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ABSTRACT

Genome-enabled approaches to molecular epidemi-
ology have become essential to public health agen-
cies and the microbial research community. We de-
veloped the algorithm STing to provide turn-key so-
lutions for molecular typing and gene detection di-
rectly from next generation sequence data of micro-
bial pathogens. Our implementation of STing uses an
innovative k-mer search strategy that eliminates the
computational overhead associated with the time-
consuming steps of quality control, assembly, and
alignment, required by more traditional methods.
We compared STing to six of the most widely used
programs for genome-based molecular typing and
demonstrate its ease of use, accuracy, speed and
efficiency. STing shows superior accuracy and per-
formance for standard multilocus sequence typing
schemes, along with larger genome-scale typing
schemes, and it enables rapid automated detection of
antimicrobial resistance and virulence factor genes.
STing determines the sequence type of traditional
7-gene MLST with 100% accuracy in less than 10
seconds per isolate. We hope that the adoption of
STing will help to democratize microbial genomics
and thereby maximize its benefit for public health.

INTRODUCTION

Molecular typing entails the identification of distinct evo-
lutionary lineages (i.e. types) within species of bacterial
pathogens; it is an essential element of both outbreak in-
vestigation and routine infectious disease surveillance (1,2).
Multilocus sequence typing (MLST) was developed as the
first sequence-based approach to molecular typing in 1998
(3). Initially, MLST schemes relied on Sanger sequencing of
PCR amplicons from fragments of 7–9 housekeeping genes

spread throughout the genome. Briefly, each new distinct
sequence of a housekeeping gene (locus) that is character-
ized in a given species, is uniquely identified by an integer
number. The combination of the 7–9 numbers denotes an
allelic profile which is uniquely tagged with an integer num-
ber that corresponds to a sequence type (ST). While this
approach truly revolutionized molecular epidemiology, it is
time consuming and costly compared to current next gener-
ation sequencing (NGS) methods. Nevertheless, MLST re-
mains widely used for molecular typing, particularly in light
of valuable legacy data relating STs to epidemiological in-
formation.

Public health agencies increasingly couple NGS charac-
terization of microbial genomes with downstream bioinfor-
matics analysis methods to perform molecular typing. The
overhead associated with the bioinformatics methods that
are used for this purpose, in terms of both the required hu-
man expertise and computational resources, represents a
critical bottleneck that continues to limit the potential im-
pact of microbial genomics on public health. This is partic-
ularly true for local public health agency laboratories, which
are typically staffed with microbiologists who may not have
substantial bioinformatics expertise or ready access to high-
performance computational resources. In light of this on-
going challenge, our group is working to develop turn-key
solutions to genome-enabled molecular epidemiology, in-
cluding both molecular typing and the detection of critical
antimicrobial resistance (AMR) and virulence factor (VF)
genes. Methods of this kind must be easy to use, computa-
tionally efficient, fast, and most importantly, highly accu-
rate.

We previously developed stringMLST as an alternative
approach to genome-enabled molecular typing of bacterial
pathogens (4). stringMLST relied on k-mer matching be-
tween NGS sequence reads and a database of MLST al-
lele sequences, thereby eliminating the need for the sequence
quality control, genome assembly, and alignment steps that
the first generation of genome-enabled typing algorithms
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used. It proved to be accurate and fast for traditional MLST
schemes, but it did not scale well to larger genome-scale typ-
ing schemes, such as ribosomal MLST (rMLST) or core-
genome MLST (cgMLST), which are increasingly used in
molecular epidemiology (1,5). Here, we present our new ap-
proach to this problem – STing. The STing algorithm is dis-
tinguished from its predecessor in several important ways:
the efficiency of its code base, the underlying data structure
that it uses, and the scope of its applications. These innova-
tions provide for superior accuracy and performance com-
pared to both stringMLST and other widely used programs
for genome-enabled molecular typing.

MATERIALS AND METHODS

STing overview

Given an input sequence read file from a microbial iso-
late, STing can accurately identify the specific sequence type
(ST), e.g. multilocus sequence type or its variants, for the
isolate, and what genes of interest are present in its genome.
STing accomplishes these tasks by using an exact k-mer
matching and frequency counting paradigm. STing is im-
plemented in C++ and utilizes two libraries: the SeqAn
library (6) for the Enhanced Suffix Array (ESA) (7) data
structure and the gzstream library (https://www.cs.unc.edu/
Research/compgeom/gzstream/) for working with gz files.
Additionally, STing is prepackaged with an R script for
visualization of the results and a Python script for down-
loading database sequences from PubMLST. The ESA data
structure is used for k-mer look-up and comparison pur-
poses. ESAs are a lexicographically sorted array-based data
structure, which represent space-efficient implementation of
the Suffix Trees data structure. For a given set of sequences
with a total length of n base pairs (summation of lengths of
all sequences), an ESA index can be constructed in linear
time O(n). ESAs can also be queried for k-mer matches (or
substring matches) in linear time. Given a k-mer of length
k, we can determine its presence/absence in the database in
O(k) time and find all of its z occurrences in O(k + z) time.
While Suffix Trees achieve the same time complexity for in-
dex construction and k-mer lookup, they take five times
more storage space than ESAs. An efficient implementation
of a Suffix Tree can use up to 20 bytes per input database
character, whereas an equivalent ESA consumes 4 bytes per
input database character. Using ESAs for k-mer lookup and
comparison allows STing to efficiently scale with large se-
quence databases. The STing algorithm is divided into three
steps: (i) database indexing, (ii) sequence typing and (iii)
gene detection (Supplementary Figure S1). See the online
Supplementary Data and Supplementary Notes for detailed
descriptions of the inputs, outputs and algorithms used.

Genomic data for sequence typing

We used 1050 Illumina sequencing read sets of isolates from
four bacterial species (Campylobacter jejuni, Chlamydia tra-
chomatis, Neisseria meningitidis and Streptococcus pneu-
moniae) retrieved from the PubMLST (https://pubmlst.
org/)/EBI ENA (https://www.ebi.ac.uk/ena) database to ex-
ecute the experiments (Supplementary Data). Using the iso-

late metadata available on PubMLST, we selected 40 sam-
ples from the four species (10 samples each) for the MLST
comparative test, and 20 samples of N. meningitidis isolates
for the larger typing schemes (rMLST and cgMLST) com-
parative test. We selected these two datasets so as to capture
the diversity of the most common STs of each species in the
PubMLST database and preferred recently sequenced iso-
lates. For the large-scale accuracy test, we used a dataset of
1000 samples of N. meningitidis isolates.

Computational environment

We used a machine provided with RedHat Linux OS, 24
cores and 64GB of RAM to perform the experiments de-
scribed in this study.

MLST comparative test design

To measure the performance of our application on
the traditional seven loci MLST analysis, we compared
STing (v0.24.2) in two execution modes, fast and sen-
sitive, along with six applications able to perform se-
quence typing (stringMLST (4), MentaLiST (8), Kestrel
(9), SRST2 (10), ARIBA (11) and Offline CGE (Sup-
plementary Tables S1 and S2). These applications can
be classified into five groups depending on the strat-
egy (algorithmic paradigm) used to predict the sequence
types of whole genome sequencing data samples from
bacterial isolates: k-mer, k-mer + alignment, mapping,
mapping + local assembly and assembly (Supplementary
Table S3). For the Offline CGE application, we used
the script runMLST.py (https://github.com/widdowquinn/
scripts/blob/master/bioinformatics/run MLST.py), an of-
fline implementation of the original alignment-based
MLST method from the Center of Genomic Epidemiol-
ogy (12). This implementation uses multithreaded BLAST
searching for the MLST analysis, as opposed to STing,
which is a single thread application. For a fair compari-
son between STing and the Offline CGE/DTU implemen-
tation, we modified the script runMLST.py to use only
one thread for BLAST searches (https://doi.org/10.5281/
zenodo.3604226). For each application, we measured the
accuracy in terms of the percentage of alleles correctly pre-
dicted from the total samples analyzed and the performance
in terms of average run time and average peak RAM re-
quired to analyze each of the 40 samples in the dataset. We
reported the average run time and average maximum RAM
as the average of three executions of each application per
sample analyzed. Kestrel requires the generation of a k-mer
counts file before it can be run to predict STs. For this pur-
pose, we used the application KAnalyze (13) (v2.0.0) with
the parameters as described (9). We reported the average run
time of Kestrel as the sum of the average times of KAna-
lyze and Kestrel for processing each sample and the average
RAM consumption as the maximum average peak of RAM
consumed by the two applications on each sample. Since
the Offline CGE application requires complete assemblies
to predict STs, we assembled each isolate read sample using
the application SPAdes (14) (v3.13.0) with default parame-
ters. We reported the average runtime as the sum of the aver-
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age times of SPAdes and Offline CGE to process each sam-
ple and the average RAM consumption as the maximum
average peak of RAM consumed between the two applica-
tions during the analysis of each sample. The commands
used with each application tested are listed in the supple-
mentary material (Supplementary Table S3).

Large-scale MLST accuracy test design

To measure the accuracy of our application using the MLST
scheme on a large-scale dataset, we ran STing in fast mode
on 1000 samples of N. meningitidis. We measured the accu-
racy in terms of the percentage of STs correctly predicted
from the total samples analyzed and the performance in
terms of average run time and average peak of RAM re-
quired to analyze each of the samples. We reported the av-
erage run time and average maximum RAM as the average
of five executions of the application per sample analyzed.

Limit of detection, and performance on single and multicore
environment test design

We evaluated the minimum sequencing depth required for
correctly predicting STs on whole genome sequencing sam-
ples from bacterial isolates. We retrieved 1,872 assemblies
of Chlamydia trachomatis (n = 133), Campylobacter jejuni
(n = 581), Neisseria meningitidis (n = 725) and Strepto-
coccus pneumoniae (n = 433) with known MLST infor-
mation from the GenBank (https://www.ncbi.nlm.nih.gov/
genbank/) database (Supplementary Data). Then, we simu-
lated Illumina paired-end reads––HiSeq 2500, 2 × 150 bp,
500 bp of average fragment length, with 10 as the fragment
size standard deviation – from each genome at seven se-
quencing depths (1×, 3×, 5×, 10×, 20× and 40×) using the
software ART (15) (v2.5.8). We executed STing (fast mode)
on each generated sample to measure the accuracy in terms
of the percentage of correct STs and alleles predicted from
the total samples at each sequencing depth. We also evalu-
ated the performance of STing in multicore environments.
We executed 20 parallel instances of STing to analyze the
1872 samples and measured the average time required to
process the complete dataset at each sequencing depth.

Large-scale sequence typing schemes comparison test design

To evaluate the scalability, accuracy, and performance of
our application on large-scale sequence typing schemes,
we compared STing (fast and sensitive modes) on 20
samples of N. meningitidis against other sequence typ-
ing applications using the rMLST (loci = 53) and the
cgMLST (loci = 1605) schemes. We used three applica-
tions (stringMLST, SRST2, and Offline CGE) for rMLST
and three applications (stringMLST, MentaLiST and Of-
fline CGE) for cgMLST; these applications were able to ex-
ecute the sequence typing analysis successfully using these
larger schemes. For each application and typing scheme, we
measured the accuracy in terms of the percentage of correct
allele predictions from the total alleles of the tested samples
and the performance in terms of the average of run time and
maximum RAM required to process each sample from the
dataset.

Gene detection test design

We evaluated the ability of STing to predict the
presence/absence of sequences of interest in NGS read
samples by detecting antimicrobial resistance (AMR) genes
and virulence factor (VF) genes in simulated Illumina read
datasets. We retrieved 71 assemblies from the GenBank
database that correspond to 25 species listed in the World
Health Organization’s priority list of antibiotic-resistant
bacteria and tuberculosis (16) (Supplementary Data).
Then, we simulated Illumina paired-end reads – HiSeq
2500, 2 × 150 bp, 500 bp of average fragment size, with
10 as the fragment size standard deviation – from each
genome at 20× and 40× sequencing depth, using the
software ART (15) (v2.5.8). For the AMR gene detection
test, we used 1434 AMR genes available in the Comprehen-
sive Antibiotic Resistance Database (17) (CARD, v2.0.2)
(Supplementary Data). For the VF gene detection test,
we used 1443 genes from the Virulence Factor Database
(18) (VFDB, release date 22 March 2019) (Supplementary
Data). In both tests, we first defined presence/absence of
each gene in each genome using BLASTn (19) (v2.2.28+)
as a ground-truth for assessing STing’s performance. To
perform a fair comparison with STing’s gene detection
utility, which is based on exact pattern matching, we
defined a cutoff of 100% for identity and query (gene)
coverage in BLASTn to consider a gene as present in a
genome, i.e. if the gene is perfectly contained in the genome.
Then, we built databases with STing for each gene set of
interest (CARD and VFDB) and executed the respective
gene detection analysis on each genome-derived read set
at each sequencing depth, using a threshold of 100% for
gene coverage to consider a gene as present in a sample.
Finally, we evaluated the performance of detection in terms
of sensitivity, specificity, precision and accuracy, which are
defined as follows:

Sensitivity = TP
TP+FN ; Specificity = TN

TN+FP
Precision = TP

TP+FP ; Accuracy = TP+TN
TP+TN+FP+FN ;

where TP = true positives, TN = true negatives, FP =
false positives and FN = false negatives.

RESULTS

STing uses exact k-mer matching for ultrafast classification

The STing algorithm breaks down (k-merizes) NGS reads
into k-mers and then compares read k-mers against an
indexed reference sequence database (Figure 1). Prior to
any read processing, STing indexes the reference sequence
database using the enhanced suffix array (ESA) (7) data
structure; this enables the efficient representation of entire
sequences, as opposed to other k-mer based methods that
employ k-merized sequences stored in hash tables. The ESA
data structure allows for a single sequence index, indepen-
dent of k-mer size, whereas alternative approaches such as
hash tables necessitate independent databases for each k-
mer size. Moreover, the ESA data structure facilitates rapid
exact k-mer matching between input reads and the indexed
database.

The k-mer search strategy is based on exact pattern
matching and comprises a read filtering step. For each read,
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Figure 1. Schematic representation of the STing algorithm. The STing al-
gorithm is comprised of two main phases: 1) Database indexing (shaded
box) – user supplied reference sequences (allele or gene sequences) are
transformed into an enhanced suffix array index for rapid k-mer search-
ing during the sequence variant detection phase and 2) Sequence variant
detection – reads are k-merized and each k-mer is searched for within
the database. For each k-mer match in the database, a table of frequen-
cies is maintained and updated for the matched sequence. These frequen-
cies are then utilized to select candidate alleles/genes present in the sam-
ples analyzed. False positive alleles/genes are filtered out by calculating
and analyzing k-mer depth and sequence length coverage from the se-
lected candidate sequences. Lastly, predictions of allelic profile and ST
and presence/absence of genes, are made and reported. A more detailed
flowchart of the algorithm can be seen in Supplementary Figure S1.

a single central k-mer is initially compared against the se-
quence database. Reads are only fully k-merized if there is a
match between the central k-mer and the database. If there
is no match, the read is discarded. For schemes containing
a small set of target loci, the vast majority of reads are dis-
carded at this step. This filtering step results in substantial
savings in terms of both the number of reads that need to be
k-merized and the number of database search steps. Then,
each k-mer from reads that pass the filter is searched within
the indexed database. Upon a match, the algorithm updates
the table of k-mer frequencies. Once all the reads from the
input dataset are processed, the table of k-mer frequencies
is used to perform sequence typing or gene detection.

In sequence typing mode, the algorithm calls the most
probable allele sequences for each locus present in the sam-
ple. For each locus in the sequence typing scheme, STing se-
lects the best alleles by taking the sequences with the highest
k-mer frequency. STing forms the allelic profile with the al-
leles called for each locus. Finally, the sequence type (ST)
of the sample is assigned by looking up the allelic profile
in a profile table stored in the reference database. This ta-
ble associates previously characterized allelic profiles with
distinct STs. Sequence typing can be run in fast and sen-
sitive modes. In fast mode, STing calls alleles based solely
on the highest k-mer frequencies. In sensitive mode, STing
calls alleles and removes false positives using k-mer depth
and coverage information calculated for the top N (N = 2
by default) most probable sequence selected for each locus
of the typing scheme. k-mer depth is defined as the number
of k-mer matches that cover each nucleotide of the called
allele, and coverage is defined as the percentage of the allele
sequence that is covered by k-mer matches.

In gene detection mode, STing selects the most proba-
ble sequences to be present in the sample by taking the se-
quences with at least one k-mer match. Then, the algorithm
calculates k-mer depth and sequence coverage information
for each of the selected sequences. Finally, the algorithm de-
fines a gene as present if its coverage is greater than or equal
to a threshold defined for this purpose (75% by default); this
threshold can be modified by the user.

STing outperforms other state of the art sequence typing pro-
grams

We compared STing to six of the most widely used programs
for genome-enabled molecular typing, including its prede-
cessor stringMLST. Details on the algorithmic approaches
and data structure used by each of these programs are pro-
vided in Supplementary Table S1 (2). Our criteria for select-
ing the programs included the ability to perform sequence
typing analysis on whole genome sequencing (WGS) data,
using either Illumina raw reads or genome assemblies. Ad-
ditionally, we preferred the most recent version of programs
that are widely used and that implement different algorith-
mic paradigms for sequence typing. We selected six pro-
grams that fall into five different algorithmic paradigms:
(i) stringMLST and (ii) MentaLiST which implement the
k-mer paradigm based on k-mer match frequencies (4,8);
(iii) Kestrel that uses a hybrid paradigm of k-mer frequen-
cies plus a dynamic programming-based local alignment
(9); (iv) SRST2 that utilizes read mapping to reference se-



Nucleic Acids Research, 2020, Vol. 48, No. 14 7685

quences to avoid full genome assembly (10); (v) ARIBA,
a pipeline that uses read mapping to clusters of closely re-
lated alleles followed by a local assembly of reads mapped
to each cluster (11) and (vi) Offline CGE, an offline imple-
mentation (https://doi.org/10.5281/zenodo.3604226) of the
first alignment-based sequence typing method developed by
the Center for Genomic Epidemiology (CGE) that requires
full genome assembly (12).

The programs were evaluated for accuracy in terms of the
percentage of correct allele predictions, speed in terms of
average run time, and efficiency in terms of average max-
imum RAM consumption. STing was run in the fast and
sensitive modes for the traditional housekeeping MLST
scheme and two larger-scale typing schemes, rMLST and
cgMLST. Allele databases for all three typing schemes were
accessed from the PubMLST database (https://pubmlst.
org/). STing’s fast mode uses a k-mer matching only strat-
egy, whereas the sensitive mode includes an additional step
to exclude false positive calls based on gaps in k-mer cov-
erage. Comparisons were performed for 10 samples each
across four species that are widely used in MLST and ac-
cordingly have diverse MLST databases: C. jejuni, C. tra-
chomatis, N. meningitidis and S. pneumoniae. STing shows
100% accuracy, in both the fast and sensitive modes, as well
as the fastest run time and lowest memory use of any pro-
gram for MLST (Figure 2A). The results of the same com-
parisons are broken down for each of the four individual
species in Supplementary Figure S2. STing shows the high-
est accuracy, speed, and efficiency for the four programs
that are capable of genome-enabled rMLST typing (Fig-
ure 2B). Programs that show an ‘X’ in these comparisons
were unable to run for a variety of reasons related to their
initial design, the runtime, and database indexing limita-
tions. The program MentaLiST shows marginally higher
accuracy, run time, and efficiency for cgMLST compared
to STing (Figure 2C). However, the utility of MentaLiST,
which was designed specifically for cgMLST, is limited by
the size of the database that can be indexed. For that reason,
it could not be run on the latest rMLST database available
from PubMLST. The rMLST and cgMLST allele predic-
tion errors seen for STing occurred for one of two reasons:
(i) the correct allele was marginally lower in allele coverage
compared to the predicted allele, or (ii) the allele in the iso-
late was a novel allele not present in the allele database used
by STing. The coverage error gets resolved when STing is
run in the sensitive mode (see Figure 2B); however, the er-
ror based on novel alleles persists.

Real-time molecular epidemiology in the post-genomic era
with STing

We ran STing for MLST across a range of sequencing depth
levels in an effort to assess its applicability on real-time
molecular epidemiology by measuring its detection limits
and multi-core performance (Figure 3). We simulated 2131
samples at six sequencing depths from genome assemblies
of four species (C. trachomatis, C. jejuni, N. meningitidis
and S. pneumoniae) retrieved from GenBank. The detection
limit test shows that STing can accurately predict the se-
quence alleles with genomic depths as low as 20× and shows
a marginal drop-off in accuracy at lower depth of 10× (Fig-

ure 3A). The drop-off in the ST calls is larger than allele calls
as a single incorrect allele prediction can lead to incorrect
ST call. While STing is designed as a single core application,
executing STing in multiple parallel threads leads to a linear
decrease in the processing time, requiring <6 min to pro-
cess all of the 20× and 40× simulated genomes as opposed
to over 50 min of processing time when run serially (Fig-
ure 3B). This provides a straightforward way to run STing
on numerous genome samples as required in scenarios for
real-time molecular epidemiology.

Additionally, we evaluated the accuracy and speed of
STing for MLST analysis on a larger dataset of 1000 N.
meningitidis samples obtained from the PubMLST/EBI
ENA database. Detailed results of this large-scale test are
shown in Supplementary Table S3. When this large-scale
analysis was performed, STing uncovered samples that were
initially scored as erroneous predictions but turned out to
be misannotated in the PubMLST database (Supplemen-
tary Table S4). Seven samples that were initially incorrectly
predicted were assembled, and the resulting assemblies were
aligned to the N. meningitidis MLST reference database
using BLASTn to determine the corresponding STs. All
seven predicted STs were the same as what was predicted
by STing, confirming that these samples are misannotated
in the PubMLST database. Thus, STing had 100% accuracy
predicting the STs for the 1000 samples analyzed.

Antimicrobial resistance and virulence profiling

In addition to molecular sequence typing, STing can also
be used for automated gene detection directly from NGS
reads. The gene detection mode uses a database of genes of
interest indexed as an ESA for rapid k-mer searching. We as-
sessed the ability of STing to detect genes by predicting the
presence/absence of two types of epidemiologically relevant
markers, antimicrobial resistance (AMR) and virulence fac-
tor (VF) genes, on simulated read samples.

To generate two indexed databases of genes of inter-
est, we used 1434 AMR genes from the Comprehensive
Antibiotic Resistance Database (17) (CARD, https://card.
mcmaster.ca/), and 1443 VF genes from the Virulence
Factor Database (18) (VFDB, http://www.mgc.ac.cn/VFs/),
which were identified as present through BLASTn in 71 as-
semblies of bacterial pathogens relevant to public health.
The assemblies were retrieved from GenBank and corre-
spond to 25 bacterial species from the World Health Orga-
nization global priority list of antibiotic-resistant bacteria
(16). STing was used to query the AMR and VF databases
in NGS datasets simulated from the 71 assemblies (20× and
40× sequencing depth).

STing shows very high accuracy metrics for both AMR
and VF detection, along with fast and efficient performance
(Figure 4). In the case of AMR detection, STing shows a
value of 1.0 for the sensitivity, specificity, and accuracy met-
rics in both 20× and 40× simulated datasets, with a low
number of false positives that slightly impacts the precision
metric in the two datasets (Figure 4A). In the case of VF
detection, STing shows a value of 1.0 for the specificity and
accuracy metrics in both 20× and 40× simulated datasets,
and a minimal drop in sensitivity for the 20× dataset and
in precision for both datasets due to false positives (Figure
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Figure 2. Performance comparison of STing with six other sequence typing applications. The fast and sensitive modes of STing are compared to six other
contemporary typing applications to measure the accuracy and runtime performance, using three different typing schemes: (A) the traditional MLST (loci
= 7) on 40 samples from four bacterial species (10 samples per species: C. jejuni, C. trachomatis, N. meningitidis and S. pneumoniae); (B) the ribosomal
MLST (rMLST) scheme (loci = 53) on 20 samples of N. meningitidis, and (C) the core genome MLST (cgMLST) scheme (loci = 1605) on 20 samples of N.
meningitidis. The typing applications are color coded based on the algorithmic paradigms that they utilize for performing sequence typing. Performance is
measured in terms of the percentage of correct alleles predicted, the average runtime across each dataset measured in seconds (displayed in log-scale), and
average peak RAM utilization across each dataset measured in megabytes (MB) for MLST and gigabytes (GB) for rMLST and cgMLST (both displayed
in log-scale).
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Figure 3. Results of the limit of detection test, and single- and multi-core performance test using MLST scheme. STing’s sequence typing utility was run
for MLST scheme in the fast mode over 1872 read samples simulated at 6 sequencing depths (1×, 3×, 5×, 10×, 20× and 40×) from assemblies of 4 species:
Chlamydia trachomatis (n = 133), Campylobacter jejuni (n = 581), Neisseria meningitidis (n = 725), and Streptococcus pneumoniae (n = 433). (A) Percentage
of correct predictions in terms of STs and alleles at different sequencing depths for the four datasets. (B) Total time in seconds (displayed in log-scale)
required to process the complete dataset for each species at different sequencing depths using a single thread or instance (dashed lines) and 20 multiple
threads (solid lines) of the sequence typing utility.

4B). STing required between 3.7 and 12.7 s on average, and
between 71.8 and 134MB of RAM on average to process
each sample of the AMR and VF simulated datasets (Fig-
ure 4C).

DISCUSSION

STing is the only program based exclusively on k-mer fre-
quencies that provides for two critical analyses in molecular
epidemiology: sequence typing and gene detection.

We compared STing to a set of six contemporary ap-
plications that use different algorithmic strategies for se-
quence typing. STing outperformed the other applications
in accuracy and efficiency for the classic MLST and the
larger rMLST schemes. Our software was very competitive
in cgMLST analysis following closely to MentaLiST. Al-
though MentaLiST performed better in cgMLST, a large-
scale scheme for which it was specifically designed, we found
that this application is limited by the size of the reference
database that can be processed. The cgMLST approach is
in its infancy and the size of the species-specific databases
are small today. However, as more genomes are sequenced
and characterized over time, the databases will continue to
grow, and MentaLiST will present the same limitation as

it currently does with rMLST. Regarding sequence typing,
STing was the only application able to perform the analysis
using all three of the schemes assessed, while also showing
the ability to scale successfully to large genome-enabled typ-
ing schemes like cgMLST.

We also showed the ability of STing to be used in real-
time molecular epidemiology. STing can provide accurate
allele calls at sequencing depths as low as 10× and scales
to efficiently analyze large-scale WGS datasets. Moreover,
STing is easily parallelizable using multiple instances to re-
duce the time required to analyze hundreds of genome sam-
ples.

In addition to sequence typing, we assessed the ability of
STing for gene detection using AMR and VF genes, two
types of markers of high relevance in public health. STing
was highly accurate and efficient for detecting both AMR
and VF genes. More importantly, STing can be run in the
gene detection mode to rapidly detect any genes of inter-
est, which extends its utility beyond public health genomics.
This could be particularly useful for large scale environ-
mental genomics samples, including amplicon-based and
metagenome studies.

STing was developed to provide turn-key solutions for
NGS analysis in support of public health. Despite its
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Figure 4. Performance comparison of STing’s Gene Detection program. STing’s gene detection program was run on 71 WHO-designated high-priority
bacterial genomes (simulated at read depths of 20× and 40×) using two databases that contained gene annotations for 1434 antimicrobial resistance
(AMRs) and 1443 virulence factors (VFs). Confusion matrices for the detection of (A) AMR genes from the CARD dataset, and (B) VF genes from VFDB
dataset are shown. (C) The table demonstrates the accuracy and average runtime performance comparison of STing’s gene detection at each sequencing
read depth.

Figure 5. Feature comparison between STing and the six applications tested for sequence typing.
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lightweight computational footprint, STing performs accu-
rate and ultrafast molecular typing and gene detection. We
summarize the features and utility of STing compared to
related programs for genome-enabled typing in Figure 5. In
addition to its superior accuracy and performance, STing
is distinguished by its streamlined algorithmic design, its
broad applicability across typing schemes, its ability to sup-
port large databases, and its broad use as an automated gene
detection utility.
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