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Abstract

Heterologous immunity is an important aspect of the adaptive immune response. We

hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response,

which has been shown to play an important role in HIV-1 immunity and control. We found

that stimulation of peripheral blood mononuclear cells (PBMCs) from HIV-1-positive sub-

jects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes

resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR reper-

toire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1

peptide was different from that of cells stimulated with cross-reactive microbial peptides in

some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either

HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous

CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can

modulate HIV-1-specific immunity.

Introduction

CD8+ T cells play a major role in the immune response against HIV-1 infection. The emer-

gence of HIV-specific CTL in primary infection correlates with a drop in viremia to the set

point viral load [1,2] and depletion of CD8+ T cells in viremic SIV-infected macaques leads to

a significant increase in viral loads [3,4]. Furthermore potent HIV-specific CD8+ T cell

responses are seen in the majority of subjects who naturally control viral replication (elite sup-

pressors) [5–10]. Heterologous immunity, a key aspect of adaptive immunity, may explain the
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presence of HIV-specific CD4+ T cell responses in HIV-negative subjects [11,12], but this phe-

nomenon has not been as extensively explored in the context of the CD8+ T cell response to

HIV-1.

We hypothesized that microbial peptides that cross-react with HIV-1 peptides can modu-

late HIV-1-specific CD8+ T cell immunity. We chose to explore this hypothesis in the context

of the HLA-B�27 allele, which has been associated with spontaneous control of HIV infection,

as well as the HLA-A�02 allele, a common variant with broad clinical relevance. We focused

on two epitopes in HIV-1 Gag, KK10 (Gag 263–272, KRWIILGLNK) and SL9 (Gag 77–85,

SLYNTVATL), which are immunodominant in HLA-B�27+ [13] and HLA-A2+ [14] HIV-1

infected individuals, respectively.

We show here that ex vivo stimulation with cross-reactive microbial peptides can induce

the expansion of CD8+ T cells specific for KK10 and SL9. We also demonstrate that in some

subjects, the repertoire of CD8+ T cells generated by stimulation with HIV-1 peptides is quan-

titatively distinct from the repertoire of CD8+ T cells generated by stimulation with cross-reac-

tive microbial peptides, although both populations of stimulated CD8+ T cells are capable of

suppressing ex vivo HIV-1 infection in autologous CD4+ T cells. Together, these data suggest

the importance of environmental factors in shaping HIV-1-specific immunity. Characteriza-

tion of the CD8+ T cell response against HIV-1 may inform strategies for a functional or steril-

izing HIV-1 cure, many of which implicitly or explicitly depend on CD8+ T cell pressure to

clear HIV-1 infected cells.

Materials and methods

Cross reactive peptide identification

pBLAST search was performed using the BLOSUM62 matrix scoring parameter with a gap

cost existence of 10 and gap cost extension of 1. Results from taxid 11676 (HIV), 12721

(Human immunodeficiency virus), 11723 (SIV), 57667 (SHIV), and 32630 (synthetic con-

structs) were excluded. Additionally, any predicted protein products were excluded. The first 9

results were included in analysis here (KKCR1-KKCR9 and SLCR1-SLCR9).

Blood donors

All participants provided written, informed consent prior to participation in this study in

accordance with Johns Hopkins Medical Institution IRB-approved protocol. Table 1 summa-

rizes characteristics of study participants. Chronic progressors (CP) are HIV-1-positive indi-

viduals who began antiretroviral therapy (ART) during chronic infection. All CPs had a viral

load of< 20 copies of HIV RNA/mL at the time of this study, with the exception of subject

CP2A who was non-adherent to treatment. VC5 is a viremic controller who was started on

ART. Elite suppressors (ES) are infected with HIV-1 but have maintained undetectable viral

loads without ART. The HLA-B�27+, HIV negative subjects were recruited from ankylosing

spondylitis and uveitis clinics.

Cell culture and peptide stimulation

PBMCs were isolated from fresh whole blood samples by Ficoll density centrifugation. 1x106

PBMCs were stimulated with 1 μg of peptide in 1 mL of RPMI 1640 supplemented with 10%

FBS and 10U IL-2 in a 48-well plate for six days. 10U of IL-2 were supplemented every other

day. After six days, cells were stained with KK10 or SL9 pentamer and re-stimulated overnight

in 1 mL of RPMI 1640 supplemented with 10% FBS, 10U IL-2, 0.5 μg CD28 (CD28.2, BD Bio-

sciences), 0.5 μg CD49d (9F10, BD Biosciences), 3 μM monensin, 1 μg brefeldin A, and 1 μg of
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peptide. After stimulation for 15 hours, PBMCs were stained with CD3 (UCHT1, Biolegend),

CD8 (RPA-T8, Biolegend), IFN-γ (B27, Biolegend), perforin (B-D48, Cell Sciences) and KK10

or SL9 pentamer (Proimmune) before analysis by flow cytometry (BDFACS Canto II) and

analysis (FlowJo, TreeStar). Due to availability, samples were run in single replicates.

IFN-γ ELISpot

Human IFN-γ secretion was measured by stimulation of 2x105 PBMCs in RPMI 1640 supple-

mented with 10% FBS using precoated ELISpot plates (Mabtech). Processed plates were ana-

lyzed by Zellnet Consulting. Samples were run in triplicate wells.

TCR deep sequencing. 30x106 PBMCs were stimulated with 1 μg/mL peptide and cul-

tured in RPMI 1640 supplemented with 10% FBS and 10U/mL IL-2 for six days. 10U/mL IL-2

was supplemented every other day. CD8+ T-cells were isolated by positive magnetic separation

(Miltenyi Biotec). CD8+ T-cells were stained with CD3 (UCHT1, Biolegend), CD8 (RPA-T8,

BD Biosciences), and KK10/SL9 pentamer (Proimmune) prior to sorting CD3+/CD8+/KK10+

or CD3+/CD8+/SL9+ cells (MoFlo XDP, Beckman Coulter). Between 1x104 and 1x105 cells

were collected and snap frozen prior to deep sequencing of the CDR3 region of the TCR-β
locus (ImmunoSeq, Adaptive Biotechnologies). TCR deep sequence results were exported

from the native analysis program and analyzed in Excel. 2 proportion Z test was performed

using the analysis tools available in the ImmunoSeq platform.

PBMC suppression assay

PBMCs were stimulated with 1 μg/mL of peptide in RPMI 1640 supplemented with 10% FBS

and 10U/mL IL-2 for five days. 10U/mL IL-2 was supplemented every other day. PBMCs were

challenged with 2 μL of 1,000X concentrated IIIB virus (Advanced Biotechnologies), spun at

1,200 x g for 15 minutes at 30˚C, and cultured for 36 hours. Cells were then stained for CD3

(UCHT1, Biolegend), CD8 (RPA-T8, Biolegend) prior to fixation and permeabilization

Table 1. Characteristics of HIV-infected patients.

Patient HLA-B27 HLA-A2 cART Time on suppressive regimens VL

(copies/mL)

CD4 Count

(Cells/μL)

CP1A + FTC/TAF, DTG 6 years <20 661

CP2A + + 3TC/ABC, DRV/r NA 16,800 211

CP3A + ETV, RAL, DRV/r 6 years <20 668

CP4A + 3TC/ABC, DTG 2 years <20 353

CP11 + TDF/FTC, DRV/r 8 years <20 1032

CP12 + 3TC, RAL EFV 3 years <20 860

CP37 + AZT/3TC, EFV, ATV/r 8 years <20 761

CP41 + 3TC/ABC DTG 1 year <20 948

CP42 + MVC, RAL, DRV/r 4 years <20 1140

CP43 + MVC, RAL, DRV/r 3 years <20 794

CP44 + FTC/TDF DRV/r 6 years <20 692

VC5 + FTC/TDF DRV/r 2 years <20 595

ES9 + + NA NA <20 779

ES31 + NA NA <20 1236

3TC (lamivudine), ABC (abacavir), AZT (zidovudine), FTC (emtricitabine), TAF (tenofovir alafenomide), TDF (tenofovir diproxil), DRV (darunavir), DTG

(dolutegravir), EFV (efavirenz) ETV (etravirine), MVC (maravaroc), RAL (raltegravir)

NA: Not applicable. CP2A is non adherent on ART and ES9 and ES31 are not on ART

https://doi.org/10.1371/journal.pone.0192098.t001

Microbial peptides can modulate HIV-specific T cell responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0192098 February 21, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0192098.t001
https://doi.org/10.1371/journal.pone.0192098


(Cytofix/Cytoperm, BD Biosciences). Cells were then stained for intracellular Gag (RC57,

Beckman Coulter) prior to analysis by flow cytometry (BDFACS Canto II) and analysis

(FlowJo, TreeStar). Samples were run in triplicate.

CD8+ T-cell suppression assay

PBMCs were stimulated with 1 μg/mL of peptide in RPMI 1640 supplemented with 10% FBS

and 10U/mL IL-2 for 6 days. 10 U/mL IL-2 was supplemented every other day. On day 6, fresh

PBMCs were obtained. CD8+ T-cells were isolated from fresh or stimulated PBMCs by posi-

tive magnetic separation (Miltenyi Biotec). CD4+ T-cells were then isolated from fresh CD8+

T-cell-depleted PBMCs and spinoculated with 50ng of pseudotyped NL4-3 virus per 1x105

cells at 1,200 x g for 2 hours at 30˚C. Infected CD4+ T-cells were co-cultured with isolated

CD8+ T-cells at various effector-to-target ratios for 6, 12, or 24 hours. Cells were stained for

CD3 (UCHT1, Biolegend), CD8 (RPA-T8, Biolegend) prior to fixation and permeabilization

(Cytofix/Cytoperm, BD Biosciences). Cells were then stained for intracellular Gag (RC57,

Beckman Coulter) prior to analysis by flow cytometry (BDFACS Canto II) and analysis

(FlowJo, TreeStar). Due to availability, samples were run in single replicates.

Statistical analysis

Excel was used for analysis of TCR frequency. GraphPad Prism was used for other statistical

analysis. Analysis was done using either an ANOVA with p-values adjusted using Holm-

Sidak’s multiple comparison test (PBMC suppression test) or a Friedman test with Dunn’s

multiple comparison correction (expansion of HIV pentamer-specific CD8+ T cells).

Results

Cross-reactive microbial peptides stimulate HIV-1-specific CD8+ T cells

We first investigated whether cross-reactive microbial peptides could stimulate existing HIV-

1-specific CD8+ T cells from HIV-1-positive subjects ex vivo. Cross-reactive microbial peptide

candidates were selected by performing a pBLAST search and limiting results using guidelines

from previously described biochemical studies [15,16]; we focused on the anchor residue and

considered the P1, P3, and PO residues. The pBLAST database is limited to previously charac-

terized proteins and therefore represents only a subset of the sequence diversity found in

nature. The microbial peptides we chose are not intended to be comprehensive but are repre-

sentative of epitopes that could cross-react with HIV-specific T cell receptors (TCRs). Tables 2

and 3 show cross-reactive peptide candidates for KK10 and SL9, respectively.

To determine whether cross-reactive peptides could expand KK10-specific CD8+ T cells,

we used KK10 or KK10-cross-reactive (KK10CR) microbial peptides to stimulate PBMCs iso-

lated from HLA-B�27+ HIV-1-infected subjects (Table 1) and measured expansion of

KK10-specific CD8+ T cells by flow cytometry (Fig 1A). In response to KK10 stimulation, we

observed expansion of KK10-specific CD8+ T cells in six of seven subjects (Fig 1B). The subject

who did not respond to KK10 stimulation, a chronic progressor (CP) identified as CP4A, is

infected with HIV-1 bearing the R264K escape mutation [17–19] which ablates binding of the

KK10 epitope to the HLA-B�27 molecule. Stimulation with four of the nine KK10CR peptides

produced responses in at least one subject. Of the six subjects who responded to KK10 stimula-

tion, all six also responded to stimulation with at least one KK10CR peptide. Stimulation with

CMV, EBV and influenza (CEF) pooled peptides did not induce outgrowth of KK10-specific

CD8+ T cells (Fig 1B), indicating that the expansion of KK10-specific cells in response to

KK10CR peptide stimulation is not due to nonspecific activation. While there was a significant
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increase in KK10-specific CD8+ T cells after stimulation with KK10 (p = 0.0083 by Friedman test

with Dunn’s multiple comparison correction), no other peptide produced significant increases in

KK10-specific CD8+ T cells after stimulation; this is likely due to the pattern of KK10CR peptide

response differed among subjects, suggesting that the TCR repertoire of KK10-specific CD8+ T

cells varies between individuals and may be shaped by other stimuli in addition to KK10.

A similar pattern of responses was seen in samples from HLA-A2+ HIV-1-infected subjects

(Table 1) after PBMC stimulation with SL9 or SL9-cross-reactive (SL9CR) microbial peptides

(Fig 1C and 1D). Four out of the eight HLA-A2+ subjects we tested did not respond to the SL9

peptide at levels above the CEF negative control, likely a reflection of immune escape in this epi-

tope. Due to the high frequency of the HLA-A2 allele in subject populations and the low fitness

cost of CD8+ T cell escape in the SL9 epitope [20], a large fraction of circulating viruses bear

SL9 escape mutations [21]. As a result, subjects may never be exposed to or develop immunity

against the wild-type SL9 epitope [22]. There was no significant increase in SL9-specific CD8+

T cells after stimulation with SL9 peptide, due to the heterogeneity of recognition of SL9.

Characterization of CD8+ T-cell response to KK10CR peptides

We next asked whether KK10 or KK10CR peptide stimulations induce qualitatively similar ex
vivo responses in HIV-1-positive HLA-B�27+ subject samples. To compare the functional avid-

ities of KK10 and KK10CR microbial peptides, we stimulated PBMCs with peptide and mea-

sured IFN-γ release by ELISpot (Fig 2A). In all three subjects tested, stimulation with KK10CR

microbial peptides induced IFN-γ-secreting cells at frequencies similar to those induced by

stimulation with KK10 peptide.

Table 2. Panel of potential KK10 cross-reactive peptides.

Peptide Sequence Length Origin Species GenBank Accession Number

KK10 KRWIILGLNK 10 HIV-1 AIJ50268.1

KK10CR-1 KRLWIILGLIM 11 Cardiobacterium hominis WP_004142625.1

KK10CR-2 ARWIILGLGT 10 Corynebacterium genitalium EFK55173.1

KK10CR-3 QRWIILGLVL 10 Pseudomonas syringae WP_003413168.1

KK10CR-4 KRNTWIILGLYT 12 Lactobacillus johnsonii KRK54456.1

KK10CR-5 KRWIFLGLTI 10 Imtechella halotolerans WP_008237438.1

KK10CR-6 KRWVVLGLTA 10 Cyanothece sp 7424 WP_015956625.1

KK10CR-7 QRWIALGLNV 10 Paenibacillus terrae WP_014282856.1

KK10CR-9 QRWIILGLVI 10 Pseudomonas fragi WP_003443111.1

KK10CR-9 ERWAILGLNG 10 Streptococcus suis WP_002942865.1

https://doi.org/10.1371/journal.pone.0192098.t002

Table 3. Panel of potential SL9 cross-reactive peptides.

Peptide Sequence Length Origin Species GenBank Accession Number

SL9 SLYNTVATL 9 HIV-1 AIJ50268.1

SL9CR-1 SLYNTVVTL 9 Sediminispirochaeta smaragdinae ADK79875.1

SL9CR-2 SLYNTVETL 9 Syntrophobacter fumaroxidans WP_011699462.1

SL9CR-3 DLYDTVATL 9 Paraburkholderia oxyphila WP_028223558.1

SL9CR-4 TLYNTVAAL 9 Streptomyces sp. S4 WP_010638463.1

SL9CR-5 SLYDTVAAL 9 Actinoplanes sp. N902-109 WP_015620482.1

SL9CR-6 RLYNTVVTL 9 Candidatus Accumulibacter EXI68586.1

SL9CR-7 RLYNIVATL 9 Neisseria meningitides WP_024497022.1

SL9CR-8 ELYNTVNTL 9 Methanosarcina acetivorans WP_011020389.1

SL9CR-9 PLYTTVATL 9 Bacillus thuringiensis AFJ04417.1

https://doi.org/10.1371/journal.pone.0192098.t003
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Characterization of CD8+ T cell response to HIV-1 and cross-reactive

peptides

We next asked whether HIV-1 and cross-reactive peptide stimulations induce similar ex vivo
responses in HIV-1-positive subject samples. To characterize the HIV-1-specific CD8+ TCR

repertoires induced by stimulation with HIV-1 peptides or cross-reactive microbial peptides,

we stimulated PBMCs from HIV-1-positive subjects with either HIV-1 or cross-reactive

microbial peptides, sorted HIV-1 peptide-specific CD8+ T cells, and used immunoSEQ deep
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Fig 1. Cross-reactive microbial peptides stimulate HIV-1-specific CD8+ T cells. (A) Flow cytometric plots of outgrowth of KK10-specific CD8+ T cells from PBMCs

(subject ES9) after six-day stimulation with no peptide, CEF pooled peptides, KK10 peptide, or KK10CR peptides. (B) Summarized results for outgrowth of

KK10-specific CD8+ T cells from seven HIV-1-positive subject samples stimulated with CEF pooled peptides, KK10 peptide, or individual KK10CR peptides. (C) Flow

cytometric plots of outgrowth of SL9-specific CD8+ T cells from PBMCs (subject CP2A) after six-day stimulation with no peptide, CEF pooled peptides, SL9 peptide, or

SL9CR peptides. (D) Summarized results for outgrowth of SL9-specific CD8+ T cells from eight HIV-positive subject samples stimulated with CEF pooled peptides, SL9

peptide, or individual SL9CR peptides.

https://doi.org/10.1371/journal.pone.0192098.g001

Microbial peptides can modulate HIV-specific T cell responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0192098 February 21, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0192098.g001
https://doi.org/10.1371/journal.pone.0192098


sequencing to characterize their TCR repertoires. Individual TCRs were identified by sequenc-

ing the highly variable CDR3 region of the TCR-β gene. We used this protocol to assess the

KK10-specific repertoire in HLA-B�27+ subjects and the SL9-specific CD8+ T cell repertoire in

HLA-A2+ subjects.

In all three HLA-B�27+ subjects tested and three of the four HLA-A2+ subjects tested, there

were statistically significant differences between the frequencies HIV-specific TCR repertoires

of stimulated and unstimulated CD8+ T cells (S1 Table and S2 Table). However, the number of

TCR clones that were significantly different across the different stimulation conditions varied

by subject. In subjects ES31 (HLA-B�27+, Fig 2B) and CP37 (HLA-A2+, Fig 3), a single TCR

clone predominated in all three conditions shown; the difference in the frequency of the pre-

dominant TCR in the different stimulation conditions, while significant, likely would not have
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substantial difference in functional activity. In subjects ES9 and CP2A, the TCR repertoire of

HIV-1-specific CD8+ T cells changed considerably in response to stimulation with HIV-1 and

cross-reactive peptides with respect to the TCR repertoire of unstimulated HIV-1 peptide-spe-

cific CD8+ T cells. Interestingly, in CP2A, who is positive for both HLA-A2 and HLA-B�27

and was viremic at the time of sample collection (Table 1), stimulation with HIV-1 peptides or

with cross-reactive peptides resulted in the expansion of distinct HIV-1 peptide-specific TCR

repertoires, for both KK10 (Fig 2B) and SL9 (Fig 3).

Suppression of HIV replication after stimulation with HIV-1 or cross-

reactive peptides

CD8+ T cells are much more effective at controlling HIV-1 replication after stimulation with

HIV-infected cells or peptides [8]. Based on this concept, we developed a novel PBMC sup-

pression assay to measure inhibition of HIV-1 replication by peptide-stimulated cells. Unfrac-

tionated PBMCs from HIV-infected subjects were either left unstimulated (as a negative

control) or were stimulated with HIV-1 peptides or cross-reactive microbial peptides for five

days. After stimulation, we infected the unfractionated PBMCs with concentrated IIIB virus

and incubated for 40 hours, then quantified the percentage of infected CD4+ T cells by staining

for intracellular HIV-1 Gag. Suppression of 20% or less was defined as below the limit of quan-

tification, defined by responses observed in HIV-negative healthy subjects (data not shown).

In both HLA-B�27+ (Fig 4A and 4B) and HLA-A2+ (Fig 4C and 4D) subject samples, stimu-

lation of PBMCs with HIV-1 or cross-reactive microbial peptides resulted in much lower fre-

quencies of infected target cells compared to unstimulated PBMCs, whereas stimulation with

negative control CEF peptides had no effect on the frequency of infected cells. The results of

this suppression assay are summarized in Fig 4B (KK10) and 4d (SL9), and p-values for indi-

vidual subjects are summarized in S3 Table. Overall, the magnitude of suppression in cross-

reactive peptide-stimulated cultures reached a similar magnitude to the magnitude of suppres-

sion in cultures stimulated with HIV-1 peptides.

Purified T cell suppression assay

To confirm that the suppression of viral replication seen in the PBMC suppression assay was

mediated by HIV-1-specific effector CD8+ T cells, we performed a variation of the assay using

purified cells. We isolated and infected CD4+ T cells, and then cultured them alone or in the

presence of autologous purified CD8+ T cells. In this purified cell suppression assay, CD8+ T

cells stimulated with KK10 and KK10CR peptides suppressed viral replication more effectively

than unstimulated CD8+ T cells (Fig 5). This suppression was abrogated when the target CD4+

T cells were infected with an HIV-1 clone harboring R264K/L268M escape mutations.

The purified cell suppression assay confirms that stimulation with HIV-1 or cross-reactive

peptides enhance the ability of CD8+ T cells to suppress HIV-1 infection. Importantly, the

magnitude of suppression is comparable between KK10 and KK10CR peptides, demonstrating

again the potential importance of cross-reactive antigens as a modulator of HIV-1 specific

immunity.

Most importantly, the results of the purified cell suppression assay highlight the key role

that CD8+ T cells play in HIV-1 immunity. We saw a dose-dependent relationship between

effector-to-target cell ratio and suppression of HIV-1 replication (Fig 5), indicating that the

CD8+ T cells are directly responsible for suppressing infection in autologous CD4+ T cells. We

also saw that this suppression depends on CD8+ T cells specifically targeting the KK10 epitope,

regardless of whether the CD8+ T cells were stimulated with KK10 or KK10CR peptides.
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https://doi.org/10.1371/journal.pone.0192098.g003
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KK10 responses in HIV-negative HLA-B�27+ donors

We next asked whether we could detect HIV-specific immune responses in HIV-negative sub-

jects possibly as a result of exposure to cross reactive epitopes. Although HIV-specific CD4+ T-

cells have been observed in HIV-seronegative individuals [11,12], we were not able to detect

KK10-specific CD8+ T-cells in PBMCs isolated from 25 HLA-B�27+ HIV-seronegative indi-

viduals upon stimulation with KK10 peptide by either staining with a pentamer (Fig 6A) or

with antibodies to IFN-γ and perforin (Fig 6B). In contrast we were able to detect CD8+ T cell

responses to CEF peptides (Fig 6B).

Discussion

Recent studies have suggested that cross reactive microbial peptides can induce HIV-specific

CD4+ T cell response in HIV-negative subjects [11,12]. In contrast, there is less known about

the role of heterologous immunity in the induction and maintenance of HIV-specific CD8+ T

cell responses. Several studies have shown that cross reactivity between the HIV-1 SL9 peptide

and the immunodominant influenza peptide GL9 [23–24] or the HCV peptide AL9 [25] can

occur in HIV-infected HLA-A2+ subjects. Additionally, several studies have looked at the abil-

ity of the TCR to cross-react to escape variants within HIV epitopes [26–30]. However, it is

not known whether similar responses are seen in subjects with other HLA alleles and whether

cross reactivity to other microbial peptides occurs.

In this study we looked first at HLA-B�27+ subjects since responses to a single immunodo-

minant epitope is associated with control of viral replication [18,19]. We then looked at

HLA-A2+ subjects given the high prevalence of this allele. We found significant cross reactivity

between several microbial peptides and the KK10 and SL9. We show here that these cross-

reactive microbial antigens can stimulate and expand HIV-specific CD8+ T cell responses. We

also show significant differences between the TCR repertoires of CD8+ T cells expanded with

HIV-1 versus cross-reactive microbial peptides. Interestingly, the pattern of response to cross-

reactive microbial peptides differed among subjects, supporting the conclusion that the TCR

repertoire of HIV-specific CD8+ T cells may be shaped by other stimuli in addition to HIV-1

infection. These results suggest that in some subjects, microbial peptides can modulate HIV-

specific immunity by differentially stimulating different HIV-specific TCRs. This finding,

which is consistent in subjects with both protective and non-protective HLA alleles, may have

implications for the recognition of polymorphisms within HIV-1 epitopes [26,27].

We have also shown that stimulation with cross-reactive peptides can enhance the ability of

HIV-specific CD8+ T cells to control HIV-1 replication. Together, the data from two suppres-

sion assays show that cross-reactive peptide-stimulated CD8+ T cells can suppress HIV-1

infection. Additionally, we show that suppression by KK10CR-stimulated CD8+ T cells relies

on a KK10 epitope-dependent mechanism.

Interestingly, we did not see KK10-specific CD8+ T cell responses in HIV-negative

HLA-B�27+ subjects. In a similar study, SL9-specific CD8+ T cell responses were not seen in

HIV-negative HLA-A2+ positive subjects [24]. It’s not clear why de novo HIV-specific CD4+ T

cell responses would be easier to induce by cross reactive peptides than HIV-specific CD8+ T

cell responses, but our data do suggest that cross reactive microbes can stimulate the robust

expansion of pre-existing HIV-specific CD8+ T cell responses in some subjects. Taken

vivo) autologous CD8+ T cells. Viral suppression was measured at four different effector-to-target cell ratios. Left panels show suppression of wild-type (WT)

NL4-3 reporter virus, and right panels show suppression of NL4-3 harboring the R264K and L268 mutations in KK10, which prevent KK10 presentation on

HLA-B�27 MHC molecules.

https://doi.org/10.1371/journal.pone.0192098.g005
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together, the results presented here demonstrate that cross-reactive microbial peptides can

modulate HIV-specific CD8+ T cell responses. These findings could inform vaccine develop-

ment and the design of CD8+ T cell-based immunotherapy for eradication studies.
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