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A B S T R A C T   

Mass spectrometry imaging (MSI) is used in many aspects of clinical research, including pharmacokinetics, 
toxicology, personalised medicine, and surgical decision-making. Maximising its potential requires the spatial 
integration of MSI images with imaging data from existing clinical imaging modalities, such as histology and 
MRI. To ensure that the information is properly integrated, all contributing images must be accurately aligned. 
This process is called image registration and is the focus of this review. In light of the ever-increasing spatial 
resolution of MSI instrumentation and a diversification of multi-modal MSI studies (e.g., spatial omics, 3D-MSI), 
the accuracy, versatility, and precision of image registration must increase accordingly. We review the appli-
cation of image registration to align MSI data with different clinically relevant ex vivo and in vivo imaging 
techniques. Based on this, we identify steps in the current image registration processes where there is potential 
for improvement. Finally, we propose a roadmap for community efforts to address these challenges in order to 
increase registration quality and help MSI to fully exploit its multi-modal potential.   

Introduction 

Mass spectrometry imaging (MSI) is a molecular imaging technology 
to visualise the spatial distributions and abundance of molecules or el-
ements on a micrometre or nanometre scale. Matrix-assisted laser 
desorption/ionisation (MALDI) and desorption electrospray ionisation 
(DESI) MSI have become particularly useful for the study of clinical 
tissue specimens since they allow the soft ionisation of different mo-
lecular classes (including larger biomolecules, such as proteins) at 
spatial resolutions that are approaching that of the clinical gold standard 
(microscopic evaluation by a pathologist) [1,2]. 

For this reason, most clinically motivated MALDI and DESI MSI 
studies have included histological information in order to link the 
spatially resolved molecular profiles with the underlying cell [3,4]. 
Grüner et al., for instance, were only able to measure the age-prolonging 
effect of the anti-cancer drug erlotinib (detected by MSI) when 

quantifying the spatial overlap of its distribution with the glandular 
structures in the pancreas (detected by optical microscopy) (Fig. 1B) [5]. 
Similarly, Prade et al. have used immunohistochemistry to spatially link 
clinically relevant molecular tumour cell phenotypes (Her2 and cyto-
keratin) with their distinct metabolic pathways, as detected by MSI [6]. 

In DESI and MALDI the set of observable molecular classes depends 
heavily on the sample preparation used, such as the choice of solvent or 
matrix, respectively. To take advantage of this, multiple MSI datasets 
capturing different molecular classes can be spatially integrated to 
obtain a more comprehensive molecular description of a sample, as 
shown by Patterson and co-workers [7]. 

Spatial alignment of MSI images is also imperatively performed in 
3D-DESI and 3D-MALDI-MSI, when equidistant consecutive sections are 
obtained for a volumetric reconstruction of the sample [8]. Mallah et al. 
for instance, demonstrated how 3D-MSI and volumetric reconstruction 
can be used to molecularly characterize the spatial expansion of 

Abbreviations: 2D, two dimensional; 3D, three dimensional; CT, computed tomography; DESI, desorption electrospray ionisation; H&E, haematoxylin & eosin; ICP, 
inductively coupled plasma; IHC, immunohistochemistry; LA-ICP-MS, laser ablation inductively coupled plasma mass spectrometry; LMD, laser microdissection; 
MALDI, matrix-assisted laser desorption/ionisation; MSI, mass spectrometry imaging; MRI, magnetic resonance imaging; PCA, principal component analysis; PET, 
positron emission tomography; RGB, red–green-blue; SIMS, secondary ion mass spectrometry; tSNE, t-distributed stochastic neighbourhood embedding; UMAP, 
uniform manifold approximation and projection. 

* Corresponding author at: Institute of Medical Bioinformatics and Biostatistics, Hans-Meerwein-Straße 6, 35032 Marburg, Germany. 
E-mail address: alan.race@uni-marburg.de (A.M. Race).   

1 These authors contributed equally. 

Contents lists available at ScienceDirect 

Journal of Mass Spectrometry and  
Advances in the Clinical Lab 

journal homepage: www.sciencedirect.com/journal/journal-of-mass- 

spectrometry-and-advances-in-the-clinical-lab 

https://doi.org/10.1016/j.jmsacl.2021.12.006 
Received 23 July 2021; Received in revised form 13 December 2021; Accepted 15 December 2021   

mailto:alan.race@uni-marburg.de
www.sciencedirect.com/science/journal/2667145X
https://www.sciencedirect.com/journal/journal-of-mass-spectrometry-and-advances-in-the-clinical-lab
https://www.sciencedirect.com/journal/journal-of-mass-spectrometry-and-advances-in-the-clinical-lab
https://doi.org/10.1016/j.jmsacl.2021.12.006
https://doi.org/10.1016/j.jmsacl.2021.12.006
https://doi.org/10.1016/j.jmsacl.2021.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsacl.2021.12.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Mass Spectrometry and Advances in the Clinical Lab 23 (2022) 26–38

27

traumatic brain injury (Fig. 1C) [9]. 
A volumetric reconstructed 3D-MSI dataset is usually the basis for 

further integration with other clinically relevant imaging techniques, 
such as magnetic resonance imaging (MRI). Using this approach, 
Abdelmoula et al. were able to relate the volumetric distribution of the 
anti-cancer drug erlotinib in MRI images of glioblastoma mouse brain 
models (Fig. 1D) [10]. 

In all of these examples, the spatial overlay of the multi-modal im-
ages, which was enabled by image registration techniques, was crucial to 
the success of the study. Image registration is a broad field of research, 
with applications in medical imaging [11], remote sensing [12] and 
astronomy [13]. As the physical properties of the imaging systems can 
differ between fields (consider magnetic resonance imaging and mi-
croscopy, for example) in the same way that the target can differ (for 
example a human head in medical imaging and stars in astronomy) there 
is no single technique that can be applied to all image registration 
problems. For this reason, methods have been developed and optimised 
for aligning the specific style of data generated in mass spectrometry 
imaging with complementary techniques. Many of these newly devel-
oped methods build upon work in other fields, especially those in 
medical imaging, as discussed in the following sections. The choice of 
the image registration strategy thereby depends on the expected image 
alterations (introduced by the experimental workflow, see Fig. 2) and 
the clinical imaging modalities involved (Fig. 1A). 

Until recently, most MSI studies have used simple image registration 
techniques, which resulted in spatial alignment errors well below the 
MSI pixel size [14]. As the registration process aims to find a trans-
formation which, when applied, ensures all features within one image 
overlap exactly with the corresponding features in the second image, 
spatial alignment errors refer to any deviation between these features 
following the registration and transformation process. This is discussed 
in more detail in the Section Improving and measuring accuracy. With 
advances in instrumentation and sample preparation enabling ever- 
smaller pixel sizes in MSI experiments, precise registration has become 
one of the bottlenecks to fully exploit high-resolution MSI data for single 
cell or subcellular investigations [15,16]. 

Consequently, image registration should become a focus of the MSI 

community in order to develop new solutions for spatially accurate 
integration of different modalities with MSI. In this review, we assess the 
current state of image registration in different multi-modal MSI appli-
cations with respect to their aims, challenges, and technical solutions. 
Based on this, we propose a road map for the community to address the 
current challenges of image registration in MSI. 

Image registration and transformation 

Mass spectrometry imaging workflow 

Image registration forms the basis for the spatial alignment of two 
images that have not been acquired under the same conditions. These 
different conditions can be, but are not limited to, a change in orienta-
tion of the sample, a change in spatial resolution, or the use of different 
modalities leading to the visualisation of different information via 
potentially different contrast mechanisms. 

In MSI studies, the many sample manipulation and preparation steps 
needed for MSI and the other involved modalities are likely to cause 
additional local or global deformations of the tissue and/or modification 
of its molecular content, which can lead to additional differences in the 
images. This can be due to the exposure of the sample to thermic (e.g., 
antigen-retrieval for peptide imaging or immunohistochemistry), 
chemical (e.g., washes to remove salts and/or lipids for peptide imag-
ing), and mechanical (e.g., sectioning) manipulations during the 
experimental workflow. Image registration must account for the tech-
nological nature of the involved imaging modalities as well as any 
sample preparation and manipulation steps that lie between the mo-
dalities to be linked (Fig. 2). As a consequence of this, although the use 
of the same tissue section for different modalities can reduce the number 
of sample preparation/manipulations steps, image registration is still 
required. 

Image registration 

While image registration includes a family of techniques, most follow 
the same workflow (Fig. 3A). What they have in common is that the user 

Fig. 1. (A) Most common spatial integrations of 
mass spectrometry imaging (MSI) with clinically 
relevant ex vivo and in vivo modalities. The spatial 
integration is facilitated by image registration 
workflows, which need to be adapted to the 
characteristics of each multi-modal combination. 
(B) MSI images of the anti-cancer drug erlotinib in 
mouse models of pancreatic cancer (ii) were inte-
grated with the corresponding histological images 
(H&E) obtained by optical microscopy (i). Quan-
tifying the spatial overlap of erlotinib (green) with 
the glandular structures (red) by digital image 
analysis algorithms (iii), allowed observation of 
the life-prolonging effect of erlotinib on the mice 
(iv). Adapted from [5]. Copyright 2016, American 
Association for Cancer Research. (C) 3D-MSI of 
lipids and unsupervised clustering were used to 
reveal the volumetric, stratified, and molecular 
expansion of traumatic brain injury in rats after 
controlled cortical impact [9]. Copyright 2018 
American Chemical Society. (D) 3D-MSI facilitates 
the integration with 3D in vivo imaging data such 
as provided by MRI. Here, 3D-MSI was performed 
to obtain the volumetric distribution of the anti- 
cancer drug erlotinib in glioblastoma mouse 
brain models and nonlinearly coregistered to the 
corresponding 3D-MRI images. Adapted with 
permission from [10]. Copyright 2019 American 
Chemical Society. Abbreviations used: mass spec-

trometry imaging, MSI; haematoxylin and eosin staining, H&E; laser microdissection, LMD; immunohistochemistry, IHC; magnetic resonance imaging, MRI.   
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needs to define which representation of the data should be used to align 
the two imaging datasets. This representation could be a selected 
channel of the image (for example, any of the RGB channels for optical 
images), a transformed representation of the image (such as a dicho-
tomised intensity image), or corresponding landmark points in both 
images. Image processing can optionally enhance these representative 
images where, for instance, morphological structures of the tissue or its 
contours are detected and emphasized (Fig. 3B, left). 

In MSI, due to the multichannel nature of mass spectrometric data, 
either single channels can be selected and optionally processed, or 
multivariate algorithms can be used to squeeze the multivariate infor-
mation into single-channel representative images. These multivariate 
algorithms can be unsupervised or supervised [17]. As an example of the 
use of unsupervised methods, dimensionality reduction (e.g., by 

principal component analysis, PCA) can be used to create component 
images where a pixel’s value carries the scores for a selected component 
and can hence be interpreted as intensity. In contrast, clustering 
methods (also unsupervised) can be used to assign every pixel of the MS 
image to a cluster, with the consequence that a pixel’s value becomes 
categorical. Likewise, supervised classification methods can be used to 
create single-channel representative images with categorical values 
from multivariate MSI data [18]. 

Once this step has been reached, one must decide which of the two 
images shall be the target (fixed) image and which will be the trans-
formed (moving) image. Convention is that the image with the higher 
spatial resolution takes the role of the fixed image (Fig. 3B). From this 
moment on, different image registration techniques can be distinguished 
based on the type of transformation, the level of interactivity, the 

Fig. 2. General overview of experimental workflow, which summarizes the most commonly-employed modalities involved in multimodal MSI studies. Sample 
preparation and manipulation steps that can cause changes between the resulting images – excluding differences in the images that are caused by the technologies 
themselves – are shown as green brackets. These alterations can be a change in the general orientation of the sample, but also local deformations. Image registration 
between two images has to account for all effects caused by the sample preparation/manipulation steps that were traversed on the path between two images. 
Abbreviations used: mass spectrometry imaging, MSI. 

Fig. 3. (A) General image registration workflow 
for the alignment of the moving image to fit the 
fixed image. (B) An example workflow is shown 
with the aim to register MSI data to the corre-
sponding histological image (H&E). Appropriate 
and matching features are selected and enhanced 
in both images using k-means clustering and 
image processing in the MSI and histological 
image, respectively. Intensity-based automatic 
registration, optimising a measure of similarity (in 
this case, mutual information), results in a geo-
metric transformation, which, once applied, 
transforms the moving MSI image (Before) to fit 
the fixed image (After). Abbreviations used: mass 
spectrometry imaging, MSI; haematoxylin and 
eosin staining, H&E.   
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modalities involved (mono- vs. multi-modal), and the (spatial) dimen-
sionality of the registration task (2D vs. 3D) [19]. 

The type of transformation constitutes the most important decision 
since it defines the possible geometric manipulations that can be applied 
to the moving image. Transformation models can be rigid, non-rigid 
(affine), projective, or nonlinear (Fig. 4A). The first three belong to 
the class of linear methods and apply the same transformation to the 
whole image, whereas nonlinear methods can also model local geo-
metric differences between two images. 

Rigid transformations allow translation and rotation, which account 
for most of the expected differences between images of the same mo-
dality caused by typical experimental workflows (Fig. 4A). Affine 
transformation extends the geometric transformation by including the 
capability to scale and shear the image. Scaling becomes important 
when the images to register were acquired with different spatial reso-
lutions, where one pixel in each modality represents different size areas 
of the sample. 

The general transformation process of converting a point (pixel co-
ordinate) in the moving image to a point (coordinate) in the fixed image 
can be described by  

p′ = f(p) (1)                                                                                          

where p,p′∈ ℝd represent a point in the moving and fixed space, 
respectively, f : ℝd ↤ ℝd is the function that transforms a point in the 
moving space to the fixed space and d is the dimensionality of the image 
(for a 2D image, d = 2). Image registration is then the estimation of the 
function f with the constraint that transformed points should correspond 
to the same physical location of the sample as represented by their 
location in the fixed image. 

For linear transformations, f can be represented as a matrix multi-
plication of the form  

Pf = APm (2)                                                                                        

where A ∈ℝk×k is the transformation matrix, k = d + 1 and Pf,Pm ∈ℝk×n 

describe n homogeneous coordinates, for example a point in 2D space is 
represented as (x,y,1), in the fixed and moving image, respectively. 
Coordinates are transformed from the moving space to the fixed space by 
multiplication with the transformation matrix (Formula 2). If Pf and Pm 
describe matching control points selected by the user (or by any other 
method), it is possible to determine the transformation matrix directly 
by  

A = PfPm
T(PmPm

T)-1 (3)                                                                          

It is important to note that, when using control point registration, the 
number of control point pairs determines the transformation that can be 
applied. This number ranges for linear methods from one (translation 
only), two (rigid transformation), three (affine), to four (projective). If 
control points are not available, then A (or more generally, f) can be 
estimated by maximising some measure of similarity (or, conversely, 
minimising some measure of dissimilarity) between the fixed and 
moving image, as discussed below. 

Nonlinear transformations, however, cannot be represented by a 
simple matrix multiplication and instead are a function applied to the 
coordinates. These nonlinear functions are more computationally 
expensive than their linear counterparts, but, as mentioned above, 
enable tailored deformations to each part of the image, which can ac-
count for experimental artefacts such as tissue stretching or tearing 
(often caused by the section cutting procedure). 

The second criterion by which image registration can be distin-
guished is the level of interactivity. Control point pairs, for example, can 
be either selected manually in both images, as is current practice in 
many MSI software tools, or extracted automatically. The latter is 
especially useful for nonlinear transformations, which require many 
matched feature coordinates distributed across the image [20]. 

There are also automated intensity-based image registration 

Fig. 4. (A) Examples of geometric transformations are demonstrated on a MSI dataset of a coronal mouse brain section using rigid transformation (translation, 
rotation), affine transformation (scaling, shearing), projective transformation (tilting), and nonlinear transformation. (B) The actual transformation of the moving 
image is achieved by applying a function f to all pixels of the moving space (pm) in order to obtain their position in the fixed space (pm

′). (C) The fact that transformed 
points do not precisely match the naturally numbered raster grid positions of the fixed image requires the application of interpolation methods to estimate the 
intensities at the pixel centres (“x”) of the fixed image. “Nearest” (left) assigns a pixel the intensity of the closest pm

′. “Bilinear” (right) assigns the intensity to the 
current pixel by interpolating the intensities of the surrounding pm

′ in a two dimensional fashion. 
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methods, such as phase correlation or search algorithms. These methods 
iteratively update the transformation matrix (within the defined geo-
metric transformation type, e.g., affine) and compare the resulting 
transformed moving image and the fixed image using a similarity metric. 
In this iterative process, the transformation matrix is continuously 
updated until a stop criterion is reached, which can be that the 
maximum number of iterations has been reached or that the metric has 
converged to an optimum value (Fig. 3B). 

The most appropriate similarity metric usually depends on the task 
and modalities involved. Commonly employed metrics are the correla-
tion coefficient, the mean squared error, the mutual information, or 
derivatives of these [21]. The correlation coefficient looks at the linear 
relationship between two images and is, therefore, invariant to intensity 
offsets and different intensity scaling between the two images. This 
property is well suited to account for common technical variance in 
image acquisition from the same modality; the higher the correlation, 
the better the alignment. The mean squared error, in contrast, is 
calculated as the mean of the squared pixel-wise intensity differences 
and, therefore, requires the intensity values to be in the same range; the 
lower the value, the better the alignment. It is frequently used in tem-
plate matching, where a small area of an image has to be located in a 
larger image [22]. For nonlinear mappings and, hence, multi-modal 
tasks, the mutual information has proven superior to the previously 
described metrics [23]. Mutal information considers the joint histogram 
(as an approximation for the joint probability distribution) and, there-
fore, does not require the images to have the same contrast mechanisms. 
A better alignment of two images results in a reduction of entropy in the 
joint histogram, which leads to higher mutual information values. 

As mentioned previously, selected or pre-processed MSI images 
might represent intensities (selected single m/z channel or component 
image from dimensionality reduction) or categories (cluster or class 
labels as obtained from unsupervised or supervised methods, respec-
tively). In these two different cases, different similarity metrics need to 
be applied when assessing the alignment quality between two images 
where correlation and mean squared error can only be applied in the 
first case and mutual information in the second. 

To overcome the danger that the optimiser ends up in a local mini-
mum, automated registration methods can be preceded by a coarse 
(manual) registration, include multi-resolution alignment, or employ 
regularisation. 

Image transformation 

The actual application of the geometric transformation to the moving 
image is the final step in the image registration workflow. In linear 
transformations, this is done by matrix multiplication of the pixel co-
ordinates of the moving image with the transformation matrix, as 
described previously (Formula 2). Although the pixel coordinates (Pf 
and Pm) are likely to be integer values, the values in A cannot be rep-
resented by natural numbers (integers) due to the inverse calculation in 
Formula 3. Applying Formula 2 to transform coordinates of the moving 
image will therefore result in coordinates that can only be represented 
by real numbers and are not confined to exact (integer) pixel indices 
(Fig. 4B). To enable assignment of intensity values to each pixel, inter-
polation methods are used to estimate the intensity at the (integer) pixel 
location based on neighbouring transformed coordinates. These can be 
either bilinear or trilinear for the 2D or 3D scenario, respectively, or 
based on the nearest transformed coordinate (Fig. 4C). In MSI, “nearest” 
interpolation will retain the ‘real’ pixel size of an MSI pixel in a higher 
resolved fixed image (Fig. 4D). 

Transformations can be sequentially applied, enabling, for example, 
the use of an intermediary image to aid in the registration process. In the 
case of linear methods, a new transformation matrix, Acombined, capturing 
two or more transformations can be created by simple matrix multipli-
cation of the individual transformation matrices, Acombined = An…A2A1, 
where An…A2A1 ∈ ℝk×k describe the n transformations to be applied in 

order from 1…n. Transformations with the new matrix have then no 
additional computational cost. 

For nonlinear methods, such a simple combination is unlikely to be 
possible. In this case the individual transformation functions must be 
sequentially applied fn(…f2(f1(Pm))…), therefore increasing the 
computational burden proportional to the number of transformations 
being chained together. 

Existing applications and their image registration methods 

Having briefly introduced the basic concepts of image registration, 
its methods, parameters and metrics that can be used to align two im-
ages, we review the current uses of image registration to align MSI data 
with clinically relevant modalities or in clinically relevant applications. 

MSI and microscopic imaging 

Microscopy is routinely performed on biological and clinical tissue 
samples. Most commonly, H&E staining is performed to distinguish 
different cell types present in the sample and assess the overall archi-
tecture of the tissue (histology). In a clinical setting, this enables trained 
pathologists to identify the tissue’s morphology and disease state. The 
combination of MSI and microscopy imaging, therefore, aims to use this 
existing knowledge, derived from data acquired in clinical workflows, to 
improve the ability to extract clinically relevant information from the 
MSI data. Previous work has used image registration of MSI and optical 
images to perform histology-led MSI data acquisition [24,25], align MSI 
data to external (mouse) anatomical atlases [26–28], perform MSI-led 
laser capture microdissection and proteomics [29], and to extract sta-
tistics from, and train classifiers for, MSI data based on histology an-
notations [15,30]. 

An additional use of image registration of MSI and microscopy data is 
in the area of image fusion, a broad category of algorithms aimed at 
combining information from two imaging modalities, such that the 
combination provides more insight than each image in isolation. Various 
image fusion methods have been proposed to improve the spatial reso-
lution of MSI data using information from histology microscopy images 
[31–33], or to incorporate signals from additional spectral modalities in 
multivariate analysis [34]. As such methods typically require that the 
images are aligned, image fusion is sometimes considered synonymous 
with image registration, however they are distinct fields of research and 
the application of one does not necessitate the application of the other. 

Methods for aligning MSI and microscopy imaging data can be 
broadly categorised into two classes: 1) manual and semi-automated 
methods, requiring the user to perform one or more of the steps 
shown in Fig. 3 manually, or 2) fully automated methods, requiring no 
input from the user after the initial set-up. Manual methods have the 
advantage of working to the best ability of the user, but are not repro-
ducible and can be laborious when applied to multiple samples. Auto-
mated methods, on the other hand, can be reproducibly applied to large 
studies with many samples, but often rely on assumptions about the data 
that may not hold for untested samples, so must be evaluated for each 
new sample type or experimental setup. 

Manual and semi-automated alignment 
Manual and semi-automated methods require user input to perform 

alignment of the two images. Here, we refer to manual registration as 
any workflow that requires the user to modify the alignment by shifting 
the image(s) until they are satisfied that the two images are aligned. 
Semi-automated methods include some automated steps, but require 
manual intervention capturing either domain knowledge (user selecting 
appropriate representative images, e.g., ion images that match the op-
tical data) or experimental knowledge (user selecting matching fiducial 
markers, e.g., ablation craters). As the primary concern of this review is 
the alignment of MSI data, studies that use a manual step in the align-
ment of MSI and optical data are included here, even if additional steps 
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are automated. 
One such method, described by Verbeeck et al. [28], used automated 

methods to align experimental histology with histology from a mouse 
atlas, and a manual step to align MSI data with the experimental his-
tology. By combining the two transformations, as discussed in the Sec-
tion Image transformation, it was possible to use anatomical information 
from the mouse atlas to interpret the MSI data. The registration of MSI to 
histology required the user to select the most appropriate ion image, i.e., 
the ion image which contained features comparable to those visible in 
the histology data. As the sample preparation process for MSI can cause 
de-localisation of certain analytes (especially in the matrix application 
phase of MALDI or the data acquisition phase in DESI, due to the sprayed 
solvent), the correct choice of ion image must also take this into account. 
Although the authors only required a single ion image, in many situa-
tions a single ion image may not provide enough coverage of the his-
tology image. A simple extension would be to identify and combine 
multiple ion images (for example as an RGB composite image). Features 
present in both the ion image and histology image were then used to 
manually define control points (also referred to as fiducial markers or 
landmarks), which are placed on the same feature in each modality. 
From the control points, it was possible to create a matrix describing an 
affine transform as described in the Section Image registration. 

An alternative approach, proposed by Abdelmoula et al., automati-
cally identified the most appropriate reference section from the atlas by 
selecting the image that included the hippocampus closest in size to the 
experimental data [26]. MSI data were aligned to the corresponding 
experimental histology image manually using the mass spectrometry 
instrument vendor’s software. The experimental histology image was 
then automatically aligned to the identified reference atlas image in a 
two-step process; affine registration of binary images of the hippocam-
pus, followed by nonlinear registration (B-Spline) optimising mutual 
information. 

Tian et al. have proposed manual intervention to the automated 
alignment of experimental and reference histology [35]. The inclusion 
of “auxiliary lines” drawn around common features in each image 
increased the accuracy of the resulting optical alignment and, therefore, 
also increased the alignment accuracy between the MSI data and the 
atlas by 2–5 fold, as measured by the relative overlap of expert- 
annotated regions. 

In an alternative workflow, Patterson et al. and Dewez et al. made use 
of the laser craters left behind during the MALDI-MSI acquisition process 
to align MSI data to a post-acquisition optical image [29,36]. Corre-
sponding craters (central point thereof) in the optical image and pixels 
in the MSI data were selected manually, and an affine transformation 
was determined. This enabled high accuracy alignment in both cases, 
with errors estimated to be less than the MSI pixel size, determined 
either by a measure of overlap [36] or a point-to-point measure [29] (see 
the Section Measuring accuracy for further discussion). However, this 
method is limited to techniques that leave a visible post-acquisition 
pattern on the sample. To compensate for varying degrees of agree-
ment for each pair of pixels in the registered datasets, Patterson et al. 
proposed to weight the MSI data, proportional to the pixel overlap, in 
further analysis instead of using traditional interpolation methods 
shown in Fig. 4 [36]. 

Heijs et al. and Patterson et al. used annotated optical images to select 
specific regions on the sample to analyse by MSI [24,25]. Both methods 
employed automated optical-to-optical registration enabling the anno-
tations to be defined by neighbouring tissue sections (which were, for 
example, stained using H&E) to those analysed by MSI. However, the 
final alignment of the annotated optical image to the instrument coor-
dinate system (and, therefore, to the MSI data) is performed in the in-
strument vendor’s software, by manually adjusting the position of the 
images until the user is satisfied with the result. 

Automated alignment 
The primary challenges in automated alignment of MSI and optical 

images are that the contrast mechanisms of the two techniques are 
different and there is often a large discrepancy between the pixel sizes of 
the two images. This means that certain registration methods and met-
rics are not suitable, as discussed in the Section Image registration. 

One way to align different modality data is to convert both images to 
a binary mask (highlighting the same feature) and register the binary 
images (as illustrated in Fig. 3B). Anyz et al. used the whole tissue area as 
the feature to align, and so generated binary masks of the tissue in LA- 
ICP-MS data and the microscopic image acquired on serial sections 
(further details not provided), which were used to determine an affine 
transformation matrix by minimising the sum of squared differences 
[30]. This approach to aligning data from multiple sources, while simple 
and easy to implement, has some limitations. If there is any rotational 
symmetry in either mask, then there will be multiple ‘best’ transforms 
that could be found. Any features within the tissue are ignored; there-
fore, if the masks include any inaccuracy in the shape of the tissues then 
the resulting alignment will be poor. For example, if the so-called ‘halo 
effect’ in MSI (the detection of biological compounds around the edge of 
the tissue) is included in the binary mask (which is a realistic scenario, as 
it can be difficult to determine the exact edge of a tissue when a ‘halo’ is 
present) then the size of the MSI tissue will be overestimated. Conse-
quently, the resulting transformation will compress the MSI data into the 
centre of the histology tissue, causing larger errors closer to the tissue 
edge. 

A more sophisticated method was proposed by Abdelmoula et al. 
[14]. MSI data were processed to remove background pixels (non-tissue 
related regions) and then reduced using t-distributed stochastic neigh-
bourhood embedding (t-SNE), a nonlinear dimensionality reduction 
method, to three dimensions that were then encoded in an RGB image, 
before being further compressed to a greyscale image (one dimension). 
Histology data were processed to exclude background regions and 
converted to greyscale. This then enabled the use of existing tools (such 
as the general image registration toolbox, elastix [37]) to align the two 
greyscale images by optimising mutual information (as the images 
originated from different modalities). This method can be performed on 
any MSI modality as there is no requirement of experiment-specific 
features (such as laser ablation craters) to be present. However, the 
dimensionality reduction step must extract features comparable to those 
present within the histology. While this is likely to occur due to the 
assumption that differently stained regions in the histology are chemi-
cally different and MSI readily detects chemical differences, there is no 
guarantee and so the method must be evaluated on a sample-by-sample 
basis. 

Despite this potential limitation, this method has inspired a number 
of further works, which have built upon it and expanded its use cases. 
Škrášková et al. combined the automated alignment to the Allen brain 
atlas, proposed by Abdelmoula et al. [26], and the method described 
previously to enable automatic alignment of SIMS data to the Allen 
Mouse Brain Atlas [27]. More recently, Race et al. proposed a modified 
workflow using deep learning to classify the histology data (to provide 
more comparable features to those visualised by MSI) and Uniform 
Manifold Approximation and Projection (UMAP) as the dimensionality 
reduction technique to process the MSI data (instead of t-SNE), reducing 
execution time considerably [15]. It was also shown that direct reduc-
tion to a single dimension using UMAP reliably retained more features 
than the original two-step dimensionality reduction process proposed by 
Abdelmoula et al. Using the Hausdorff distance (see the Section 
Measuring accuracy), Race et al. demonstrated a worst-case registration 
accuracy approaching the pixel size of the MSI data [15]. 

Multiple MSI datasets 

Mass spectrometry imaging datasets can also be spatially registered 
to each other. There are two scenarios where this is necessary: 1) in 3D- 
MSI where consecutive sections are aligned to form a volumetric rep-
resentation of the sample, and 2) to align multi-parametric MSI datasets 
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from consecutive, or the same, sections to combine different molecular 
information per pixel. 

Multiparametric MSI 
The idea of spatially aligning multiple MSI datasets is based on the 

fact that the attainable information in an MSI experiment strongly de-
pends on the parameterisation of the experiment, e.g., the type of matrix 
for MALDI-MSI, the solvent for DESI-MSI, the ion gun for SIMS, the 
polarity, or even the ionisation source choice itself. These choices are 
largely exclusive for a certain molecular class. In order to increase the 
information on a per pixel level, some works have performed dual po-
larity lipid MSI experiments in two runs, but with spatial offsets in x and 
y, which allowed the creation of virtually larger pixels that contained the 
data from both polarities [38,39]. As the two experiments were per-
formed consecutively without removing the sample from the mass 
spectrometer, no image registration was necessary. 

Conversely, if the section is removed from the mass spectrometer, or 
another section is used, image registration becomes necessary. This has 
been shown by Patterson et al. who developed an image registration and 
data analysis workflow that allows combining data from MSI experi-
ments with incompatible sample preparations [7]. This way the authors 
could combine the data obtained in five different experiments on a per 
pixel level from proteins, dual polarity phospholipids, cholesterol, free 
fatty acids, and triglycerides. While this allowed finding spatially 
correlated ions across the different molecular classes, the integration of 

these datasets for multivariate algorithms requires new normalisation 
strategies to guarantee equal contributions. 

3D-MSI 
Aligning MSI datasets spatially to each other is also necessary in 

cross-section based three-dimensional (3D) MSI. This is mainly 
encountered in MALDI and DESI-MSI where serial sections of the sample 
are used to obtain a volumetric representation of the sample [40]. While 
the alignment of a stack of 2D images to a 3D volume shares similarities 
to the previous approaches, the overall aim is to reconstruct the original 
3D volume as close to the original in vivo sample as possible. 

To achieve this, several workflows have been developed over the last 
16 years, which primarily differ in the actual images that are used to 
align the stack of 2D images to a 3D volume (Fig. 5A). The first section- 
based 3D-MSI study was conducted in 2005 by Crecelius et al., who were 
interested in the 3D visualisation of protein signals in mouse brain [41]. 
Since the authors found that “the cumulative error produced by aligning 
successive ion images to be greater than that produced by aligning each 
ion image to its respective optical image”, the alignment between the 
serial sections is based on registering optical images taken prior to the 
MSI experiment (Fig. 5A, green workflow). Several methodological 
studies followed that used, adapted, or improved this workflow by, for 
example, aligning the 3D stack based on the stained microscopic images 
(Fig. 5A, orange workflow) [8,42]. Lotz et al., for instance, added to the 
initial rigid registration a second, nonlinear registration for refinement 

Fig. 5. (A) Different registration workflows, depicted as green, orange, blue, and red paths, to reconstruct volumes from 3D mass spectrometry imaging (MSI) data. 
Since optical images usually have a higher spatial resolution than MSI images and are often already experimentally linked to the MSI data, most stack alignment 
workflows base their reconstruction on the alignment of the optical images first. These optical images can be obtained before (ante-) or after (post-) the MSI ex-
periments. (B) The alignment quality of nonlinear transformations can be visually evaluated using transformed grids to exclude over-registration effects in 2D (left) 
and orthogonal slicing can be used to evaluate the overall aligned stack (right). Adapted with permission from [43]. Copyright 2016 Elsevier B.V. (C) To avoid the 
“banana-problem” during volumetric reconstruction, i.e., the straightening of curved volumes, three-dimensional fiducial markers can be introduced next to the 
embedded tissue sample which serve as reference for a correct volumetric reconstruction. Adapted with permission from [44]. Copyright 2012 American Chemical 
Society. (D) Registration workflows for aligning MSI with MRI, by constructing a 3D volume from 2D-MSI data and aligning the 3D-MSI and 3D-MRI volumes (blue 
arrows) or by selecting and registering 2D slices from the MRI volume which correspond to the same location as the acquired 2D-MSI data (orange arrows). MRI data 
from the Waxholm Space atlas of the Sprague Dawley rat brain [45]. Abbreviations used: mass spectrometry imaging, MSI; magnetic resonance imaging, MRI. 
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of the stack registration of the optical ante-MSI images [43]. The 
registration quality was evaluated visually through orthogonal slicing 
(Fig. 5B, right) and by visualising the geometric transformations using 
grids (Fig. 5B, left), both of which validated their approach. 

Other registration workflows for 3D-MSI have been developed. Pat-
terson et al. demonstrated how open source software can be used to 
make and investigate 3D-MSI reconstructions of several atherosclerotic 
plaques [39]. While it shares the above approach for reconstructing the 
3D model based on stained optical images using rigid-body registration, 
the 2D-MSI datasets were directly aligned to their corresponding H&E 
stained images without any other intermediate optical image (Fig. 5A, 
blue workflow). This in turn required individualised pre-processing 
strategies for all H&E images, including removal of background, seg-
mentation, and noise removal. 

To complete the set of 3D alignment approaches in MSI, Dueñas et al. 
directly co-registered 62 consecutive cross-sectional MALDI images to 
study lipid distributions in single celled zebrafish zygotes. (Fig. 5A, red 
workflow) [46]. Given the strict spherical shape of the cell, translation 
and rotation were used to manually place the 2D ion images on top of 
each other in the TrakEM2 module of ImageJ. Since this study was 
performed at high-resolution with 10 μm pixel sizes, the rationale to use 
the optical images due to their higher resolution for the 3D stack 
alignment is no longer as relevant as it was at the beginning of 3D-MSI in 
2005. 

Given this new situation, Cordes et al. recently developed the M2aia 
tool for the reconstruction of 3D-MSI datasets in a mostly automated 
way. It uses structurally rich MSI images, which have to be pre-selected 
by the user, to apply rigid and deformable image-based registration of 
consecutive MSI slices to create volumetric MSI datasets (Fig. 5A, red 
workflow) [47]. This tool has also recently been employed by Enzlein et 
al. for creating 3D-models of amyloid plaques as measured by MALDI- 
MSI with voxel sizes of 20 × 20 × 10 μm [48]. 

While the above-mentioned studies have provided satisfactory re-
sults, some important issues remain in the reconstruction of volumetric 
shapes based on a stack of cross-sections. One is the so-called “banana 
problem” which describes the difficulty to reconstruct a 3D-curved ob-
ject from cross-sections without any additional information [49]. In 
order to address this challenge, additional information can be added in 
the form of fiducials. 

Chughtai et al. were the first to propose the insertion of fiducial 
marker compounds into the embedding matrix of tissues [44]. The au-
thors injected various liquid compounds into gelatine blocks in prox-
imity to the embedded breast cancer xenograft tissue. These markers 
could be detected by both MSI and optical microscopy, which improved 
the reconstruction of 3D-curved volumetric models in both modalities 
(Fig. 5C). In this study, the images of the 2-mm thick cross sections were 
manually overlaid in GIMP 2.6. 

Subsequent work by Anderson et al. improved the idea of embedded 
markers and, instead of liquid dyes, proposed the insertion of multi- 
modal compatible rigid rods into the embedding matrix of the sample 
[50]. To optimally address the banana-problem, the rods were arranged 
into the block around the sample tissue in a triangular fashion, which 
describes the tissue space best in all three dimensions. This approach 
was applied to optic nerve tissues from control and glioma-bearing mice, 
which were both embedded in the same block. Thirty-three individual 
2D MSI data sets were acquired and co-registered following the green 
workflow (Fig. 5A). 

As a last point of discussion, most of the 3D-MSI studies perform 
volumetric reconstruction with the argument that “the true molecular 
distribution cannot be adequately assessed when only one or a few 
sections are analysed”, as stated by Anderson et al. [50]. While this is 
certainly true, it is not an adequate rationale for the necessity of a 3D- 
MSI volumetric reconstruction, but rather for the more comprehensive 
description of a sample. The latter can be equally well realised by vis-
ualising and analysing the sections side-by-side, unless the (x,y,z) posi-
tions directly affect the data analysis, as demonstrated by Inglese et al. 

[18] and Enzlein et al. [48]. 
3D volumetric reconstruction is, however, helpful, or even vital, 

when integrating MSI data with data from in vivo technologies. 

MSI and in vivo techniques 

The ability to link the detailed chemical information provided by 
MSI to non-invasive, in vivo techniques, such as MRI, CT and PET har-
bours great potential for diagnosis and personalised medicine due to 
their high complementarity. As MRI, CT and PET typically produce 3D 
images, there are two general approaches to the problem of aligning in 
vivo and MSI data. The first is to turn it into a 2D registration problem 
(see Fig. 5D orange arrows), by selecting the section from the in vivo data 
that most closely matches the MSI data. The second requires 3D-MSI 
data to be acquired and aligned using techniques such as those 
described in the previous section to produce a 3D volume (see Fig. 5D 
blue arrows), which can then be aligned to the 3D in vivo volume. The 
latter being the more challenging of the two approaches. Using one of 
these two approaches, most studies to date have focused on the inte-
gration of MSI and MRI data. 

Sinha et al. presented the first example of combining MSI data with 
MRI images to integrate proteomic profiles and in vivo data from a whole 
mouse head [51]. MRI data were acquired immediately prior to sacrifice 
of the mouse, which was subsequently perfused with saline and frozen in 
an ice block. During the sectioning process, high-resolution optical im-
ages were acquired of the block face prior to each cut. These images 
were then reconstructed into a 3D volume by sequentially performing 
2D registration, using the previously registered section as the ‘fixed’ 
image and the next section in the series as the ‘moving’ image, to find a 
translation and (in-plane) rotation transformation which optimised 
normalised mutual information (orange arrows, Fig. 5D). MSI images 
were then registered to their corresponding (registered) blockface image 
using the iterative closest point (ICP) algorithm, which aligned manually 
highlighted features (contours) in the images (e.g., outline of brain and 
head). Finally, the blockface image volume was aligned to the MSI data 
by finding the rigid transformation which optimised normalised mutual 
information. 

Oetjen et al. combined 3D-MSI data and MRI data of a mouse kidney 
[52]. The individual MSI images were first aligned to one another using 
rigid registration, as originally performed by Trede et al. [8], followed by 
elastic registration to compensate for local deformations caused by 
sectioning. The resulting 3D volume was then aligned to MRI data using 
MeVisLab (blue arrows, Fig. 5D), however further details of this key step 
(and the elastic registration) were unfortunately omitted. 

Extending their work on registering MSI data to the Allen Brain Atlas, 
Verbeeck et al. presented a workflow for aligning MSI data to an MRI 
atlas, the Waxholm Space atlas of the Sprague Dawley rat brain [45]. 
The appropriate MRI section from the atlas (determined by relative 
proximity in the brain to the section imaged by MSI) was manually 
extracted. PCA was used to create a low dimensional representation of 
the data, and the resulting score image, which most closely matched the 
distribution visible in corresponding MRI atlas section, was manually 
identified and selected for use in the registration process. Non-rigid (free 
form deformation) registration was then performed to align the two 
images, using squared correlation coefficient as a similarity measure. 

In a similar vein, Abdelmoula et al. extended their own work on 
registering MSI data to the Allen Brain Atlas, presenting a workflow for 
the alignment of MSI and MRI data [10]. In this work, a representative 
image for each MSI image (each section) was created, using t-SNE to 
reduce the dimensionality of the data to three. These data were then 
encoded in the CIE L*a*b* colour space. As each dataset was processed 
individually, there can be no guarantee that the same features will be 
represented in the same way in the low dimensional space and, there-
fore, no guarentee that they will be highlighted in the same colour in the 
representative images of each section. Each representative MSI image 
was then registered to the corresponding MRI slice (selected manually 
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based on visual similarity) by first optimising an affine transformation 
for the global positioning, followed by a BSpline transform capturing 
nonlinear deformations, by optimising mutual information. 

In comparison to the integration of MSI and MRI data, the integration 
of MSI and CT is relatively unexplored. Schioppa et al. demonstrated a 
proof of principle workflow by manually aligning data acquired from a 
fish head [53]. 

Challenges 

Despite the strides the community has made in enabling integration 
of MSI data with clinically relevant techniques, there remain a number 
of key challenges to address. 

Method evaluation and comparison 

As seen throughout this review, there are many workflows for each of 
the application areas discussed, but no comparison exists. There are two 
aspects preventing this: (1) the lack of reproducibility of methods, and 
(2) the lack of reported registration quality. 

Reproducibility remains a significant issue due to the absence of 
published code, software, and data. A list of existing software tools (and 
their capabilities and target audience) is included in Table 1. The soft-
ware tools that provide a user interface and target a wide audience (that 
may not have programming skills), implement interactive, manual 
methods, relying on the user to accurately align the data. The automated 
methods discussed in this review can be applied to data loaded in 
extensible software, such as SpectralAnalysis, Cardinal or rMSI, but 

require the user to first re-implement the algorithm, which is a time 
consuming process that is also difficult to validate, as the data used to 
describe the algorithm is often unpublished. Moreover, since most of the 
publications have been published in analytical journals, the methodo-
logical descriptions were primarily focused on aspects other than the 
registration. This has also led, for the sake of simplicity and to match the 
readers’ interest, to omitting important technical details of the image 
processing workflow making an exact re-implementation impossible. 

This also impedes meta-studies that compare the different ap-
proaches in order to score and optimise registration workflows, as pre-
viously performed for other experimental workflows in MSI [54]. It is 
clear that these initiatives and comparisons need to account for the 
study-specific experimental setups, requirements, and goals, which can 
only be guaranteed if the original data is accessible. However, they also 
must consider non-deterministic aspects of the registration workflows, 
as some methods require user interaction to varying degrees ranging 
from manually performing the registration to manually selecting fea-
tures for automatic alignment (Fig. 6). 

Another factor hindering the comparison of the different approaches 
is the lack of reported registration accuracy by most studies. This is the 
result of: 1) recognition of the necessity to determine and report the 
accuracy, and 2) the difficulty and expertise in doing that appropriately. 
With respect to the first point, most MSI studies are performed with pixel 
sizes equal to, or larger than, the error of current non-sophisticated 
registration workflows, hence, there is no apparent need to improve 
anything. The second point refers to the fact that the evaluation of the 
registration accuracy is non-trivial and requires image analysis exper-
tise. However, even if the registration accuracy is evaluated, there is no 
standard, agreed upon methodology and different metrics have been 
used that are not directly comparable. While the aim of such comparison 
initiatives would clearly be to improve registration accuracy and pre-
cision, a key milestone would be to propose, and perhaps establish, 
standard evaluation methods in the field of MSI with a set of appropriate 
metrics. 

Improving and measuring accuracy 

Improving accuracy 
With the increase in spatial resolution in MSI approaching cellular 

resolution, there is an increased need for accurate registration methods. 
Improving the accuracy of alignment between multi-modal images, such 
as those reviewed here, is an active area of research. 

Currently, most registration of MSI and microscopic images is per-
formed using manual control point registration. A crucial aspect on the 
registration accuracy in this approach is the correct selection of the 
landmarks, in terms of spatial distribution and number of control points. 
Generally, it can be said that the more markers and the more spread 
around the tissue, the lower the registration error (Fig. 6). The necessary 
human intervention limits both aspects, since a human can only select a 
limited number of control points and the average MSI users are not 
aware of the optimal placement of the landmarks. 

Automated control point extraction tools, such as SURF, which are 
successfully used in other fields of biological multi-modal imaging, are 
able to extract hundreds of matching features [60]. However, the results 
strongly depend on pre-processing of the images, which in turn might 
require user intervention and expertise [61]. 

Feature extraction is not only limited to the detection of matching 
points between fixed and moving images. Automated feature extraction 
can also rely on, for example, the selection of an appropriate channel or 
on dimensionality reduction methods (Fig. 3), such as PCA used by 
Trede et al. to create volumetric 3D-MSI datasets [8]. Such a registration 
approach relies on the assumption that the reduced/selected data will 
highlight features comparable to that in the other modality. When the 
second modality is the same as the first (as in 3D-MSI), this is a 
reasonable assumption, however when the second modality has 
completely different contrast mechanisms, such as histology and 

Table 1 
Software used in mass spectrometry imaging for image registration.  

Software name Vendor User 
interaction 

Capabilities User 
type 

LipostarMSI Molecular 
Discovery 

Interactive 
overlay 

Rigid +
scaling 

MSI- 
expert 

HDI Waters Interactive 
overlay 

Rigid +
scaling 

MSI- 
expert 

FlexImaging Bruker 
Daltonics 

Based on 
control point 
selection 

Affine MSI- 
expert 

SCiLS Lab Bruker 
Daltonics 

Interactive 
overlay 
assisted by 
control point 
selection 

Rigid +
scaling 

MSI- 
expert 

MSIReader [55] free Interactive 
overlay 

Rigid +
scaling 

MSI- 
expert 

M2aia [47] free Interactive 
overlay with 
access to 
elastix 
parameter file 

Linear and 
non-linear 
registrations 

MSI- 
expert, 
Image- 
analysis 
expert 

ImageJ, FIJI free Graphical 
user interface 

Linear and 
non-linear 
registrations 

MSI- 
expert, 
Image- 
analysis 
expert 

SpectralAnalysis  
[56] 

free Matlab routines from image 
processing toolbox 

Expert 

R packages for MSI 
such as Cardinal  
[57], 
MALDIquant  
[58] and rMSI  
[59] 

free R packages for image 
registration 

Expert 

Open-source 
toolkits such as 
ITK or elastix 

free Command 
line 

Linear and 
non-linear 
registrations 

Expert 

RegCombIMS[7] free R Linear and 
non-linear 
registrations 

Expert  
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microscopy (as described in the Section MSI and microscopic imaging), 
such an assumption is not guaranteed. One way to improve automated 
methods may be to make use of previous knowledge in the form of 
trained classifiers to aid in the feature extraction process. For instance, 
classifiers trained to identify features visible due to the contrast mech-
anisms of the second modality (e.g. anatomical regions from microscopy 
data) could be used to automatically extract ion images from the MSI 
data, which visualise the same features. 

Another way to improve the accuracy could be by the use of 
nonlinear registrations, as already evidenced by some MSI-related 
studies (Fig. 5B) [7,24,43,48]. While the application of these algo-
rithms carries huge potential, some studies found that the use of 
nonlinear registration with default parameterisation are too erroneous 
for clinical use [62]. For this reason, nonlinear registration is usually 
preceded by several linear pre-alignment steps to assist the optimiser 
function in finding the global optimum [47,63]. 

In line with this, we believe the multi-step registration approaches 
carry huge potential in MSI; for example, simple manual registration by 
the MSI-experimenter assisted by an automated optimisation using more 
sophisticated registration algorithms [16]. The recent M2aia software 
exemplifies this by allowing an interactive pre-alignment of the 3D-MSI 
stacks before the application of automated linear and nonlinear regis-
trations [47]. 

Still, 3D-MSI could benefit from improvements related to registra-
tion. Current reference-free approaches suffer from the potential to 
create different errors, such as the banana-problem [49] or the propa-
gation and accumulation of registration errors through the 3D stack 
[64]. While there have been attempts in the MSI community to address 
these by the introduction of spatial reference objects [44,50], the latter 
error occurs because the registrations are performed sequentially in 

pairs and with a directionality. Global optimisation approaches exist 
that optimise the alignment of more than two images either based on 
parallel algorithms, which couple all local neighbourhood trans-
formations into a system of equations [65], or by modelling stack 
misalignment by using heat diffusion equations [64]. 

All of these approaches require extensive expertise in the field of 
image analysis and pre-processing, which is not available in every MSI 
laboratory. We, therefore, see a need for the development of simple-to- 
use MSI image registration software that makes use of advanced image 
registration procedures. This will increase the overall registration ac-
curacy of the MSI community. These processes must be generic enough 
to account for the varying experimental methods and workflows. 

Measuring accuracy 
There is no consensus within the community on how accuracy should 

be measured and reported. At least three different methods have been 
used in the studies covered here: (i) point-to-point comparison [29], (ii) 
the Dice coefficient, [30] and (iii) Hausdorff distance [15]. The methods 
are summarised pictorially in Fig. 7. Point-to-point comparison requires 
an expert to label corresponding points in the two images (based on 
features, for example the same exact point in the corpus callosum of a 
mammalian brain). The distance between the points in the fixed image 
and the transformed points from the moving image are then compared, 
and the Euclidean distance is calculated (Fig. 7A). This gives an accurate 
measure of the accuracy of single pixels (points) within the image, but 
limited information for larger features, unless repeated across the image. 
This feature is also available in the recent M2aia software [47]. 

The Dice coefficient measures the degree of overlap of two shapes 
(Fig. 7B). These shapes could be defined manually (expert draws around 
the same feature in both images) or automatically via classification or 

Fig. 6. Simulation of registration errors when using different strategies for selecting control points. Actual errors will depend on the real transformation, and so the 
values here should only be used as an illustration. (A) Fiducial markers (in red) placed away from tissue (left, mean error 3.36), close to tissue (middle, mean error 
5.21), and concentrated in a small area (e.g., based on localised anatomy) (right, mean error 38.83). (B) Control points (in blue) placed in a grid of 4 points (left, 
mean error 4.06), 6 points (middle, mean error 3.68) and 9 points (right, mean error 3.13). (C) Arbitrary placement of four control points (left, mean error 3.88), five 
control points (middle, mean error 3.88) and six control points (right, mean error 6.89). 
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clustering. The degree of overlap is then calculated between the shape in 
the fixed image and the transformed shape from the moving image. This 
provides a measure of goodness of fit for the selected features. 

Finally, the Hausdorff distance is calculated by first determining the 
shortest distance from every point on the polygon (shape, as in the Dice 
coefficient) in the fixed image to the transformed moving image polygon 
(Fig. 7C). Then the longest distance of all these distances is taken. 
Similar to the Dice coefficient, the polygons can be defined by an expert, 
or automatically by classification and clustering. This gives a measure of 
the worst-case accuracy for the selected features. 

As each metric measures slightly different aspects of the alignment, it 
is not possible to compare them directly, nor is it possible to select one 
single metric that is most suitable in all cases. A combination of different 
metrics is, therefore, the most accurate way to describe registration 
error. Moreover, as can be recognised in Fig. 6, the registration error is 
characterised by spatial variance, which makes it necessary to measure 
the error at different positions in the image. It is also worth noting, that 
the input used to calculate the accuracy in each case is typically pro-
vided manually (points or shapes) and, hence, is subject to expert bias. 
Evaluating, even manually, the error at several positions provides a 
more thorough understanding of the registration error [16]. 

Outlook 

To help address some of the challenges listed above, we propose a 
roadmap, which aims to improve reporting, reproducibility and facili-
tate comparisons and the development of new algorithms, software and 
tools. 

First, we propose an extension of the current imzML format (open 
format for storing MSI data [66]) to include details of linked data (e.g., 
optical images), the transformation and parameters for aligning the 
data, and methods used to determine the transform. This will facilitate 
sharing of more complete datasets for multi-modal studies, as well as 
allowing data to be aligned in one tool, and visualised and further 
processed in another. 

Following the above guidance, we propose providing the community 
with a collection of publicly available benchmark datasets, similar in 
style to that gathered by Oetjen et al. [67], but for registration purposes. 
This benchmark dataset shall ideally include data covering different 
sample types, ionisation sources, and second modalities. The availability 
of a community benchmark dataset is hoped to attract image analysis 

expertise from outside the field of mass spectrometry imaging to apply 
existing, or develop new, image registration methods for mass spec-
trometry imaging-specific challenges; including appropriate criteria to 
evaluate registration quality. This will also enable evaluation of new and 
existing methods on a wider array of experimental setups, and, in 
combination with the extended imzML capturing transform details, 
enable direct comparison of existing results. To achieve this, an open 
collaborative initiative has been started (“MSI&Co”), which aims to 
address these challenges (https://github.com/MSIandCo/MSIandCo). 

In conclusion, the measures specified in this proposed registration 
roadmap for the field of mass spectrometry imaging have the potential 
to surmount the current bottleneck in image registration, which will 
ultimately boost future multimodal applications. This is expected to 
facilitate exploitation of the combined imaging technologies and, 
therefore, augment applications of MSI. 

Declaration of Competing Interests 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements and Funding Sources 

BB and RMAH are supported by the LINK program of the Dutch 
Province of Limburg. BB and AMR acknowledge the support of the 
COMULIS COST Action (CA17121). 

References 

[1] S.S. Basu, N.Y.R. Agar, Bringing Matrix-Assisted Laser Desorption/Ionization Mass 
Spectrometry Imaging to the Clinics, Clin. Lab. Med. 41 (2) (2021) 309–324, 
https://doi.org/10.1016/j.cll.2021.03.009. 

[2] C.L. Feider, A. Krieger, R.J. DeHoog, L.S. Eberlin, Ambient Ionization Mass 
Spectrometry: Recent Developments and Applications, Anal. Chem. 91 (7) (2019) 
4266–4290, https://doi.org/10.1021/acs.analchem.9b00807. 

[3] P. Chaurand, S.A. Schwartz, D. Billheimer, B.J. Xu, A. Crecelius, R.M. Caprioli, 
Integrating histology and imaging mass spectrometry, Anal. Chem. 76 (4) (2004) 
1145–1155, https://doi.org/10.1021/ac0351264. 

[4] K. Schwamborn, R.C. Krieg, M. Reska, G. Jakse, R. Knuechel, A. Wellmann, 
Identifying prostate carcinoma by MALDI-Imaging, Int. J. Mol. Med. 20 (2) (2007) 
155–159. 

[5] B.M. Grüner, I. Winkelmann, A. Feuchtinger, N.a. Sun, B. Balluff, N. Teichmann, 
A. Herner, E. Kalideris, K. Steiger, R. Braren, M. Aichler, I. Esposito, R.M. Schmid, 

Fig. 7. Methods used for measuring the alignment 
accuracy. (A) Point-to-point. Comparable points 
are marked on each image (e.g., the edge or mid-
dle of clear anatomical structure, i and ii), the 
points in the moving are transformed to the fixed 
image (iii) and the (Euclidean) distance is 
measured (iv). (B) Dice coefficient. Comparable 
regions are marked in each image (for example, 
drawing around anatomical structures, i and ii), 
the region in the moving image is transformed to 
the fixed image (iii) and the proportional overlap 
of the two shapes is calculated (iv). (C) Hausdorff 
distance. Regions are marked and transformed 
(i–iii) as in (B), where the longest (marked in 
green) of all shortest possible paths from one re-
gion to the other is then determined (iv).   

B. Balluff et al.                                                                                                                                                                                                                                  

https://github.com/MSIandCo/MSIandCo
https://doi.org/10.1016/j.cll.2021.03.009
https://doi.org/10.1021/acs.analchem.9b00807
https://doi.org/10.1021/ac0351264
http://refhub.elsevier.com/S2667-145X(21)00035-3/h0020
http://refhub.elsevier.com/S2667-145X(21)00035-3/h0020
http://refhub.elsevier.com/S2667-145X(21)00035-3/h0020


Journal of Mass Spectrometry and Advances in the Clinical Lab 23 (2022) 26–38

37

A. Walch, J.T. Siveke, Modeling Therapy Response and Spatial Tissue Distribution 
of Erlotinib in Pancreatic Cancer, Mol. Cancer Ther. 15 (5) (2016) 1145–1152, 
https://doi.org/10.1158/1535-7163.MCT-15-0165. 

[6] V.M. Prade, T. Kunzke, A. Feuchtinger, M. Rohm, B. Luber, F. Lordick, A. Buck, 
A. Walch, De novo discovery of metabolic heterogeneity with immunophenotype- 
guided imaging mass spectrometry, Mol. Metab. 36 (2020) 100953, https://doi. 
org/10.1016/j.molmet.2020.01.017. 

[7] Patterson NH, Yang E, Kranjec EA, Chaurand P. Co-registration and analysis of 
multiple imaging mass spectrometry datasets targeting different analytes. 
Bioinformatics. 2019; 35(7):1261-2. doi:10.1093/bioinformatics/bty780. 

[8] D. Trede, S. Schiffler, M. Becker, S. Wirtz, K. Steinhorst, J. Strehlow, M. Aichler, J. 
H. Kobarg, J. Oetjen, A. Dyatlov, S. Heldmann, A. Walch, H. Thiele, P. Maass, 
T. Alexandrov, Exploring three-dimensional matrix-assisted laser desorption/ 
ionization imaging mass spectrometry data: three-dimensional spatial 
segmentation of mouse kidney, Anal. Chem. 84 (14) (2012) 6079–6087, https:// 
doi.org/10.1021/ac300673y. 

[9] K. Mallah, J. Quanico, D. Trede, F. Kobeissy, K. Zibara, M. Salzet, I. Fournier, Lipid 
Changes Associated with Traumatic Brain Injury Revealed by 3D MALDI-MSI, Anal. 
Chem. 90 (17) (2018) 10568–10576, https://doi.org/10.1021/acs. 
analchem.8b0268210.1021/acs.analchem.8b02682.s001. 

[10] W.M. Abdelmoula, M.S. Regan, B.G.C. Lopez, E.C. Randall, S. Lawler, A.C. Mladek, 
M.O. Nowicki, B.M. Marin, J.N. Agar, K.R. Swanson, T. Kapur, J.N. Sarkaria, 
W. Wells, N.Y.R. Agar, Automatic 3D Nonlinear Registration of Mass Spectrometry 
Imaging and Magnetic Resonance Imaging Data, Anal Chem. 91 (9) (2019) 
6206–6216, https://doi.org/10.1021/acs.analchem.9b0085410.1021/acs. 
analchem.9b00854.s00110.1021/acs.analchem.9b00854.s002. 

[11] D.L. Hill, P.G. Batchelor, M. Holden, D.J. Hawkes, Medical image registration, 
Phys. Med. Biol. 46 (3) (2001) R1–R45, https://doi.org/10.1088/0031-9155/46/ 
3/201. 

[12] S. Dawn, V. Saxena, B. Sharma, Remote Sensing Image Registration Techniques: A 
Survey Berlin, Springer, Berlin Heidelberg, Heidelberg, 2010. 

[13] Z. Hrazdíra, M. Druckmüller, S. Habbal, Iterative Phase Correlation Algorithm for 
High-precision Subpixel Image Registration, Astrophys. J. Suppl. Ser. 247 (1) 
(2020) 8, https://doi.org/10.3847/1538-4365/ab63d7. 
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[63] L. Nicolás-Sáenz, S. Guerrero-Aspizua, J. Pascau, A. Muñoz-Barrutia, Nonlinear 
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