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The complementary log-log is an alternative to logistic model. In many areas of research, the outcome data are continuous. We
aim to provide a procedure that allows the researcher to estimate the coefficients of the complementary log-log model without
dichotomizing and without loss of information. We show that the sample size required for a specific power of the proposed
approach is substantially smaller than the dichotomizing method. We find that estimators derived from proposed method are
consistently more efficient than dichotomizing method. To illustrate the use of proposed method, we employ the data arising from
the NHSI.

1. Introduction

Recently, logistic regression has become a popular tool in
biomedical studies. The parameter in logistic regression has
the interpretation of log odds ratio, which is easy for people
such as physicians to understand. Probit and complementary
log-log are alternatives to logistic model. For a covariate X
and a binary response variable Y , let π(X) = P(Y = 1 | X =
x). A related model to the complementary log-log link is the
log-log link. For it, π(x) approaches 0 sharply but approaches
1 slowly. When the complementary log-log model holds for
the probability of a success, the log-log model holds for the
probability of a failure [1].

These models use a categorical (dichotomous or polyto-
mous) outcome variable. In many areas of research, the out-
come data are continuous. Many researchers have no hesi-
tation in dichotomizing a continuous variable, but this
practice does not make use of within-category information.
Several investigators have noted the disadvantages of dicho-
tomizing both independent and outcome variables [2–10].
Ragland [11] showed that the magnitude of odds ratio and
statistical power depend on the cutpoint used to dichotomize

the response variable. From a clinical point of view, binary
outcomes may be preferred for some reasons such as (1) set-
ting diagnostic criteria for disease, (2) offering a simpler
interpretation of common effect measures from statistical
models such as odds ratios and relative risks. However, all
advantages come at the lost information. From a statistical
point of view, this loss of information means more samples
which are required to attain prespecified powers.

Moser and Coombs [12] provided a closed-form rela-
tionship that allows a direct comparison between the logistic
and linear regression coefficients. They also provided a pro-
cedure that allows the researcher to analyze the original con-
tinuous outcome without dichotomizing. To date, a method
that applies the complementary log-log model without
dichotomizing and without loss of information has not been
available.

We aim to (a) provide a method that allows the researcher
to estimate the coefficients of the complementary log-log
model without dichotomizing and without loss of informa-
tion, (b) show that the coefficient of the complementary log-
log model can be interpreted in terms of the regression coef-
ficients, (c) demonstrate that the coefficient estimates from
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this method have smaller variances and shorter confidence
intervals than the dichotomizing method.

2. Methods

2.1. Model. Let y1, y2, . . . , yn be n independent observations
on y, and let x1, x2, . . . , xp−1 be p − 1 predictor variables
thought to be related to the response variable y. The multiple
linear regression model for the ith observation can be expres-
sed as

yi = β0 + β1xi1 + β2xi2

+ · · · + βp−1xip−1 + Ei i = 1, 2, . . . ,n,
(1)

or

yi = xiβ + Ei i = 1, 2, . . . ,n, (2)

where

xi =
(

1, xi1, xi2, . . . , xip−1

)
. (3)

To complete the model, we make the following assumptions:

(1) E(Ei) = 0 for i = 1, 2, . . . ,n,

(2) var(Ei) = σ2 for i = 1, 2, . . . ,n,

(3) the independent Ei follows an extreme value distribu-
tion for i = 1, 2, . . . ,n.

Writing the model for each of the n observations, in
matrix form, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

.

.

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1x11 x12 . . . x1p−1

1x21 x22 . . . x2p−1

.

.

1xn1 xn2 . . . xnp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

.

.

βp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

E2

.

.

En

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

or

y = Xβ + E. (5)

The preceding three assumptions on Ei and yi can be
expressed in terms of this model:

(1) E(E) = 0,

(2) cov(E) = σ2I ,

(3) the Ei is extreme value (0, σ2) for i = 1, 2, . . . ,n.

2.2. (Largest) Extreme Value Distribution. The PDF and CDF
of the extreme value distribution are given by

f
(
y | xβ, σ

) = π

σ
√

6

× exp

(
− y − xβ− kσ

σ
× π√

6

− exp

(
y − xβ − kσ

σ
× π√

6

))

−∞〈x〈∞, σ〉0,

P
(
y ≤ c

) = exp

(
− exp

(
− c − xβ + kσ

σ
× π√

6

))

−∞〈x〈∞, σ〉, k ≈ 0.45.

(6)

It is easy to check that

ωj = lnπ1

lnπ2
= ln

(
p
(
y ≤ c | x))

ln
(
p
(
y ≤ c | x(−1, j)

))

= − exp
(−((c − x′β + kσ

)
/σ
)× π/

√
6
)

− exp
(
−
((

c − x′(−1, j)β + kσ
)
/σ
)
× π/

√
6
)

= exp

(
π√
6
· βj

σ

)
=⇒ π1 = π2

exp((π/
√

6)·(βj /σ)),

(7)

where

x =
(

1, x1, . . . , xj , . . . , xp−1

)
,

x(−1, j) =
(

1, x1, . . . , xj − 1, . . . , xp−1

)
,

β =
(
β0, β1, . . . ,βj , . . . ,βp−1

)′
.

(8)

To return to a random sample of observations (y1, y2, . . . ,
yn), we conclude that the PDF and CDF of each independent
yi are given by (6), and the corresponding equality (7) is
given by

ln π̂1

ln π̂2
= exp

(
π

σ̂
√

6
β̂ j

)
, (9)

where the estimate β̂ j is the ( j + 1)th element of vector β̂ =
(β̂0, β̂1, . . . , β̂ j , . . . , β̂p−1)

′
. It is readily shown that the results

also hold true for the smallest extreme value distribution
(Appendix A).
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2.3. The Proposed Confidence Intervals. Let

β̂ =
(
β̂0, β̂1, . . . , β̂ j , . . . , β̂p−1

)′

= (X ′X)−1X ′Y j = 0, . . . , p − 1,

σ̂2 =
Y ′
(
In − X(X ′X)−1X ′

)
Y

(
n− p

) .

(10)

According to the preceding three assumptions on Ei and yi,
we obtain

E
(
β̂
)
= E

[
(X ′X)−1X ′Y

]

= (X ′X)−1X ′EY = (X ′X)−1X ′Xβ = β,

E
(
σ̂2) = 1

n− p
E
(
Y ′
(
In − X(X ′X)−1X ′

)
Y
)

= 1
n− p

{
tr
[(
In − X(X ′X)−1X ′

)
σ2I
]

+E(Y ′)
[
In − X(X ′X)−1X ′

]
E(Y)

}

= 1
n− p

{
σ2 tr

[
In − X(X ′X)−1X ′

]

+β′X ′
[
In − X(X ′X)−1X ′

]
Xβ
}

= 1
n− p

{
σ2
[
n− tr

(
X(X ′X)−1X ′

)]

+β′X ′Xβ − β′X ′X(X ′X)−1X ′Xβ
}

= 1
n− p

{
σ2
[
n− tr

(
X(X ′X)−1X ′

)]

+β′X ′Xβ − β′X ′Xβ
}

= 1
n− p

σ2[n− tr(IP)] = 1
n− p

σ2(n− p
) = σ2.

(11)

Therefore, β̂ and σ̂2 are unbiased estimators of β and σ2.
We have assumed that Ei is distributed as an extreme

value, and we use the approximation of the extreme value
distribution of the errors Ei by the normal distribution. For

normally distributed observations, β̂ j /(σ̂
√
δj) follows a non-

central t distribution with n− p degree of freedom and non-

centrality parameter −∞ < βj/(σ
√
δj) <∞,

1− α = P

⎧⎪⎨
⎪⎩t1−(α/2)

⎡
⎢⎣n− p,

βj(
σ
√
δj
)

⎤
⎥⎦

<
β̂j(

σ̂
√
δj
) < tα/2

⎡
⎢⎣n− p,

βj(
σ
√
δj
)

⎤
⎥⎦

⎫⎪⎬
⎪⎭,

(12)

where tα/2[r, s] represents the 100(1− (α/2)) percentile point
of a noncentral t distribution with r degrees of freedom and
noncentrality parameter −∞ < s < ∞, and δj is the ( j + 1)st
diagonal element of (X ′X)−1. We use the approximation of
the percentiles of the noncentral t distribution by the stand-
ard normal percentiles [13], then

1− α = P

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βj/
(
σ
√
δj
)
− zα/2

[
1 +

(
β2
j /
(
σ2δj

)
− z2

α/2

)
/2
(
n− p

)]1/2

1− (z2
α/2/2

(
n− p

)) <

β̂j(
σ̂
√
δj
) <

βj/
(
σ
√
δj
)

+ zα/2
[

1 +
((

β2
j /
(
σ2δj

)
− z2

α/2

)
/2
(
n− p

))]1/2

1− (z2
α/2/2

(
n− p

))

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(
βj

σ

)U

=
⎧⎪⎨
⎪⎩
β̂ j

σ̂

[
1− z2

α/2

2
(
n− p

)
]

+ zα/2

⎡
⎣δj

⎛
⎝1 +

⎛
⎝
(
β̂2
j /σ̂

2δj
)
− z2

α/2

2
(
n− p

)
⎞
⎠
⎞
⎠
⎤
⎦

1/2⎫⎪⎬
⎪⎭,

(
βj

σ

)L

=
⎧⎪⎨
⎪⎩
β̂ j

σ̂

[
1− z2

α/2

2
(
n− p

)
]
− zα/2

⎡
⎣δj

⎛
⎝1 +

⎛
⎝
(
β̂2
j /σ̂

2δj
)
− z2

α/2

2
(
n− p

)
⎞
⎠
⎞
⎠
⎤
⎦

1/2⎫⎪⎬
⎪⎭,

(13)

Thus, we obtain an approximate 100(1 − α) percent confi-
dence interval for ωj

⎧⎨
⎩exp

⎡
⎣ π√

6

(
βj

σ

)L
⎤
⎦, exp

⎡
⎣ π√

6

(
βj

σ

)U
⎤
⎦
⎫⎬
⎭. (14)

3. Comparison of the Two Methods

Let Yi be a continuous outcome variable. For fixed value of
C, we define Y∗i such that

Y∗i =
⎧⎨
⎩

1 if Yi ≥ C,

0 if Yi < C.
(15)
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Suppose that Y∗1 , . . . ,Y∗n form a random sample of observa-
tions, and we fit a complementary log-log model

πi1 = P
(
Y∗i = 1 | xi

) = exp
(− exp(xiθ)

)
,

πi2 = P
(
Y∗i = 1 | x(−1,i)

) = exp
(− exp

(
x(−1,i)θ

))
,

(16)

where xi = (1, xi1, . . . , xi,p−1)′ is the P×1 vector of covariates
for the ith observation, and θ = (θ0, . . . , θp−1)′ is the P ×
1 vector of unknown parameters. The dichotomized ω∗j
parameter corresponding to the effect θj is

ω∗j =
ln(π1)
ln(π2)

= ln(P(Y∗ = 1 | x))

ln
(
P
(
Y∗ = 1 | x(−1, j)

))

=
(
exp(xθ)

)
(

exp
(
x(−1, j)θ

))

= exp
(
θj
)

j = 0, . . . , p − 1.

(17)

In general, maximum likelihood estimation (MLE) can be

used to estimate the parameter θ = (θ0, . . . , θp−1). Let θ̂ =
(θ̂0, . . . , θ̂p−1)

′
be the P×1 ML estimate of θ, and let COV(θ̂)

be the P×P covariance matrix of θ̂. Using COV(θ̂) from (23),
one can construct confidence intervals. This matrix has as its
diagonal the estimated variances of each of the ML estimates.
The ( j + 1)th diagonal element is given by σ2

θ̂ j
. Therefore,

ω̂∗j = exp
(
θ̂ j
)

, (18)

and for large samples, (θ̂Lj , θ̂
U
j ) = (θ̂ j − zα/2σ̂θ̂ j , θ̂ j + zα/2σ̂θ̂ j )

is a 100(1 − α) percent confidence interval for the true θj .

Then (exp(θ̂Lj ), exp(θ̂Uj )) is a 100(1 − α) percent confidence
interval for the true ω∗j .

We now compare the ωj from (7) with the ω∗j from (17)

ωj = ln(π1)
ln(π2)

ω∗j =
ln(π1)
ln(π2)

=⇒ ω∗j = ωj

=⇒ exp

(
π√
6
· βj

σ

)
= exp

(
θj
)

=⇒ π√
6
· βj

σ
= θj ∀βj , θj , σ.

(19)

This show that the coefficient of the complementary log-
log model, θj , can be interpreted in terms of the regression
coefficients, βj . Note that β are related to the responses
through the general linear regression model

yi = xiβ + Ei i = 1, . . . ,n, (20)

where the independent Ei are distributed as an extreme value
with mean 0 and variance σ2 > 0.

4. Covariance Matrix of Model
Parameter Estimators

4.1. Derivation of var(ω∗j ) for Large n. The information
matrix of generalized linear models has the form

∫ =
X ′WX [1], where W is the diagonal matrix with diagonal
elements wi = (∂μi/∂ηi)

2/(var(yi)), y is response variable
with independent observations (y1, . . . yn), and xi j denote
the value of predictor j,

μi = E
(
yi
)
, ηi = g

(
μi
) =

∑

j

θ jxi j , j = 0, 1, . . . , p − 1.

(21)

The covariance matrix of θ̂ is estimated by (X ′ŴX)
−1

.
Maximum likelihood estimation for the complementary

log-log model is a special case of the generalized linear
models. Let

μi = πi = exp

⎛
⎝− exp

⎛
⎝∑

j

θ jxi j

⎞
⎠
⎞
⎠

=⇒ πi = exp
(− exp

(
ηi
))

,

∂μi
∂ηi

= (− exp
(
ηi
))′ exp

(− exp
(
ηi
)) = πi lnπi,

wi = (πI lnπi)
2

πi(1− πi)
= πi(lnπi)

2

1− πi
,

(22)

then

X ′WX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

i=1

πi(lnπi)
2

1− πi

n∑

i=1

xi1
πi(lnπi)

2

1− πi
· · ·

n∑

i=1

xi,p−1
πi(lnπi)

2

1− πi
n∑

i=1

xi1
πi(lnπi)

2

1− πi

n∑

i=1

x2
i1
πi(lnπi)

2

1− πi
· · ·

n∑

i=1

x1xi,p−1
πi(lnπi)

2

1− πi
...

...
n∑

i=1

xi,p−1
πi(lnπi)

2

1− πi

n∑

i=1

x1ixi,p−1
πi(lnπi)

2

1− πi
· · ·

n∑

i=1

x2
i,p−1

πi(lnπi)
2

1− πi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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It is readily shown that the results hold true for the largest
extreme value distribution (Appendix A).

In large samples, var(θ̂ j) approaches σ2
θj
|θ=θ̂ [14] which

equals the ( j + 1)th diagonal element of (X ′WX)−1.

By applying the delta method, let f (θ̂ j) = exp(θ̂ j), then

var
(
ω̂∗j
)
−→ var

(
exp

(
θ̂ j
))
= var

(
f
(
θ̂ j
))

=
⎛
⎝∂ f

(
θ̂ j
)

∂θ̂ j

∣∣∣θ̂ j=θj

⎞
⎠

2(
var
(
θ̂ j
))

=
(

exp
(
θj
))2 × σ2

θ̂ j
.

(24)

4.2. Derivation of var(ω̂ j) for Large n. In large samples, from
(10) σ̂2 → σ2 [15]. Therefore,

var
(
ω̂ j

)
= var

⎛
⎝exp

⎛
⎝ πβ̂j

σ̂
√

6

⎞
⎠
⎞
⎠ −→ var

⎛
⎝exp

⎛
⎝ πβ̂j

σ
√

6

⎞
⎠
⎞
⎠. (25)

In addition, var(β̂ j) = σ2δj .

By applying the delta method, let g(β̂ j) = exp(πβ̂j/
(σ
√

6)), then

var
(
ω̂ j

)
−→ var

⎛
⎝exp

⎛
⎝ πβ̂j

σ
√

6

⎞
⎠
⎞
⎠

= var
(
g
(
β̂ j

))

=
⎛
⎝∂g

(
β̂ j

)

∂β̂ j

∣∣∣β̂ j=βj

⎞
⎠

2

× var
(
β̂ j

)

=
(

π

σ
√

6
exp

(
πβj

σ
√

6

))2

σ2δj

= π2
√

6
δj

(
exp

πβj

σ
√

6

)2

.

(26)

5. Sample Sizes Saving

5.1. The Power for the Dichotomized Method. In large sam-
ples, σ̂θ̂ j converges to σθ̂j almost surely [14]. Therefore, for

a given value of ωj = exp θj (i.e., lnωj = θj), the power is
given by

p
(
ωj

)
= p

{
rejection of ωj = 1 | ωj /= 1

}

= p
{

exp
(
θLj
)
> 1 | θj

}
+ p

{
exp

(
θUj
)
< 1 | θj

}

= p
{
θ̂ j > zα/2σθ̂j | θj

}
+ p

{
θ̂ j < −zα/2σθ̂j | θj

}

= p

⎧⎨
⎩Z >

zα/2σθ̂j − lnωj

σθ̂j

⎫⎬
⎭

+ p

⎧⎨
⎩Z <

−zα/2σθ̂j − lnωj

σθ̂j

⎫⎬
⎭

= p

⎧⎨
⎩Z > zα/2 −

lnωj

σθ̂j

⎫⎬
⎭ + p

⎧⎨
⎩Z < −zα/2 −

lnωj

σθ̂j

⎫⎬
⎭

= P
{
Z > z•1

}
+ P

{
Z < −z•2

}
,

(27)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z•1 = zα/2 −
lnωj

σθ̂j

z•2 = zα/2 +
lnωj

σθ̂j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (28)

5.2. The Power for the Proposed Method. In large samples, σ̂
converges to σ almost surely [15]. Therefore, for a given value
of ωj = exp(πβj/σ

√
6) (i.e., βj = σ(lnωj

√
6/π)), the power

is given by

p
(
ωj

)
= p

⎧⎨
⎩exp

⎛
⎝ π√

6

(
βj

σ

)L
⎞
⎠ > 1 | ωj

⎫⎬
⎭

+ p

⎧⎨
⎩exp

⎛
⎝ π√

6

(
βj

σ

)U
⎞
⎠ < 1 | ωj

⎫⎬
⎭

= P

{
βLJ > zα/2σ

√
δj | βj =

σ lnωj
√

6

π

}

+ P

{
βUJ < −zα/2σ

√
δj | βj =

σ lnωj
√

6

π

}

= p

⎧⎪⎨
⎪⎩Z >

zα/2σ
√
δj −

(
σ lnωj

√
6/π

)

σ
√
δj

⎫⎪⎬
⎪⎭

+ p

⎧⎪⎨
⎪⎩Z <

−zα/2σ
√
δj −

(
σ lnωj

√
6/π

)

σ
√
δj

⎫⎪⎬
⎪⎭
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= p

⎧⎪⎨
⎪⎩Z > zα/2 −

lnωj
√

6

π
√
δj

⎫⎪⎬
⎪⎭

+ p

⎧⎪⎨
⎪⎩Z < −zα/2 −

lnωj
√

6

π
√
δj

⎫⎪⎬
⎪⎭

= p{Z > z1} + p{Z < −z2},

(29)

where
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z1 = zα/2 −
lnωj

√
6

π
√
δj

z2 = zα/2 +
lnωj

√
6

π
√
δj

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (30)

Our proposed method, since it is based on continuous data
rather than dichotomized, is likely to be more powerful.

We show that the proposed method can produce substantial
sample size saving for a given power. Let

(i) the number of parameters p = 2 (i.e., θ = (θ0, θ1)),

(ii) xi = (1, xi1)′, xi1 ∈ {−a+(2an/(g−1)) | n = 0, . . . , g−
1}, that is, xi1 follows a discrete uniform distribution
with range (−a, a). For simplicity, a = 2.

(iii) Total samples are n and n∗ for the proposed and
dichotomized methods, respectively. These samples
included k and k∗ set of these g uniformly distributed
points for the proposed and dichotomized methods,
respectively. That is, n = gk and n∗ = gk∗, then

δj =
⎡
⎣k

g∑

i=1

(x1i − x1.)
2

⎤
⎦
−1

, j = 1, (31)

and from (23),

σ2
θ̂ j
=

∑g
i=1

(
(πi)(ln(πi))2/ ln(1− πi)

)

(k∗)
{∑g

i=1 x
2
1i

(
(πi)(ln(πi))2/ ln(1− πi)

)∑g
i=1

(
(πi)(ln(πi))2/ ln(1− πi)

)
−
[∑g

i=1 x1i

(
(πi)(ln(πi))2/ ln(1− πi)

)]2
} .

(32)

We consider the same power for two methods:

z1 = z∗1
z2 = z∗2

=⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zα/2 −
lnωj

σθ̂j
= zα/2 −

lnωj
√

6

π
√
δj

zα/2 +
lnωj

σθ̂j
= zα/2 +

lnωj
√

6

π
√
δj

=⇒ π√
6

√
δj = σθ̂j , j = 1 =⇒ π√

6

√√√√√
⎡
⎣k

g∑

i=1

(x1i − x1.)
2

⎤
⎦
−1

=

√√√√√√

∑g
i=1

(
(πi)(ln(πi))2/ ln(1− πi)

)

(k∗)
{∑g

i=1 x
2
1i

(
(πi)(ln(πi))2/ ln(1− πi)

)∑g
i=1

(
(πi)(ln(πi))2/ ln(1− πi)

)
−
[∑g

i=1 x1i

(
(πi)(ln(πi))2/ ln(1− πi)

)]2
}

(33)

relative sample size

n∗

n
= k∗

k
=

6σ2
θ̂ j

π2δj

=
∑g

i=1 (x1i − x1.)
2 ×∑g

i=1

(
(πi)(ln(πi))2/ ln(1− πi)

)

(π2/6)
{∑g

i=1 x
2
1i

(
(πi)(ln(πi))2/ ln(1− πi)

)∑g
i=1

(
(πi)(ln(πi))2/ ln(1− πi)

)
−
[∑g

i=1 x1i

(
(πi)(ln(πi))2/ ln(1− πi)

)]2
} .

(34)
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Table 1: Relative sample sizes required to attain any power for the dichotomizing method versus the proposed method.

ω∗ = exp(θ)
Average proportion of successes (π)

0.1 0.2 0.3 0.4 0.5

0.25 23.7166 9.5092 7.4954 7.1996 6.8575

0.50 10.6719 5.4176 3.4215 2.5209 2.1784

0.75 7.7088 3.8713 2.5171 1.9380 1.5841

That is, (34) is independent of σ2 and applies for any power,
and any test size α.

Table 1 presents relative sample sizes n∗/n for a given
fixed parameter ω∗j and an average proportion of success

π. We consider the situations in which π = ∑g
i=1(πi/g) =

0.1, 0.2, 0.3, 0.4, 0.5, g = 9, ω∗j = 0.25, 0.50, 0.75.
For given fixed ω∗j and π, the relative sample sizes in

Table 1 can be computed by the following step:

(i) compute the value θj via the equation θj = ln(ω∗j ),

(ii) calculate the cut-off point C iteratively such that π
attained the specified value for the values xi1, using
the value of θj in (i).

As can be seen from Table 1, all values are greater than
1. The values of n∗/n increase as the ω∗j moves farther
away from 1. Values of Table 1 immediately highlight the
improvement accomplished by the proposed method.

6. Relative Efficiency of ω̂ j with ω̂∗j

Here, we examine the relative efficiency of the estimate ω̂ j to
the estimate ω̂∗j .

Using (24) and (26), the relative efficiency is given by

r.e.
(
ω̂ j , ω̂∗j

)
=

var
(
ω̂∗j
)

var
(
ω̂ j

)

=
6
(

exp
(
θj
))2 × σ2

θ̂ j

π2δj
(

exp
(
λβj/σ

))2 =
6σ2

θ̂ j

π2δj
.

(35)

Note that the relative efficiency is independent of n and σ2

and converges to a constant. Comparing (34) and (35), the
relative efficiency equals the relative sample sizes. Therefore,
as in Table 1, the proposed method is a consistent improve-
ment over the dichotomizing method with respect to relative
efficiencies.

It should be noted that these results hold true under the
following assumptions:

(1) the responses yi and β are related through the equa-
tion yi = xiβ + Ei where the independent Ei are
distributed as an extreme value with mean 0 and
variance σ2 > 0,

(2) the independent variables xi follow a discrete uni-
form distribution.

7. Odds Ratio

For values of π larger than 0.90, − ln(π) and π/(1 − π) are
very close. Hence, for large values of π,

ln(π1)
ln(π2)

∼= π1/1− π1

π2/1− π2
= OR. (36)

And from (7), odds ratio is given by

OR = exp

(
π√
6
· βj

σ

)
. (37)

The parameters estimated from the linear regression can be
interpreted as an odds ratio.

8. Simulation Study

It should be noted that, as in Table 1, the proposed method
is a consistent improvement over the dichotomizing method
with respect to relative efficiencies. These results hold true
under the assumption that predictor variable has a discrete
uniform distribution and that the random variables Ei follow
an extreme value distribution. To demonstrate the robust-
ness of this conclusion to changes in the distributions of pre-
dictor variables, simulations were run under different dis-
tributional conditions. The data were sampled 10000 times
for three sample sizes {n = 250, 500, 1000}, three average
proportions of successes {π = 0.10, 0.50, 0.95}, and seven
ωj{ωj = 0.75, 0.90, 1.1, 1.2, 1.3, 1.4, 1.5}. The simulated
data are generated using the following algorithm

(1) Generate yi, where yi = β0 + β1xi + Ei, β1 =√
6 lnωj/π through (7) to produce the correctωj , and

for simplicity β0 = 0, σ2 = 1.

(2) For fixed π, generate cutoff point C using (15).

We simulated the data for two scenarios based on the
distribution of the explanatory variable. In the first scenario,
the independent variable follows a continuous uniform dis-
tribution and range (−2, 2), and in the second, the indepen-
dent variable follows a truncated normal distribution with
mean 0 and range (−2, 2). The relative mean square errors,
relative interval lengths, absolute biases, and the probability
of coverage were calculated.

Results of the simulations addressing the validity of the
proposed method are displayed in Tables 2 and 3.

The simulations show that the relative mean square
errors are all greater than 1, increasing with the average
proportion of successes and when the ωj moves farther away
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Table 2: Simulated relative mean square errors, relative intervals lengths, coverage probabilities, and absolute biases for the proposed and
dichotomizing methods (using a continuous uniform distribution for the explanatory variable and an extreme value distribution for the
errors).

Sample
size

ω
Cut off

.75 .9 1.1 1.2 1.3 1.4 1.5

1.15a 1.07 1.09 1.14 1.24 1.47 1.71

1.10b 1.03 1.03 1.07 1.14 1.23 1.35

0.10 0.943c 0.948 0.949 0.949 0.945 0.938 0.933

0.948d 0.947 0.949 0.947 0.951 0.947 0.953

0.05e 0.04 0.12 0.14 0.10 0.15 0.11

0.07f 0.01 0.17 0.13 0.24 0.34 0.58

1.23 1.26 1.27 1.28 1.27 1.24 1.26

2.16 1.13 1.23 1.14 1.15 1.17 1.19

1000 0.50 0.940 0.951 0.951 0.945 0.942 0.937 0.934

0.951 0.949 0.951 0.950 0.948 0.947 0.948

0.04 0.01 0.08 0.10 0.05 0.09 0.04

0.05 0.04 0.15 0.12 0.09 0.12 0.13

12.75 12.44 13.22 12.68 13.14 12.91 12.79

3.67 3.57 3.58 3.63 3.69 3.76 3.84

0.95 0.943 0.951 0.952 0.944 0.944 0.938 0.929

0.952 0.954 0.952 0.952 0.951 0.951 0.951

0.04 0.07 0.11 0.10 0.10 0.17 0.10

0.75 0.68 0.86 1.01 1.21 1.45 1.24

1.30 1.08 1.07 1.17 1.24 1.54 1.95

1.16 1.03 1.04 1.08 1.15 1.25 1.39

0.10 0.942 0.950 0.951 0.95 0.944 0.941 0.936

0.951 0.950 0.949 0.951 0.954 0.954 0.953

0.12 0.07 0.24 0.25 0.21 0.18 0.29

0.23 0.08 0.33 0.39 0.41 0.73 1.21

1.35 1.10 1.27 1.26 1.26 1.25 1.26

1.26 1.03 1.13 1.14 1.16 1.17 1.20

500 0.50 0.940 0.949 0.947 0.948 0.943 0.940 0.933

0.952 0.951 0.949 0.949 0.954 0.950 0.951

0.23 0.34 0.27 0.23 0.26 0.25 0.38

0.48 0.11 0.17 0.18 0.31 0.26 0.42

13.04 13.17 13.8 13.90 14.45 14.48 14.47

3.72 3.65 3.68 3.73 3.82 3.91 3.99

0.95 0.942 0.947 0.951 0.949 0.947 0.938 0.935

0.953 0.952 0.954 0.955 0.955 0.953 0.954

0.05 0.11 0.08 0.08 0.24 0.32 0.27

0.94 1.38 1.78 1.92 2.52 3.00 2.90

13.41 14.46 1.12 1.28 1.52 1.96 2.33

3.78 3.73 1.04 1.09 1.18 1.30 1.45

0.10 0.942 0.949 0.949 0.945 0.942 0.942 0.933

0.957 0.954 0.948 0.949 0.952 0.957 0.953

0.02 0.20 0.38 0.33 0.42 0.41 0.66

2.11 2.74 0.42 0.84 1.18 1.78 2.24
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Table 2: Continued.

Sample
size

ω
Cut off

.75 .9 1.1 1.2 1.3 1.4 1.5

1.27 1.25 1.32 1.28 1.30 1.30 1.29

1.16 1.13 1.13 1.14 1.16 1.18 1.20

250 0.50 0.941 0.948 0.952 0.947 0.945 0.943 0.933

0.951 0.951 0.951 0.950 0.951 0.951 0.951

0.12 0.13 0.35 0.44 0.41 0.53 0.55

0.11 0.22 0.39 0.47 0.51 0.74 0.59

12.98 14.6 15.64 15.46 17.05 16.89 18.33

3.75 3.72 3.82 3.88 4.01 4.12 4.29

0.95 0.945 0.955 0.946 0.948 0.940 0.937 0.932

0.959 0.955 0.955 0.959 0.958 0.957 0.952

0.02 0.16 0.39 0.22 0.46 0.47 0.51

1.22 2.75 3.97 3.98 4.99 5.19 6.19

a: Relative mean square errors, b: Relative intervals lengths, c: Coverage probability (proposed), d: Coverage probability (dichotomized), e: % bias (proposed),
f: % bias (dichotomized).

from 1. The results in Tables 1 and 2 demonstrate that the
proposed method provides confidence intervals which suc-
cessfully maintain their nominal 95 percent coverage. For
the proposed method in first scenario, 51 out of 63 coverage
probabilities fell within (0.94, 0.96), and all 63 coverage pro-
babilities are greater than 0.93 and, in the second scenario,
almost all coverage probabilities fell within (0.94, 0.96). The
absolute biases for proposed method are never greater than
a few percent. The proposed method is less biased than the
dichotomizing method in 6 of 63 simulations in both two
scenarios.

9. An Example

To illustrate the application of the proposed method pre-
sented in the previous section, we utilize the data arising
from the National Health Survey in Iran. The other analyses
using this data appear in many places [16].

In this study, 14176 women aged 20–69 years were inves-
tigated. BMI (body mass index), our dependent variable, was
calculated as weight in kilograms divided by height in meters
squared (kg/m2). Independent variables included place of
residence, age, smoking, economic index, marital status, and
education level. The independent variables considered were
both categorical and continuous. At first, BMI was treat-
ed as a continuous variable, and ω̂ j and 95 percent con-
fidence intervals were calculated using the proposed linear
regression method. Then subjects were classified into obese
(BMI ≥ 30 kg/m2) and nonobese (BMI <30 kg/m2). A com-
plementary log-log model was used for the binary analysis,
with obese or nonobese used as the outcome measure. The
ω̂∗j and 95 percent confidence intervals were calculated using
the dichotomized method. Table 4 presents the coefficient
estimates, estimated confidence intervals, and relative con-
fidence interval lengths. The proposed and dichotomizing
methods produced different confidence intervals, although
the ω̂ j and ω̂∗j were similar only varying slightly. The

ω̂ j estimate from the proposed method had smaller variances
and shorter confidence intervals than the dichotomizing
method. All relative confidence interval lengths were greater
than 2.58.

10. Discussion

When assuming the errors Ei are distributed as an extreme
value distribution, as noted before, the method has several
advantages. First, the method allows the researcher to apply
the complementary log-log model without dichotomizing
and without loss of information. Second, the ω̂∗j from the
dichotomizing method is dependent on the chosen cutoff
point C and will vary with c. However, the proposed ω̂ j

is independent of the c since ω̂ j is a function of the con-
tinuous Yi and not a function of the dichotomized
Y∗i defined through C. Third, we show that the coefficient
of the complementary log-log model, θj , can be interpreted
in terms of the regression coefficients, βj . Fourth, when the
independent variables xi follow a discrete uniform distribu-
tion, the proposed method is a consistent improvement over
the dichotomizing method with respect to relative efficien-
cies. The proposed method can provide sample size saving,
smaller variances, and shorter confidence intervals than the
dichotomized method. Fifth, when π is large, the para-
meters estimated from the linear regression can be interpret-
ed as odds ratios.

Our results were consistent with the findings by Moser
and Coombs [12] and Bakhshi et al. [16] showing the
greater efficiency of parameter estimates from the regression
method that avoids dichotomizing in comparison with a
more traditional dichotomizing method using the logistic
regression.

Our main recommendation is to let continuous response
remain continuous. Do not throw away information by
transforming the data to binary. This means that if the objec-
tive is to estimate and/or test coefficients when responses
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Table 3: Simulated relative mean square errors, relative intervals lengths, coverage probabilities, and absolute biases for the proposed and
dichotomizing methods (using a truncated normal distribution for the explanatory variable and an extreme value distribution for the errors).

Sample size ω Cut off .75 .9 1.1 1.2 1.3 1.4 1.5

1.17a 1.02 1.08 1.13 1.19 1.28 1.36

1.11b 1.03 1.03 1.06 1.10 1.25 1.22

0.10 0.942c 0.948 0.948 0.952 0.944 0.942 0.940

0.951d 0.951 0.950 0.952 0.949 0.951 0.951

0.08e 0.06 0.03 0.14 0.13 0.14 0.16

0.10f 0.11 0.15 0.23 0.30 0.39 0.39

1.26 1.24 1.26 1.28 1.28 1.25 1.28

1.24 1.13 1.13 1.14 1.14 1.15 1.17

1000 0.50 0.944 0.948 0.952 0.947 0.947 0.944 0.941

0.948 0.951 0.949 0.949 0.947 0.950 0.949

0.02 0.09 0.08 0.07 0.18 0.16 0.13

0.03 0.06 0.12 0.16 0.20 0.16 0.14

12.33 13.12 13.03 12.71 12.86 12.55 12.88

3.62 3.59 3.61 3.62 3.64 3.68 3.71

0.95 0.944 0.951 0.948 0.948 0.945 0.945 0.946

0.952 0.948 0.95 0.949 0.949 0.951 0.952

0.10 0.04 0.11 0.04 0.16 0.16 0.20

1.26 1.05 1.56 1.36 1.43 1.80 1.94

1.18 1.09 1.06 1.75 1.23 1.32 1.58

1.11 1.03 1.03 1.06 1.11 1.16 1.23

0.10 0.945 0.95 0.951 0.951 0.949 0.943 0.944

0.953 0.953 0.953 0.950 0.949 0.951 0.950

0.04 0.13 0.31 0.18 0.33 0.36 0.37

0.21 0.08 0.37 0.50 0.62 0.69 0.96

1.25 1.27 1.27 1.29 1.27 1.29 1.25

1.14 1.13 1.13 1.14 1.15 1.16 1.17

500 0.50 0.944 0.948 0.949 0.947 0.948 0.944 0.935

0.951 0.951 0.951 0.948 0.951 0.948 0.949

0.13 0.22 0.35 0.37 0.35 0.30 0.44

0.16 0.19 0.39 0.48 0.44 0.41 0.54

13.11 14.02 14.02 13.5 13.54 13.80 14.32

3.73 3.71 3.73 3.75 3.77 3.81 3.86

0.95 0.944 0.95 0.951 0.950 0.947 0.944 0.944

0.954 0.95 0.951 0.953 0.948 0.956 0.953

0.15 0.10 0.24 0.38 0.32 0.33 0.43

2.50 2.70 2.92 3.10 2.92 3.36 3.89

1.28 1.11 1.12 1.19 1.33 1.54 1.76

1.11 1.03 1.04 1.08 1.13 1.19 1.28

0.10 0.947 0.951 0.950 0.947 0.950 0.950 0.942

0.951 0.950 0.950 0.952 0.954 0.952 0.951

0.40 0.34 0.37 0.64 0.69 0.58 0.81

0.26 0.06 0.69 1.08 1.30 1.55 2.22
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Table 3: Continued.

Sample size ω Cut off .75 .9 1.1 1.2 1.3 1.4 1.5

1.32 1.30 1.27 1.33 1.31 1.33 1.31

1.15 1.13 1.13 1.14 1.18 1.17 1.18

250 0.50 0.951 0.95 0.953 0.951 0.940 0.945 0.940

0.949 0.951 0.952 0.948 0.948 0.950 0.948

0.22 0.43 0.57 0.69 0.66 0.58 0.66

0.38 0.53 0.64 0.89 0.91 0.82 0.91

14.09 14.51 16.27 15.91 15.89 15.73 15.60

3.86 3.87 3.93 3.92 3.98 4.04 4.11

0.95 0.943 0.95 0.951 0.951 0.947 0.944 0.937

0.953 0.95 0.953 0.956 0.953 0.956 0.952

0.30 0.37 0.57 0.68 0.42 0.62 0.75

4.98 5.52 6.547 5.91 6.17 6.88 7.72

a: Relative mean square errors, b: Relative intervals lengths, c: Coverage probability (proposed), d: Coverage probability (dichotomized), e: % bias (proposed),
f: % bias (dichotomized).

Table 4: Adjusted ω̂∗j , ω̂ j for obesity and confidence intervals using two methods for the National Health Survey.

Covariates ω̂ j(ω̂∗j ) 95% CIa (proposed) 95% CI (dichotomized) Relativeb length of CI

Place of residence 1.65 (1.97)c 1.58–1.74 1.79–2.18 2.43

Age 1.021 (1.019) 1.018–1.022 1.015–1.022 1.75

Years of education 0.99 (0.98) 0.985–0.997 0.971–0.994 1.92

Smoking 0.76 (0.68) 0.66–0.90 0.51–0.92 1.71

Marital status 1.16 (1.42) 1.10–1.22 1.27–1.58 2.58

Lower-middle economy index 1.24 (1.32) 1.14–1.32 1.18–1.48 1.67

Upper-middle economy index 1.21 (1.26) 1.14–1.29 1.12–1.42 2.0

High economy index 1.20 (1.21) 1.11–1.30 1.08–1.36 1.47
aConfidence interval, bdichotomized/proposed, cproposed (dichotomized).

are continuous, please resist dichotomizing your response
variable.

Appendix

A. Largest Extreme Value Distribution

(a) The PDF and CDF are Given by

f
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−∞〈x〈∞, σ〉0,
(A.1)

where Y is a continuous outcome variable, x = (1, x1, . . . ,
xp−1) is the p×1 vector of known independent variables, β =
(β0,β1, . . . ,βp−1) is the p× 1 vector of unknown parameters,
and k ≈ 0.45.

It is easy to check that
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(A.2)

where

x =
(

1, x1, . . . , xj , . . . , xp−1

)
,

x(−1, j) =
(

1, x1, . . . , xj − 1, . . . , xp−1

)
,

β =
(
β0,β1, . . . ,βj , . . . ,βp−1

)′
.

(A.3)



12 Computational and Mathematical Methods in Medicine

(b) Suppose that Ei is distributed as a largest extreme value
with mean 0 and variance σ2 > 0. We conclude that the PDF
and CDF of each independent Yi are given by (A.1), and the
corresponding equality (A.2) is given by

ω̂ j = ln(1− π̂1)
ln(1− π̂2)

= exp

⎛
⎝ π√

6
· β̂ j

σ̂

⎞
⎠. (A.4)

(c) Similar to largest extreme value distribution

μi = πi = 1− exp

⎛
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θ jxi j
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⎠
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πi(1− πi)

= (1− πi)(ln(1− πi))2

πi
,

(A.5)

then

X ′WX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

i=1

(1− πi)(ln(1− πi))2

πi

n∑

i=1

(1− πi)(ln(1− πi))2

πi
· · ·

n∑

i=1

xi,p−1
(1− πi)(ln(1− πi))2

πi

n∑

i=1

xi1
(1− πi)(ln(1− πi))2

πi

n∑

i=1

x2
i1

(1− πi)(ln(1− πi))2

πi
· · ·

n∑

i=1

x1xi,p−1
(1− πi)(ln(1− πi))2

πi

...
...

n∑

i=1

xi,p−1
(1− πi)(ln(1− πi))2

πi

n∑

i=1

xixi,p−1
(1− πi)(ln(1− πi))2

πi
· · ·

n∑

i=1

x2
i,p−1

(1− πi)(ln(1− πi))2

πi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.6)
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