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Could imiquimod (Aldara 5% cream) or other TLR7 agonists be used in the treatment of COVID-19?  
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A B S T R A C T   

Toll-like receptor 7 is critical in recognition of single strand RNA viruses, including SARS CoV-2, and generation 
of anti-viral immunity. Coronaviruses evolved strategies to dampen the host immunity. Herein, we discuss the 
potential use of TLR7 agonists in the early stages of COVID-19 treatment.      

Coronavirus Disease 2019 (COVID-19) was first described in 2019 in 
Wuhan city of Hubei state, China, as a pneumonia caused by a pre-
viously unknown pathogen. The International Coronavirus Study Group 
named the responsible virus initially as 2019-nCoV and later as SARS- 
CoV-2. World Health Organization (WHO), named the disease caused 
by SARS-CoV-2 as COVID-19 [1,2]. SARS-CoV-2 belongs to beta-cor-
onavirus family, which also includes SARS-CoV and MERS-CoV, and is 
an enveloped, linear, positive strand RNA virus. Coronaviruses are 
zoonotic in origin and spread from human to human, causing flu-like or 
more severe diseases such as middle east respiratory syndrome (MERS) 
or severe acute respiratory syndrome (SARS). Studies showed SARS- 
CoV might have originated from civic cats whereas MERS-CoV might 
have crossed from camels to humans. Bats and pangolins have been 
suggested as the likely origin of SARS-CoV-2 [3,4]. There are several 
other coronaviruses that have not made their way to humans. Fatality 
rate for SARS-CoV was ~11%, for MERS ~35–50%; currently, for 
SARS-CoV2 is ~2% [2]. 

There is no specific antiviral drug for treatment of COVID-19. 
Currently, there is also no vaccine. The patients are treated with com-
bined anti-viral, anti-malarial drugs and corticosteroid and interferon 
(IFN) β. Critical patients in the intensive care unit receive combined 
antivirals (oseltamivir, ganciclovir, lopinavir, ritonavir, Remdesivir), 
anti-malarials (chloroquine, hydroxy-chloroquine) and oxygen support 
and mechanical ventilation [5]. 

Early Type I IFN response is critical in antiviral immunity [6–10]. 
Production of Type I IFNs are induced by viral nucleic acids upon in-
teraction with their respective membrane bound or cytoplasmic sensors 
TLR3, TLR7, TLR9, RIG-I, MDA5 and cGAS etc. Type I IFN signaling 
induce expression of various interferon stimulated genes (ISG) whose 
products allow direct inhibition of viral replication/production, pre-
sentation of viral antigens by MHC I molecules, recruitment of asso-
ciated myeloid and lymphoid lineages to the site of infection and in-
itiation of local inflammatory response [6]. Viruses in general, evolved 
strategies to overcome host immune responses [10]. SARS-CoV and 
MERS CoV escape IFN-mediated growth inhibition by preventing the 
induction of IFN-β [11]. This is possibly partly due to transient rather 
than long lasting IRF3 nuclear localization [11]. Additionally, SARS- 
CoV and MERS-CoV, compared with SARS-CoV-2, produce IFN an-
tagonists, open reading frame (ORF) 3b and ORF6 which hijack the 
host’s anti-viral response [9]. Thus, early administration of Type I IFN 

into mice in MERS infection models had protective effects and blunted 
the viral replication [7]. SARS-CoV-2, however, lacks ORF3b and have 
alterations in ORF6, possibly due this, SARS-CoV-2 displays dramatic 
sensitivity to IFNα in vitro [12]. Accordingly, IFNα2b sprays may re-
duce the infection rate of SARS-CoV-2 [9,13] These findings suggest 
that IFN-I or therapeutic approaches which will augment Type I IFNs 
may be used as prophylaxis against SARS-CoV-2. This notion has also 
been supported by the in vitro efficacy of interferon pretreatment 
against the virus [12], while the replication of MERS-CoV and SARS- 
CoV, was reported to be less sensitive to IFN-I prophylaxis owing to 
presence of inhibitory ORF3b, ORF6 and others [9,14–16]. Among Type 
I IFNs, IFN-β (IFNβ1b or IFNβ1a) appears to be more potent inhibitor of 
coronaviruses (SARS-CoV) compared with IFN-α [9,17,18]. 

On the other hand, severe COVID-19 patients have elevated levels of 
pro-inflammatory cytokines IL-6, IL-1β, IL-2, IL-8, IL-17, G-CSF, GM- 
CSF, M-CSF, IP10, MCP1, MIP1α (CCL3) and TNF-α in their sera  
[19,20], this burst of cytokines is defined as cytokine release syndrome 
(CRS) and is also common during CAR T cell therapies, macrophage 
activation syndrome (MAS) or hemophagocytic lymphohistiocytosis 
(HLH) [21–23], COVID-19 pathology mainly consists of pulmonary le-
sions, and thus, presents similar characteristics with interferonopathies 
which root from intrinsic hyperactive IFN response. Additionally, IL-6, 
IL-1β and GM-CSF were considered to be the major cytokines con-
tributing to CRS. Indeed, neutralizing IL-6 (via tocilizumab) showed 
promise in severe COVID-19 patients [24,25], IL-1β or TNF-α blockers 
are considered or planned for clinical trials [19,22,23], It’s yet unclear 
how SARS CoV-2 overcomes host immune responses collectively, and if 
and how it may suppress initial IFN mediated anti-viral immune re-
sponse of the host which is critical for limiting destructive capacity of 
virus [7–10,18]. 

Imiquimod (IMQ) is a heterocyclic molecule that belongs to imi-
dazoquinoline family and is a Toll-like receptor (TLR) 7 agonist  
[26,27]. Anti-viral and anti-tumor properties of IMQ has been defined. 
As topical ointment, Aldara 5% cream (of IMQ) has been approved by 
US Food and Drug Administration (FDA) in the treatment of genital and 
perianal warts, molluscum contagiosum, actinic keratosis and super-
ficial basal cell carcinoma [26]. IMQ activates receptor bearing-antigen 
presenting cells, DCs (mostly plasmacytoid DCs in skin) and macro-
phages, induces their maturation and migration to draining lymph 
nodes (dLNs) [28,29]. IMQ-driven TLR signaling results in expression of 
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IFN-α/β and downstream ISGs, including IFIT family members in DCs  
[26,27]. When applied to skin Aldara activates and mobilizes Langer-
hans’ cells to dLNs. Additionally, IL-12, IL-23, IL-6, IL-1β or TNF-α 
cytokines’ production is induced by its topical application. Importantly, 
though skin tissue has mostly IFN-α expression, both IFN-α and β are 
elevated in dLNs [30]. Imiquimod also activates Th1-mediated im-
munity and promotes cross-presentation by DCs of viral or tumor an-
tigens [26]. 

IMQ has been considered as an adjuvant and antiviral molecule in 
the recent years. Adjuvant power of IMQ has been demonstrated in 
several studies against Influenza virus [31–33]. Influenza viruses are 
negative strand RNA viruses with potentially similar epidemic, pan-
demic, morbidity and mortality capacity to coronaviruses. When used 
as adjuvant, IMQ was effective in inducing virus specific IgG and IgM 
production, against inactive Influenza virus [33]. Aldara or TLR7 ago-
nists were also very potent as an adjuvant. More importantly however, 
in a study by To et al. intranasal application of TLR7 agonist IMQ re-
duced peak viral replication, weight loss, pulmonary inflammation and 
neutrophil infiltration to lungs [34]. Prophylactic intramuscular injec-
tions of poly I:C another TLR7 ligand, or TLR4, TLR9 agonists LPS and 
CpG, respectively, also conferred protection of chickens against avian 
influenza virus (AIV) [35]. In their very recent exciting paper, Bryden 
et al. showed in a mouse model and human skin explants that topical 
application of Aldara at virus inoculation site (mimicking mosquito 
bites) protected against systemic infection of arboviruses from the Al-
phavirus, Flavivirus, and Orthobunyavirus genera [30]. 

In summary, based on presented literature above, we believe and 
hypothesize that Aldara 5% cream, probably other TLR7 agonists when 
applied early during infection as nasal, spray/cream, or topically over 
the chest or armpits, may prove useful in providing the initial innate 
immunity-mediated antiviral responses. Additionally, already FDA-ap-
proved Aldara 5% cream can be combined with more specific biologi-
cals, IL-6 or IL-1β blockers to evoke anti-viral immunity while keeping 
CRS cytokines in check. We believe further clinical trials and animal 
studies are warranted. 
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