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Long non-coding RNAs (lncRNAs) play an important role in serval biological activities,

including transcription, splicing, translation, and some other cellular regulation processes.

lncRNAs perform their biological functions by interacting with various proteins. The

studies on lncRNA-protein interactions are of great value to the understanding of

lncRNA functional mechanisms. In this paper, we proposed a novel model to predict

potential lncRNA-protein interactions using the SKF (similarity kernel fusion) and LapRLS

(Laplacian regularized least squares) algorithms. We named this method the LPI-SKF.

Various similarities of both lncRNAs and proteins were integrated into the LPI-SKF.

LPI-SKF can be applied in predicting potential interactions involving novel proteins or

lncRNAs. We obtained an AUROC (area under receiver operating curve) of 0.909 in a

5-fold cross-validation, which outperforms other state-of-the-art methods. A total of 19

out of the top 20 ranked interaction predictions were verified by existing data, which

implied that the LPI-SKF had great potential in discovering unknown lncRNA-protein

interactions accurately. All data and codes of this work can be downloaded from aGitHub

repository (https://github.com/zyk2118216069/LPI-SKF).

Keywords: LncRNA-proteins interactions, LncRNA similarities, protein similarities, similarity kernel fusion,

laplacian regularized least squares

INTRODUCTION

The human genome is comprised of ∼3.2 billion nucleotides, which harbors ∼20,000–25,000
protein-coding genes (International Human Genome Sequencing Consortium, 2004). The
remaining non-coding genes were once considered to be “junk DNA” in the 1970s due to their
weak coding capacity. This included pseudogenes, and simple repeats. (Comings, 1972; Ohno and
Smith, 1972). Nonetheless, non-coding sequences have received continuous attention since the
1970s. With the development of sequencing technologies, various ncRNAs (non-coding RNAs),
like H19 and XIST (Brannan et al., 1990; Brockdorff et al., 1992; Kung et al., 2013), were discovered
in biological regulation processes. lncRNA (long non-coding RNA) is an important type of ncRNAs
with a length longer than 200 nt (Mercer et al., 2009; Ma et al., 2013). lncRNAs play important roles
in various biological processes (Clark andMattick, 2011), including transcription (Martianov et al.,
2007), splicing (Rintala-Maki and Sutherland, 2009), translation (Beltran et al., 2008), imprinting
(Bartolomei et al., 1991), apoptosis (Reeves et al., 2007), and many more. lncRNAs perform their
molecular functions by interacting with proteins (Hentze et al., 2018). For example, MALAT1, a
functional lncRNA, which is highly expressed in several tumors, can bind the tumor suppressor
gene SFPQ (also known as PSF) to release proto-oncogene PTBP2 (also known as PTB) from the
SFPQ/PTBP2 complex (Meissner et al., 2000; Tseng et al., 2009; Gutschner et al., 2013; Ji et al., 2014).
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Studying lncRNA-protein interactions is of great value in
understanding the functional mechanism of lncRNAs. However,
wet experiments to determining lncRNA-protein interactions are
always costly and time-consuming. Therefore, it is crucial to
develop efficient and accurate computational methods to predict
potential lncRNA-protein interactions.

Recently, a number of computational methods have been
developed to predict novel lncRNA-protein interactions.
Generally, these methods fall into two categories, the supervised
binary classification-based methods and semi-supervised
learning-based methods. The most significant difference
between these two categories is whether the non-interacting
lncRNA-protein pairs are regarded as negative samples or
unlabeled samples.

In the binary classification methods, the non-interacting
lncRNA-protein pairs are regarded as negative instances.
Muppirala et al. encoded RNA-protein pairs using sequence
information and trained the model RPISeq, using SVM (support
vector machine) and RF (random forest) classifiers (Muppirala
et al., 2011). By encoding RNA-protein pairs in different ways,
two more models were built by SVM or RF classifiers in
the following years (Suresh et al., 2015; Xiao et al., 2017).
Wang et al. applied a novel extended naive-Bayes classifier
on sequence-based features to predict potential protein-RNA
interactions (Wang et al., 2013). Ensemble learning was widely
applied in combining various machine learning algorithms
in predicting lncRNA-protein interactions (Deng et al., 2018;
Hu et al., 2018; Wekesa et al., 2019). Despite all these
efforts, selecting veracious negative instances is still the most
challenging problem in training binary classification-based
models. Moreover, the dataset in predicting lncRNA-protein
interactions is always highly imbalanced in nature, which could
influence the prediction performances in many ways.

In the semi-supervised learning methods, non-interacting
lncRNA-protein pairs were considered as unlabeled instances.
Lu et al. introduced the matrix multiplication method to score
each potential protein-RNA pair (Lu et al., 2013). Li et al. (2015)
utilized the RWR (random walk with restart) algorithm on
the lncRNA-protein-protein heterogeneous network to predict
lncRNA-protein interactions. Serval prediction models were
established by the MF (matrix factorization) algorithm, which
separates the adjacencymatrix into two talent feature vectors (Liu
et al., 2017; Ma et al., 2019; Zhang T. et al., 2020). Zhao et al.
integrated the RWR and MF algorithm to construct a prediction
model (Zhao et al., 2018). A label propagation algorithm is
another common recommendation algorithm, two models were
built based on label propagation algorithms (Zhang et al., 2018a;
Zhu et al., 2019). Meanwhile, some other machine learning
algorithms were also adapted in the prediction of lncRNA-
protein interactions, including feature projection ensemble
learning (Zhang et al., 2018b), KATZ scoring schemes (Zhang
et al., 2019), the kernel ridge regression algorithm (Shen et al.,
2019), and the depth-first search algorithm (Zhang H. et al.,
2020).

Although existing computational models have achieved great
performances, there are still some problems that should be
solved. With the development of high-throughput sequencing

technology, a large number of novel lncRNAs have been
discovered. Unlike lncRNAs, that were deposited in the database
long ago, little is known about the interacting proteins of these
newly identified lncRNAs. Therefore, few existing models can
infer potential interacting proteins for these lncRNAs (Zhang
et al., 2018b; Zhang T. et al., 2020).

In this paper, we proposed a new model to predict
lncRNA-protein interactions based on the similarity kernel
fusion approach, namely LPI-SKF. Multiple similarities between
lncRNAs and proteins were first calculated. These similarities
were integrated to obtain a comprehensive similarity. Ultimately,
the Laplacian regularized least squares framework was applied
to build the predictive model. Five-fold cross-validation was
used to estimate the performance of LPI-SKF in this work. The
LPI-SKF achieved an AUROC (area under receiver operating
characteristics curve) of 0.909 and an AUPR (area under
precision-recall curve) of 0.685, which indicated that the LPI-SKF
method could identify unknown lncRNA-protein interactions
accurately. Moreover, LPI-SKF could also be used to identify
interacting partners for novel lncRNA/proteins. A total of 19
out of our 20 top-ranked lncRNA-protein interaction predictions
were confirmed by existing data.

MATERIALS AND METHODS

In this work, we proposed an lncRNA-protein interaction
prediction model, named LPI-SKF. This model can be
summarized in four steps, which are shown in Figure 1.
Firstly, we collected experimentally verified lncRNA-protein
interactions in the NPInter V2.0 database and constructed the
heterogeneous network. Secondly, based on the assumption
that similar lncRNAs tend to interact with similar proteins and
vice versa, we calculated three different pairwise similarities
for lncRNAs, and three different pairwise similarities for
proteins, respectively. Thirdly, to synthesize the similarity
information in different aspects and to also reduce noise,
the SKF approach was utilized to integrate the lncRNA
similarities and protein similarities. Finally, considering the
network structure information, we combined the Laplacian
regularization and the least squares method to build our
prediction model.

Dataset Curations
NPInter is an integrated database of ncRNA interactions, which
includes vast interactions between ncRNAs and biomolecules
uncovered by various high-throughput sequencing approaches
(Yuan et al., 2014). lncRNA-protein interactions collected in
NPInter have been utilized as materials in numerous related
studies. For a better comparison, we collected lncRNA-protein
interactions from the NPInter V2.0 database according to the
previous study (Zhang et al., 2018a). Ultimately, 4158 lncRNA-
protein interactions including 990 lncRNAs and 27 proteins
were obtained. Afterward, the sequences and expressions of
lncRNAs and the sequences of proteins Were downloaded from
the NONCODE database and the SUPERFAMILY database,
separately (Fang et al., 2018; Pandurangan et al., 2019).
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FIGURE 1 | The flowchart of the entire work. Known lncRNA-protein interactions were downloaded from the NPInter V2.0 database to form a heterogeneous

network. Three different similarities of both lncRNAs and proteins were calculated, subsequently. Afterward, the similarity kernel fusion (SKF) approach was utilized to

integrate these similarities. Finally, the Laplacian regularized least squares (LapRLS) framework was used to build the prediction model.

Similarities for lncRNAs and Proteins
This work is based on the assumption that similar lncRNAs
tend to interact with similar proteins and vice versa. Hence,
defining appropriate similarity is of great importance in
predicting lncRNA-protein interactions. We employed
three different pairwise similarities of lncRNAs, including
the interaction similarity, the expression similarity, and

the sequence similarity. We also applied three different
similarities of proteins, including the interaction similarity,
the statistical feature similarity, and the sequence similarity.
With all these similarity definitions, we proposed to use the
similarity kernel fusion strategy to establish a universal and
comprehensive similarity kernel matrix to predict potential
lncRNA-protein interactions.
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The Interaction Profile Similarities
For the convenience of the reader, we first defined the adjacency
matrix between lncRNAs and proteins. Let li (i = 1, 2, . . . , n) be
the i-th lncRNA, and pj (j = 1, 2, . . . , m) the j-th protein. The
adjacency matrix A can be defined as follows:

A =
{

ai,j
}

n×m
=

{

1 li interacts with pj,
0 Otherwise

(1)

The interaction profile of the i-th lncRNA is the i-th row ofmatrix
A, which can be noted as the Ai∗, while the interaction profile of
the j-th protein is the j-th column ofmatrixA, which can be noted
as the Aj.

The interaction similarity between lu and lv can be defined as:

sl,0 (u, v) = exp
(

−γl‖Au∗ − Av∗‖
2
)

, (2)

where

γl = n/

n
∑

i=1

‖Ai∗‖
2, (3)

and ||.|| is the 2-norm operator.
Similarly, the interaction similarity between pu and pv can be

defined as:

sp,0 (u, v) = exp
(

−γp‖Au − Av‖
2
)

, (4)

where.

γp = m/

m
∑

j=1

∥

∥Aj

∥

∥

2
. (5)

lncRNA Expression Profile Similarity
The expression profiles of lncRNAs in 24 different tissues can
be downloaded from the NONCODE database. The expression
profile of the i-th lncRNA can be noted as ei. The expression
profile similarity is defined as follows:

sl,1 (u, v) =

{

1
2

(

1+ ρu,v
)

u 6= v
0 u = v

, (6)

where ρu ,v is the Pearson’s correlation coefficient between eu and
ev. It can be calculated as follows:

ρu,v =
cov (eu, ev)

σ (eu) σ (ev)
, (7)

where cov() is the covariance, and σ is the standard
deviation operator.

Protein Pairwise Sequence Alignment Similarity
Blast+ is a local alignment search tool, which was utilized to
calculate the alignment score of proteins in this work (Camacho
et al., 2009). We used blast+ to align pu against pv. The bit score
in this alignment can be noted as bu ,v. The pairwise sequence
alignment similarity can be defined as:

sp,1 (u, v) =

{

bu,v/bu,u u 6= v
0 u = v

(8)

It worth noting that sp ,1 is not symmetric. Therefore, we have
sp ,1(u, v) 6= sp ,1(v, u).

Sequence Statistical Feature Similarity
RNA is composed of four types of ribonucleotide (A, G, C, U).
According to the previous work, we calculated the percentage
of these four nucleotides and 16 dinucleotides (AA, AG, AC,
AU, . . . ) to represent each lncRNA in a 20-D vector (Zhang
et al., 2018a). We employed CTD (composition-transition-
distribution) features (Li et al., 2006) in this work. Twenty
different amino acids were divided into three groups, according
to their hydrophobicity, normalized van der Waals volume,
polarity, and polarizability. Each protein was represented as a
504-D vector. Linear neighborhood similarity (LNS), which is
based on the hypothesis that each vector can be represented by
their k-nearest neighbors, was adopted to compute the similarity
between statistical features (Wang and Zhang, 2008; Deng et al.,
2020) for lncRNA and proteins, respectively. The sequence
statistical feature similarity between lu and lv can be noted as
sl ,2(u, v), while the similarity between pu and pv can be noted
as sp ,2(u, v).

Similarity Kernel Fusion
Three different lncRNA similarities (slq q = 0, 1, 2) and three
different protein similarities (sp ,q q = 0, 1, 2) were calculated
in the above sections. Furthermore, the similarity kernel fusion
(SKF) algorithm was utilized to integrate these similarities and
obtain a more comprehensive similarity.

We take the similarities of lncRNA as an example. Firstly, we
can normalize the three lncRNA similarities (sl ,q q = 0, 1, 2)
as follows:

θl,q (u, v) =
sl,q (u, v)
n
∑

t=1
sl,q (t, v)

, (9)

where θl ,q is the normalized similarity corresponding to sl ,q. The
matrix composed by the normalized similarity is noted as:

2l,q =
{

θl,q (u, v)
}

n×n
. (10)

Secondly, we created a neighbor-constrained normalization for
each lncRNA similarity. Given lu and sl ,q, we collected the kmost
similar lncRNA as a setNl ,q(u, k). The neighborhood constrained
normalization of the sl ,q can be defined as follows:

ϕl,q (u, v) =
sl,q (u, v) Il,q,k (u, v)
n
∑

t=1
sl,q (u, t) Il,q,k (u, t)

, (11)

where

Il,q,k (u, v) =

{

1 lv ∈ Nl,q

(

u, k
)

0 lv /∈ Nl,q

(

u, k
) (12)

The matrix composed by the neighborhood constrained
normalization is noted as:

8l,q =
{

ϕl,q (u, v)
}

n×n
. (13)
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The three similarity matrices were integrated using the following
iterative process:

2l,q (λ + 1) =
1

2
α



8l,q

∑

r 6=q

2l,r (λ)8T
l,q





+
1

2
(1− α)

∑

r 6=q

2l,r (0), (14)

where α is a weight coefficient between 0 and 1, T is the transpose
operator inmatrix algebra, λ is the iterative round parameter, and

2l,r (0) = 2l,r . (15)

After z rounds of the iterative process, we obtained the final
integration similarity matrix as

2l =
1

3

(

2l,0 (z) + 2l,1 (z) + 2l,2 (z)
)

(16)

Although more information is retained in the similarity fusion,
more noise is apparent simultaneously. By considering the k
most similar lncRNAs of each lncRNA, we defined an indicator
function as follows:

wl,k (u, v) =







1 Il,0,k (u, v) = Il,1,k (u, v) = Il,2,k (u, v) = 1
0 Il,0,k (u, v) = Il,1,k (u, v) = Il,2,k (u, v) = 0
0.5 otherwise

(17)

The final adjusted lncRNA similarity is defined as follows:

Sl,k =
{

θl (u, v)wl,k (u, v)
}

n×n
, (18)

where θl(u, v) is the element in the u-th row and the v-th column
of the matrix Θ l.

By applying protein similarities, and using Eqs. (9)–(18), we
obtained the adjusted protein similarity matrix Sp,k. The value of
k in computing protein similarities is not necessarily the same as
that of the lncRNAs.

Laplacian Regularized Least Squares
In this work, Laplacian regularized least squares (LapRLS) were
utilized to construct the prediction model. Since we obtained
the lncRNA similarity matrix and the protein similarity matrix,
we could estimate the lncRNA-protein interactions from either
the lncRNA similarity matrix or the protein similarity matrix.
Without losing generality, we took the lncRNA similarity matrix
as an example.

Let Ll be the Laplacian normalized similarity matrix, which
can be defined as follows:

Ll = D
−1/2
l

(

D− Sl,k
)

D
−1/2
l

, (19)

whereD is the diagonal matrix of the matrix Sl,k.
We then found the estimation of the adjacency matrix by

minimizing the following objective function:

min
Fl

‖A− Fl‖
2
F + βl

∥

∥

∥
FTl LlFl

∥

∥

∥

2

F
, (20)

where A is the adjacency matrix, Fl is the prediction matrix from
lncRNA similarities, βl is a weighting parameter, and ||.||F is the
F-norm operator.

We obtained the prediction matrix from lncRNA similarities
by calculating the derivative of the objective function as follows:

Fl = Sl,k
(

Sl,k + βlLlSl,k
)−1

A (21)

Similarly, we applied Eqs. (19)–(21) on protein similarities to
obtain the prediction matrix from protein similarities, as follows:

Fp = Sp,k
(

Sp,k + βpLpSp,k
)−1

A. (22)

Finally, we integrated the above two predictionmatrixes to obtain
our final prediction matrix, as follows:

F = δFl + (1− δ) Fp, (23)

where δ ε (0, 1) is a weighting coefficient.

Performance Estimation Protocol
The prediction performances of the LPI-SKF method was
estimated using 5-fold cross-validations. We applied the AUROC
and the AUPR as the main performance indicators. We also
applied three performance statistics, including precision (pre),
recall (rec), and the F1-score (f ), which can be calculated
as follows:

pre =
TP

TP + FP
, (24)

rec =
TP

TP + FN
, and (25)

f =
2pre · rec

pre+ rec
, (26)

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively.

For predicting potential lncRNA-protein interactions, all
interactions in the adjacency matrix were divided randomly into
five parts. Four parts were utilized as the training dataset, while
the remaining part was used as the testing dataset. Through five
rounds of cross-validation, we obtained the interacting score of
every interaction.

As for predicting potential proteins for new lncRNAs, all
lncRNAs were split into five groups. Four groups were treated
as the training set and the remaining one as the testing set, which
was the same as the prediction for new proteins.

Parameter Calibrations
The primary parts in LPI-SKF are SKF and LapRLS. There are
three parameters in the SKF, which are the iteration times z,
the number of neighbors k, and the weighting coefficient α.
Since SKF was adopted to integrate the lncRNA similarities
and the protein similarities separately, we calculated the AUC
from lncRNA similarities and protein similarities, respectively
to find the optimal α. Since the value range of α is between
0 and 1, we took α within a range of 0.1–0.9 with the step of
0.1 for calculation convenience. The prediction performances
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TABLE 1 | AUC of lncRNA space and protein space with different weighting coefficient α.

α
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lncRNAb 0.898 0.892 0.892 0.893 0.893 0.894 0.894 0.895 0.895

Proteinc 0.786 0.786 0.787 0.788 0.789 0.796 0.799 0.800 0.799

aα: the weighting coefficient α in the SKF method.
bLncRNA: the performance of LPI-SKF in the lncRNA subspace, AUC was selected as the evaluation index in this part.
cProtein: the performance of LPI-SKF in the protein subspace, AUC was selected as the evaluation index in this part.

FIGURE 2 | Performance of the combination of different iteration times T and neighbor number k in the SKF method. (A) The AUC of different parameters in the

lncRNA subspace. (B) The AUC of different parameters in the protein subspace.

were estimated from lncRNAs and proteins separately. As in
Table 1, the optimal α for lncRNAs was 0.9, while it was
0.8 for proteins.

Considering the number of lncRNAs and proteins in our
work (990 lncRNAs and 27 proteins), the number of neighbors
k for lncRNA was selected from {33, 99, 150, 300, 600,
900}, and the number of neighbors k for proteins from {3,
6, 9, 15, 20, 25}. To reduce calculating time and to test as
much as possible, the iteration times z was taken from 5
to 30 with a step of 5. As in Figure 2, the optimal number
of neighbors k for lncRNA was 99, and 3 for proteins.
The optimal iteration times z was set to 5 for lncRNAs
and proteins.

The weighting parameter βl and βp are the most important
regularization terms in the LapRLS, which can influence the
performance directly. In this work, we made βl equal to βp for
convenience. To obtain the optimal performance, we searched
βl and βp both from 2−10 to 2−1 according to a previous
work (Jiang et al., 2018). Since the amount of lncRNAs is
much more than proteins, we made δ range from 0.1 to 0.9
with a step of 0.1. As in Figure 3, we chose βl = βp = 2−3,
and δ = 0.8.

RESULTS

Comparison With Single Similarity
Different types of similarities between both lncRNAs
and proteins have been utilized in this work. To
demonstrate the benefit of similarity integration, we tested
the prediction performance of every single similarity.
The results are illustrated in Figure 4. Considering
the different numbers of lncRNAs and proteins,
performance using lncRNA similarities was better than
protein similarities.

Comparison With Other Fusion Methods
Similarity kernel fusion (SKF) was applied in our study to
integrate different similarities, which could integrate similarity
information in different aspects and reduce noise. In this
part, we compared SKF with another two similarity fusion
methods, similarity network fusion (SNF) (Wang et al., 2014)
and average kernel fusion (AVG). The results are shown in
Figure 5. The results indicated that SKF outperformed the other
two methods.
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FIGURE 3 | The AUC of the combination of different proportional coefficient β and weighting factor δ in the LapRLS framework.

FIGURE 4 | Performance of the single similarity. Six different similarities (three lncRNA similarities and three protein similarities) were utilized in this work, each of them

corresponds to a prediction model.
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FIGURE 5 | Performance of different similarity fusion methods. (A) ROC curves. (B) PR curves.

FIGURE 6 | Performance of different methods on the same benchmark dataset. (A) ROC curves (B) PR curves.

Comparison With State-Of-the-Art
Methods
Prediction for Uncovered Interactions
In our study, we compared LPI-SKFwith two popular algorithms,
RWR (randomwalk with restart) and CF (collaborative filtering),
and three other methods, including LPIHN (Li et al., 2015),
LPBNI (Ge et al., 2016), and LPI-IBNRA (Xie et al., 2019). We
built six prediction models based on the same benchmarking
dataset. Subsequently, the 5-fold cross-validation (5-fold CV) was
applied for the comparison. The result is shown in Figure 6.
Meanwhile, we selected the threshold value of six models based
on the optimal F1-score. Furthermore, the recall, precision, and
F1-score under the threshold value were computed to compare
thesemodels in other aspects. For a better comparison, the results
of the six models are collected in Table 2. From the table, we can
see that both the AUC and AUPR of LPI-SKF were higher than
the other models.

TABLE 2 | Comparison with state-of-the-art prediction methods.

Methods AUC AUPR Recall Precision F1-Score

LPI-SKFa 0.909 0.685 0.623 0.643 0.633

RWR 0.826 0.581 0.566 0.535 0.550

CF 0.836 0.542 0.633 0.459 0.532

LPBNI 0.852 0.625 0.634 0.533 0.579

LPIHN 0.838 0.548 0.648 0.494 0.560

LPI-IBNRA 0.866 0.684 0.599 0.652 0.624

aLPI-SKF: the performance of LPI-SKF in the NPInter V2.0 database, the same as the

other models.

Specifically, for the AUC, LPI-SKF received an AUC of
0.909, which increased by 10.05, 8.73, 6.69, 8.47, and 4.72%,
respectively, compared with RWR’s 0.826, CF’s 0.836, LPBNI’s
0.852, LPIHN’s 0.866, and LPI-IBNRA’s 0.864. As for another
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FIGURE 7 | Comparison of the prediction for new lncRNAs/proteins on the same benchmark dataset. (A) ROC curves. (B) PR curves.

TABLE 3 | Comparison of the prediction for new lncRNAs/proteins.

Methods AUC AUPR Recall Precision F1-score

LPI-SKF lncRNAa 0.844 0.513 0.653 0.416 0.508

SFPEL lncRNAb 0.828 0.474 0.514 0.469 0.490

LPI-SKF proteinc 0.835 0.605 0.570 0.598 0.584

SFPEL proteind 0.606 0.287 0.459 0.266 0.337

aLPI-SKF lncRNA: prediction performance for the new lncRNAs of LPI-SKF.
bSFPEL lncRNA: prediction performance for the new lncRNAs of SFPEL.
cLPI-SKF protein: prediction performance for the new proteins of LPI-SKF.
dSFPEL protein: prediction performance for the new proteins of SFPEL.

important index: AUPR, LPI-SKF obtained an AUPR of 0.685,
which was higher than all other models, RWR’s 0.581, CF’s
0.542, LPBNI’s 0.625, LPIHN’s 0.548, and LPI-IBNRA’s 0.684.
Meanwhile, the best F1-score of LPI-SKF was also higher than
the other models. All these evaluation indexes demonstrate that
LPI-SKF outperformed the other state-of-the-art methods.

Prediction for Novel lncRNAs/Proteins
While our model can predict potential interacting
lncRNAs/proteins for novel proteins/lncRNAs, we also made
a comparison for the prediction of new lncRNAs/proteins.
As few methods could predict interacting lncRNAs/proteins
for novel proteins/lncRNAs, SFPEL-LPI (Zhang et al., 2018b)
was selected for the comparison. Subsequently, we evaluated
the performance of the two models in new lncRNAs and new
proteins prediction, respectively. The result is shown in Figure 7.
For a better comparison, the AUC, AUPR, recall, precision,
and F1-score of the two models are shown in Table 3. LPI-SKF
obtained an AUC of 0.844 and 0.835 in the prediction of new
lncRNAs and proteins, respectively. Comparing with SFPEL,
LPI-SKF achieved an AUC improvement of 0.016 and 0.229 in
new lncRNAs and proteins prediction, separately.

TABLE 4 | 20 top-ranked predicted interactions in this work.

LncRNAa Species Proteinb Species Confirmed?c

NONHSAT130775 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT137303 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT118886 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT035663 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT124467 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT010896 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT092997 Homo sapiens Q9NUL5 Homo sapiens None

NONHSAT039675 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT055307 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT138539 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT098625 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT014009 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT098480 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT056108 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT083698 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT089678 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT135851 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT108616 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT073620 Homo sapiens Q9NUL5 Homo sapiens Confirmed

NONHSAT102823 Homo sapiens Q9NUL5 Homo sapiens Confirmed

a lncRNA: the lncRNA ID in the NONCODE database.
bProtein: the protein ID in the UniProt database.
cConfirmed?: whether the direct interaction had been confirmed by an experiment in the

NPInter V2.0 database.

Case Studies
To evaluate the prediction effect of LPI-SKF more accurately,
we tested the 20 top-ranked interactions in our model based
on the NPInter V2.0 database. The result is shown in Table 4.
Nineteen of these interactions have been verified in the NPInter
V2.0 database, which demonstrates that LPI-SKF performed
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reputably in actual interaction prediction. Meanwhile, the
amount of correctly predicted interactions of the 50 top-ranked
interactions, the 100 top-ranked interactions, and the 500 top-
ranked interactions are 47, 92, and 458, respectively.

CONCLUSION

This paper proposed a novel model, named LPI-SKF (lncRNA-
protein interactions prediction based on the similarity kernel
fusion), to predict potential lncRNA-protein interactions. Serval
similarities of both lncRNAs and proteins were integrated to
obtain a comprehensive similarity matrix by the SKF method.
Furthermore, the LapRLS framework was applied to build the
prediction model. Finally, LPI-SKF obtained an AUC of 0.909
and an AUPR of 0.685 in the 5-fold CV framework, which
demonstrated that LPI-SKF can infer uncovered lncRNA-protein
interactions accurately.

To evaluate the performance of LPI-SKF, serval state-of-
the-art methods were compared to LPI-SKF on the same
benchmarking dataset. Finally, LPI-SKF received an AUC
of 0.909 and an AUPR of 0.685 in the 5-fold cross-
validation framework, both higher than the other models. More
importantly, LPI-SKF could also predict potential interacting
proteins/lncRNAs for novel lncRNAs/proteins precisely. For a
better comparison, we also compared LPI-SKF with another
model, SFPEL, on the same database and the same random seed.

The result showed that LPI-SKF performed much better both in
the prediction for new lncRNAs and new proteins.
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