e′ ∼ N(0, Iσ 2

e′).

In GBLUP, it is assumed that a ∼ N(0,Kσ 2
a ), that is, the

same variance is shared by all loci, where K is the whole
genome marker-based relationship matrix. The estimates
of marker effect â are obtained following the solution of
mixed-model equations in Meuwissen et al [11].
In BayesCπ, besides sharing the common variance

among all loci, a prior distribution was assigned to the
additive effect of each locus depending on the variance
σ 2

a and the probability π that the given SNP has zero
effect (formula (4)). The algorithm was implemented as
in Habier et al [12].

a|π , σ 2
a =

{
0 with probability π ,

N(0, σ 2
a ) with probability (1 − π).

(4)

Both GBLUP and BayesCπ were implemented via
Gibbs sampling. The ratio σ 2

a /σ 2
e in GBLUP was set to

Figure 1 The minor allele frequency (x-axis distribution of collapsed SNPs using the k-means method and different window sizes.
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2/3, according to the output of BayesCπ. The initial value
for π in BayesCπ was set as 0.9. The total number of itera-
tions in both models was 12,000 with a burn-in of 2000
and a mining rate of 10. Longer chains (total of 40,000
with a burn-in of 5000 and a mining rate of 10) did not
improve the correlation between predicted value and true
value. The correlations were also consistent among multi-
ple short chains with the same length of 12,000 iterations.

Validation design for prediction models
Two different validation designs were used to evaluate the
predictive ability of different models and using different
SNP sets. The first was a within-family prediction with the
first 3 generations from all 20 families (528 individuals) in
the training set (TRN), and their descendants from the
fourthand fifth generations (307 individuals) in the testing
set (TST). The second was an across-family prediction
using 5-fold cross-validation. To balance sizes of training
and TSTs in each replicate of cross-validation, 20 families
were ranked by their family sizes, and then every five
families were randomly assigned to five different folds
(four families in each fold) to get about 668 individuals in
TRN and about 167 in TST.

Predictive accuracy
The accuracies of genomic prediction were measured by
the correlation of the estimated additive genetic contri-
butions (y′ = û) with their genomic prediction values (y′)
from model (3).
The prediction accuracies were compared between

genome and pedigree based additive genetic contribu-
tions (ûp) for individuals in within-family prediction
TST with at least 1parent in TRN. The ûp was calculated
with formula (5).

ûp =

⎧⎨
⎩

ûF, if only father in TRN.
ûM, if only mother in TRN.
0.5 × ûF + 0.5 × ûM, o.w.

(5)

where ûF and ûM are estimated additive genetic contri-
butions of the father and mother of the individual. The
linear models in (6) were then fitted, and the R2 values
(coefficient of determination of the linear regression)
from the model fitting were reported to be the predic-
tive accuracies using genomic only, parent average only,
and both genomic and parent average information.

û = b1ŷ′ + e1

û = b2ûp + e2

û = b3ŷ′ + b4ûp + e3

(6)

Results and discussion
The additive genetic contributions of SBP ranged from
−18.9 to 15.8 with mean 0.2 and SD 3.5. The estimated

variance components, additive genetic variance (σ 2
g ),

repeated environmental variance (σ 2
c ), and error var-

iance (σ 2
e ), of model (1) were 44.4, 61.5, and 135.0,

respectively. The estimated heritability of SBP was cal-
culated to be 0.18 using formula (2), which means that
18% of phenotypic variance was a result of additive
genetic contributions. The reported heritability estimates
of SBP in previous studies ranged from 0.24 to 0.37
[13-15]. The slightly lower heritability estimates from
this study could result from different methods for esti-
mation or different populations and environments [16].
When the data contained repeated measurements,
failure to model a repeated environmental effect would
inflate estimates of heritability by interpreting the covar-
iance because of repeated environmental effects as cov-
ariance among a series of clones with a coefficient of
coancestry of 0.5 [6]. Our linear mixed model (model 1)
incorporated repeated environmental measures, there-
fore minimizing this possibility.
Table 1 outlines correlations between additive genetic

contributions of SBP and predicted genomic values and
corresponding mean square errors (MSE) in within-
family validation and across-family prediction with
GBLUP and BayesCπ. In general, the BayesCπ outper-
formed GBLUP based on both correlation and MSE,
althoughthe differences were small (mostly <5%). The
markers in GBLUP are assumed to share the same nor-
mal distribution, whereas BayesCπ fits only a small frac-
tion of the available markers with an assumption that
most loci are expected to have zero contribution to the
independent variable, and the remaining nonzero mar-
ker effects are normally distributed. It is possible that
the number of causal loci for SBP is relatively small,
which is closer to the assumption of BayesCπ. Similar
improvement of BayesCπ over GBLUP was found by
previous studies [17,18].
Validation designs of prediction greatly affected the

prediction accuracy. In both BayesCπ and GBLUP, the

Table 1 The accuracies of genomic prediction for additive
genetic contribution to SBP.

SNPset Model TRN TST

Within-
family

Across-
family

Within-
family

Across-
family

Set 1 GBLUP 0.844 (9.80) 0.823 (6.93) 0.348 (3.35) 0.062
(12.09)

Set 2 GBLUP 0.850 (9.70) 0.828 (6.85) 0.336 (3.39) 0.013
(12.16)

Set 1 BayesCπ 0.883 (8.84) 0.854 (6.31) 0.351 (3.38) 0.054
(12.31)

Set 2 BayesCπ 0.866 (9.45) 0.850 (6.50) 0.347 (3.36) 0.035
(12.11)

The accuracy is measured by correlation (MSE) between true and fitted
additive genetic contributions from genomic predictions in the TRN and TST
using SNP set 1 (common SNPs) and set 2 (common and collapsed SNPs).
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within-family prediction had a strong advantage over
across-family prediction, achieving a higher correlation
between predicted value and true value, as well as a
decreased MSE. For within-family prediction, TST was
formed by the descendants of people in TRN, that is,
closely related to each other. For the across-family pre-
diction, individuals in TST and TRN were from different
families, that is, unrelated to each other. Thus, the relat-
edness of individuals between TRN and TST strongly
affected the performance of prediction models. This
result was consistent with a genomic prediction study of
human height [4] and several studies on the impact of
genetic relationship information on genomic prediction
in animal breeding [19,20].
The results from BayesCπ in within-family prediction

indicated that 14% of total variants (ie, 141,278 SNPs), on
average, in TRN contributed when using SNPset 1, and
32% of the additive variance was explained by these
SNPs. Thus the whole genome sequence variants
detected a large proportion of the heritability (32%). The
rest of the heritability might result from rare variants.
We attempted to explore an approach in our models to
include rare variants, but the addition of the collapsed
SNPs did not improve the prediction accuracies (perfor-
mance of SNPset 2 vs. set 1 in Table 1). Prediction
accuracies using SNP set 2 were consistent among multi-
ple runs of k-means methods with different starting
points. It is possible that only three clusters were not
enough to capture the genetic effects of the combinations
of 100 rare SNPs, or that different window sizes should
be considered rather than fixed at 100, or the relation-
ships between the clusters is more complicated than
what we modeled by the coding of the 3 clusters to 0, 1,
and 2 under an additive genetic effect assumption. Differ-
ent implementations of k-means method should be
explored in future studies. Other clustering strategies to
collapse rare variants could be attempted as well.
In within-family prediction, there were 289 individuals

from TST with at least 1 parent in TRN. Based on the
results from the linear regression model (6), the prediction
accuracy (the R2) using pedigree based information only is
0.455, higher than the 0.353 using whole genome markers
only. Combining information from both sources, the pre-
diction accuracy of 0.458 slightly outperformed either of
the single source prediction. Including the parent average
breeding value in genomic evaluations in animals is a
common practice [21], which leads to a significantly
greater reliability compared to using parent average breed-
ing value only. An advantage of the inclusion is to obtain
any genetic variance not captured by markers, for exam-
ple, low-frequency quantitative trait loci.
Finally, the population size in this study may not be

enough to obtain highly reliable variance component
and additive genetic contribution estimates, which can

bring extra noise into genomic predictions. It is also
possible that SBP has limited additive genetic influences
(ie, the low heritability estimate) and is not a good can-
didate for genomic prediction. With the limitations of
the Genetic Analysis Workshop (GAW) data set (blood
pressure was the only outcome) and GAW timeline, we
did not have an opportunity to explore the impact of
our model choice. Strategies that may improve the accu-
racy of genomic prediction might be (a) increasing the
reference population size, (b) using a trait with a higher
heritability, and (c) including information of relatives in
the reference population.

Conclusions
By using prediction models borrowed from animal breed-
ing, GBLUP, and BayesCπ, we showed that prediction of
additive genetic contributions for a complex trait using
whole genome sequencing data in humans is feasible. The
prediction accuracy is strongly affected by the relatedness
of individuals between TRN and TST. A large proportion
of the additive variance can be explained through inclu-
sions of whole genome sequence information in the
model. The k-means method as implemented in our study
for inclusion of rare variants did not improve the predic-
tion. Different implementations of k-means or other meth-
ods for including rare variants in genomic prediction
should be tested. Including both genomic and parent aver-
age information in the prediction model gave a slightly
better accuracy than using either one of them alone.
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