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To address the lack of high-resolution electron ionisation mass spectral libraries (HR-

[EI+]-MS) for environmental chemicals, a retention-indexed HR-[EI+]-MS library has

been constructed following analysis of authentic compounds via GC-Orbitrap MS. The

library is freely provided alongside a compound database of predicted physicochemical

properties. Currently, the library contains over 350 compounds from 56 compound

classes and includes a range of legacy and emerging contaminants. The RECETOX

Exposome HR-[EI+]-MS library expands the number of freely available resources for

use in full-scan chemical exposure studies and is available at: https://doi.org/10.5281/

zenodo.4471217.

Keywords: electron ionization [EI+], spectral library, gas chromatographymass spectrometry, chemical exposure,

high-resolution

INTRODUCTION

Since commercial release in 2015, the high-resolution gas chromatography Orbitrap mass
spectrometer (GC Orbitrap MS) has been evidenced as a valuable tool in metabolomics (1–6),
environmental (7–10), clinical (11), and forensic analysis (12). The enhanced mass accuracy
and greater achievable linear dynamic range (13), when operating in full-scan mode, makes
GC Orbitrap MS particularly suited to chemical characterization of complex samples with
unknown composition.

Themost commonly applied ionization for screening of environmental contaminants is electron
ionization (EI+), typically operated at 70 electron volts (eV), favored for robust fragmentation.
When coupled with retention index information, the matching of EI+ spectra can enable structural
annotation of relatively high confidence (14).

However, high-resolution electron ionization mass spectral (HR-[EI+]-MS) libraries are
currently limited (1), particularly for environmental chemicals. This hinders the application of GC
Orbitrap MS without prior generation of in-house spectral libraries, which requires substantial
resources; or the purchase of commercial libraries that are often tied to proprietary data formats
and software.

Whilst matching to low resolution (LR) spectra is possible and additional accurate mass
information utilized [e.g., via High Resolution Filtering (15) (HRF)], freely available LR-[EI+]-MS
libraries are equally limited in coverage of environmental chemicals. Furthermore, scan time has a
significant impact of fidelity of isotopic abundance (16) and specific chemical gas-phase reactions
in the trap (17) can lead to Orbitrap system-specific spectra. In addition, it is known that spectra
are source-dependent, even at standardized 70 eV (18). These additional information are needed to
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be overlooked when matching to LR-[EI+]-MS spectra
and entail discrepancy to current spectral predictions and
substructure characterizations.

Accurate spectral prediction is particularly crucial for the
generation of “suspect” libraries for GC-[EI+]-MS screening
of environmental contaminants, to improve identification of
unknowns (19). The lack of [EI+]-MS spectra for environmental
chemicals is a constraint for spectral prediction (20) by limiting
inputs for machine-learning methods and preventing validation
of computed spectra.

Herein, the RECETOX Exposome HR-[EI+]-MS library has
been generated for free distribution to enable accelerated
application of GC-Orbitrap MS for identification of
environmental contaminants.

MATERIALS AND METHODS

Chemicals
All reagents were of GC grade (for pesticide residue analysis)
or higher. Standards were of ≥98% purity and stored as
per manufacturer recommendations. Compounds were selected
on the basis of being included in targeted environmental
and biomonitoring analysis undertaken or under method
development by the RECETOX Trace Analytical Laboratories
(under EN ISO/IEC 17025:2005 accreditation), thus with known
amenability for GC-[EI+]-MS. Standards were purchases in
solution form and dilutions conducted following accredited trace
analytical laboratory practice. Where necessary, solvent was
switched to pyridine or hexane, under high purity N2. Individual
aliquots of 50 µL were transferred into 2mL amber vials with
built-in 350 µL insert and stored at−20◦C prior to injection.

Data Acquisition
Compounds or compound mixes were analyzed via GC Orbitrap
MS comprising a Trace 1310 Series GC, Q Exactive GC-Orbitrap
MS and TriPlus RSHAutosampler. Injections (1–2µL, providing
>100 pg on column per analyte) were made in splitless mode
using split/splitless injector. Separation was performed on a 5-
type MS column (30m × 0.25mm, 0.25µm i.d.; cross-linked
5% phenyl-95% methylpolysiloxane, Restek Rxi-5Sil MS) with
guard (1m × 0.53 um i.d.; non-polar deactivated fused silica,
Restek Rxi guard) with helium as carrier gas (1.3 mL/min). The
Orbitrap MS was operated in Full MS-SIM using 70 eV EI+
and data recorded in profile mode, scan range 70–700 m/z.
Filament emission was 50 µA, MS transfer line at 250◦C, and
ion source at 280◦C. Resolving power was 60,000 full-width at
half maximum height at m/z 200, automatic gain control at
1E6 and automatic max injection time. A C7-C40 alkane series
was used for external non-isothermal Kováts retention-indexing
(from temperature programming, using the definition of Van den
Dool and Kratz) (21).

Library Construction
Vendor raw files were converted to mzML format using
ProteoWizard MSConvert (22, 23) (ver 3) with vendor
centroiding. Component peak identification and spectral
deconvolution was performed using MS-DIAL (24, 25) (ver
4.20). Parameters were set as follows: minimum peak height:

50,000; mass slice width: 0.05; mass centroiding accuracy: 0.05;
average peak width: 10; smoothing level: 3; sigma window:
0.3 and 1% spectra cut-off. Quality of deconvoluted spectra
was manually checked (26) and acceptable spectra exported to
MS-FINDER (25, 27) (ver 3.42). Precursor m/z was assigned as
nearest ion in the spectra equal to or less than the compounds
monoisotopic mass and fragments were annotated with a
(5 ppm) tolerance. Spectra were saved in the MS Transfer
File (MSP) format with a 1% relative abundance cut-off (28).
Retention indices (RI) were retrieved from MS-DIAL and input
to the MSP. Where possible, spectra were verified via similarity
matching (forward search) (29) against LR-[EI+]-MS spectra
of a composite library comprising NIST/EPA/NIH MS Library
(NIST 14) (30), MS-DIAL MSP spectra kit of public EI-MS
spectra (25, 31) (ver 2), SWGDRUG MS library (32, 33) (ver
3.6), Cayman Spectral Library (34) (v09112019), and Golm
Metabolome Database (35) (v20112021). RIs were compared
to consensus semi non-polar RIs (36). Spectral and RI matches
were conducted via NIST MS Search (ver 2.3) (37), constrained
to the 70–700 m/z scan range.

Database Management
Compound identifiers (InChI, InChIKey & SMILES) were
retrieved via the Chemical Translation Service (38) (chemical
name as input), United States Environmental Protection Agency
(EPA) CompTox Chemicals Dashboard (39) (ver 3.5, chemical
name and/or InChI as input) or generated in ACD/Chemsketch
(40) (manually drawn structure). Predicted physico- and toxico-
chemical properties were retrieved from the EPA CompTox
Chemicals Dashboard (39) (ver 3.5, InChIKey as input); or
generated via DataWarrior (41) (ver 5.2.1, SMILES as input).
Natural product likeness scores were calculated via NP-Scout
(42) on the NERDD portal (43) (SMILES as input). Structural
classification was calculated via ClassyFire (44) (SMILES as
input). Distribution plots were generated using plotly online
(45) (available at https://chart-studio.plotly.com/). The database
was compiled and exported in structure data formation (SDF)
through DataWarrior (41).

RESULTS AND CONCLUSIONS

Authentic compounds have been analyzed in full-scan mode
using GC-Orbitrap MS and the constructed RECETOX

TABLE 1 | Overview of current diversity of compounds included within

HR-[EI+]-MS library.

Number of spectra 386

Unique compoundsa (connectivity) 351

Number of chemical classesb 56

Monoisotopic mass range 108.06–715.45

boiling point (◦C) rangec 170.51–549.62

Octanol water coefficient (logP) rangec −0.84–9.20

aCompounds with unique connectivity (46).
bClassyFire taxonomy (44).
cPredicted values retrieved from the EPA CompTox Chemicals Dashboard (39).
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Exposome HR-[EI+]-MS library incorporates GC retention-
index (alkane series, semi non-polar column) and theoretical
fragment formula annotation.

The library contains compounds of broad physicochemical
diversity (Table 1, Supplementary Figure 1) and toxicological
importance. Of the 386 spectra collected, 336 are unique to
the RECETOX Exposome HR-[EI+]-MS library with respect
to the 31,491 contained in other freely available libraries
(composite library excluding NIST 14; Supplementary Table 1).
Notably, the majority of compounds (318 of 352) are listed on
the Human Biomonitoring for Europe (HBM4EU) Screening
List for Chemical of Emerging Concern (CECscreen) (47)
(Supplementary Table 1).

The MSP format is widely used, readable and modifiable by
commercial and freely available software tools (48), enabling
easy incorporation into current annotation workflows. Spectral
quality was ensured and comparison of the HR-[EI+]-MS
entries to LR-[EI+]-MS libraries generated an average forward
match score of 841 (Supplementary Table 1). In use, adequate
spectral matches to the HR-[EI+]-MS library enhanced with RI
match on similar 5-type semi-non polar columns (49) would
warrant a level 2 “putative” annotation (50, 51) (exampled
in Supplementary Figure 2). Furthermore, the high degree of
compound diversity is beneficial for integrationwith EI+ spectral
similarity networking via GNPS-MSHub (52) online workflows
or offline via MetGEM (53) to assign compound class (level 3
annotation) (54).

The accompanying SDF database accompanies structures
with structural classifiers and predicted physico- and toxico-
chemical properties. Sharing facilitates ease of insight into
chemical properties (exampled in Supplementary Figure 3) and
future use of compound data for modeling, e.g., retention
prediction (55).

The RECETOX Exposome HR-[EI+]-MS library is freely
provided to enable broad usability and promotes open science
in environmental research (56). We hope the RECETOX
Exposome HR-[EI+]-MS library provides a valuable resource
for those seeking to screen environmental exposures and
chemical contaminants.
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Klánová. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Public Health | www.frontiersin.org 5 March 2021 | Volume 9 | Article 622558

https://doi.org/10.1021/es5002105
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1038/s41587-020-0700-3
https://doi.org/10.1021/acs.analchem.9b02802
https://doi.org/10.1105/tpc.111.086272
https://doi.org/10.1021/acs.analchem.6b00868
https://doi.org/10.1021/acs.est.7b01908
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds
	Introduction
	Materials and Methods
	Chemicals
	Data Acquisition
	Library Construction
	Database Management

	Results And Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


