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Abstract

The Molecular Operating Environment software (MOE) is used to construct a series of benzoxazine monomers for which a
variety of parameters relating to the structures (e.g. water accessible surface area, negative van der Waals surface area,
hydrophobic volume and the sum of atomic polarizabilities, etc.) are obtained and quantitative structure property
relationships (QSPR) models are formulated. Three QSPR models (formulated using up to 5 descriptors) are first used to
make predictions for the initiator data set (n = 9) and compared to published thermal data; in all of the QSPR models there is
a high level of agreement between the actual data and the predicted data (within 0.63–1.86 K of the entire dataset). The
water accessible surface area is found to be the most important descriptor in the prediction of Tg. Molecular modelling
simulations of the benzoxazine polymer (minus initiator) carried out at the same time using the Materials Studio software
suite provide an independent prediction of Tg. Predicted Tg values from molecular modelling fall in the middle of the range
of the experimentally determined Tg values, indicating that the structure of the network is influenced by the nature of the
initiator used. Hence both techniques can provide predictions of glass transition temperatures and provide complementary
data for polymer design.
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Introduction

Polybenzoxazines form a comparatively new family of thermo-

setting resins that are being explored as potential higher

performance replacements for phenolic resins. The preparation

of aromatic oxazines, or benzoxazines, date back some sixty years

[1] but commercial polymers based on bis-benzoxazines are

comparative newcomers to the scene, but have already justified the

publication of a recent handbook [2]. Poly(bis-benzoxazine)s

(sometimes simply referred to as polybenzoxazines) are formed

through step growth ring-opening polyaddition from bis-benzox-

azine monomers (Figure 1), which are in turn the products of the

Mannich reaction between a bis-phenol, formaldehyde and a

primary amine [3]. The monomer-oligomer ratio in the yield can

also be influenced by using an excess of formaldehyde and amine

during the synthesis; causing the products to form via a different

mechanism and resulting in a greater proportion of monomer in

the product [4]. This, in turn, affects the properties of the resin

before, during and after cure (the presence of oligomers bearing

hydroxyl groups in the chain is known to enhance the reactivity of

the benzoxazine). Polybenzoxazines appear to incorporate the best

properties from conventional phenolics, and may find application

in a number of their traditional niches, whilst improving on shelf

life and offering the potential for greater toughness properties

through their greater molecular flexibility; the relative cheapness

of the monomer is also an important factor influencing their

adoption. Unlike many other commercial thermosetting resins,

which evolve condensation products such as water or ammonia,

benzoxazine monomers react relatively cleanly to form a polymer

with few reaction by-products [5] although the exact manner of

the polymerisation reaction to form a network has not been fully

elucidated. The glass transition temperature is when the polymer

goes from a glassy to a rubbery state. This is not a thermodynamic

change of state so there is no exact value rather a range over which

it occurs. Hence the experimentally determined value depends to a

certain extent on how it is measured and quoted values can differ

by plus or minus 10–20 K. There are a number of empirical

equations to predict Tg, the Fox equation, the Gordon and Taylor

equation, the Kwei equation and first published in 2008, the

equation of Brostow et al. [6], which uses a cubic polynomial

based approach to predict the Tg values of polymer blends. The

simulation of the thermal and mechanical properties of polymers is

an area of growing interest. There are basically two main methods

employed for this; the first of which is quantitative structure

property relationships (QSPR) where group additive methods are

used to derive values of the properties of interest. The second

method is atomistic simulation, which uses full atomic detail of the

polymers. The prediction of thermal and mechanical properties in

as yet unsynthesised polymers is beginning to be realised and we

have been demonstrating this by the second method in a variety of

thermosetting polymers such as epoxy resins [7], cyanate esters [8]

and polybenzoxazines [9], as well as engineering thermoplastics

[10,11]. The QSPR method was initially pioneered by Van
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Krevelen culminating in a book published in 2009 [12]. However,

there have been a large number of approaches to QSPR in

polymers, including force field approaches [13] and the inclusion

of quantum chemical descriptors [14–16]. The CODESSA

program has been used to develop an empirical equation for

predicting the Tg values of high molecular weight polymers using

five descriptors related to shape and intermolecular electrostatic

interactions [14]. The Dow chemical company has been very

active in this area and have combined QSPR in the SYNTHIA

program with Accelrys software to make a capability for high

throughput reverse engineering design of new polymer chemical

structures [17–19]. Other approaches have involved the use of

neural networks [20,21] and the EVM Method [22]. The EVM

method [22] uses energy, volume and mass to predict the Tg

values of acrylate and methacrylate polymers with an error of no

more than 10%. In a previous publication [23], we reported the

use of a quantitative structure property relationship (QSPR) to

predict the Tg of a polymer of this type, but the model was

severely limited by the size of the training set used to generate the

QSPR equation. In our recent work, a much more extensive study

was reported extending the approach to an extensive range of

poly(aryl ether sulphone)s [24]. In this paper we present the results

of a study into the thermal polymerisation of polybenzoxazines

and develop a methodology to predict the glass transition

temperatures of the cured polymers by two methods, one based

on quantitative structure property relationships and one based on

atomistic modelling. Both techniques are shown to be capable of

predicting the glass transition temperatures to a good degree of

accuracy and provide complementary information for the

computer aided design of polymers of benzoxazines.

Experimental

Materials
CuCl2 (99.999%) and MnCl2 (99%) were purchased from

Sigma Aldrich (St. Louis, USA). CuCl (97%), FeCl3 (99.98%) and

AlCl3 (99%) were purchased from Alfa Caesar, (Massachusetts,

USA). NiCl2̇6H2O (97%), ZnCl2 (98%) and FeCl2̇4H2O (99%)

were purchased from BDH Prolabo Chemicals (Leicestershire,

UK). The benzoxazine monomer (BA-a, Araldite MT35600) was

obtained from Huntsman Advanced Materials (Basel, Switzer-

land).

Polymerizations of BA-a with a variety of initiators
Incorporation of the various initiators with the monomer was

achieved by heating BA-a to its melting point (58–70uC),

maintaining the temperature and then adding the initiator while

stirring using a magnetic stirrer bar. The molar ratio of monomer

to initiator (20:1) was kept consistent with that reported in the

study conducted by Wang and Ishida [25]. Once a homogeneous

blend had been achieved the mixture was quenched, allowed to

cool, ground and stored at below 0uC prior to analysis.

Apparatus
Differential scanning calorimetry was undertaken using a TA

Instruments Q1000 on samples of 560.5 mg in hermetically-

sealed aluminium pans. Experiments were conducted at a heating

rate of 10 K min21 from 20–300uC under flowing nitrogen

(50 cm3 min21). The samples were then cooled at 10 K min21

from 300 to 20uC before a rescan was run at 10 K min21 (25–

300uC) to reveal glass transition temperature (Tg) for samples

(taken as the midpoint of the transition).

Generation of QSPR Models
The Molecular operating Environment (MOE) software [26]

was used for quantitative structure-property relationship (QSPR)

modelling. MOE was used to generate models to calculate glass

transition temperature (Tg) for a single monomer following

initiation with various known initiators and for various bis-

benzoxazine monomers. The general procedure that was followed

for each property of interest can be summarised in five stages: (i)

the variable of interest (i.e. Tg) was fitted to a range of independent

variables (descriptors) within the database to generate a prelim-

Figure 1. Polymerisation of bisbenzoxazines through ring opening and crosslinking.
doi:10.1371/journal.pone.0053367.g001

Table 1. Comparison of Tg data for poly(BA-a) cured with
selected initiators.

Initiator Formula Tg (6C)

Phosphorus pentachloride PCl5 215

Phosphorus trichloride PCl3 216

Phosphorus oxychloride POCl3 210

Titanium(IV) chloride TiCl4 222

Aluminium chloride AlCl3 186

Methyl tosylate C8H10O3S 142

Methyl triflate C2H3F3O3S 193

Aluminium phthalocyanine
chloride

C32H16AlClN8 186

doi:10.1371/journal.pone.0053367.t001

QSPR and Modelling of Benzoxazines
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inary QSPR model. The process for selection of appropriate

descriptors was broadly based on trial and error, with the criteria

that a suitable QSPR model should incorporate as few descriptors

as possible and display a correlation coefficient value (R2) greater

than 0.99. (ii) Cross validation was achieved by making a

comparison of the actual data used as the training set to the data

predicted using the QSPR model, testing using Leave One Out

Cross Validation (LOOCV) and calculation of the $XZ-SCORE

cross validation property – where suitable. The $XZ-SCORE is

defined as the absolute difference between the value of the model

under a LOOCV scheme and activity field, divided by the square

root of the mean square error of data [27]. (iii) The models were

tested by generating data for new initiators/monomers and

comparing the predictions made based on the QSPR models, to

the experimental data. (iv) The descriptors were ‘pruned’ in order

to select the optimum set. (v) The most significant or influential

descriptors or sets of descriptors were identified for each property.

Generation of Atomistic Models
The molecular modelling program Accelrys Materials Studio

version 6.0 [28] was utilised within this work and all the modelling

work was carried out using an in house PC (Dell Latitude E6520,

Intel Core Duo 2.50 GHz, 4.09 GB RAM). The potential energy

for all models throughout this work was calculated using the

Condensed-phase Optimised Molecular Potential for Atomistic

Simulation Studies (COMPASS) [29], a force field specifically

Table 2. QSPR models to predict Tg for poly(BA-a) with selected initiators (molar equivalence of initiator = 20:1).

QSPR
model r2 Estimated linear model

Weighting of
descriptor

1.1 0.990 379.35920.588(PEOE_VSA_HYD)20.941(ASA)+0.865(vsurf_Wp3)+0.463(zagreb) 0.45 PEOE_VSA_HYD, 1.00
ASA, 0.12 vsurf_Wp3, 0.19
zagreb

1.2 0.999 374.953+17.513(dipole)+0.630(PEOE_VSA_HYD)20.946(ASA)+1.085(vsurf_Wp3)+0.272(zagreb) 0.11 dipole, 0.47
PEOE_VSA_HYD, 1.00 ASA,
0.15 vsurf_Wp3, 0.11
zagreb

1.2 0.994 3360.462+24.124(dipole)20.875(ASA)+0.629(PEOE_VSA_HYD)+1.093(vsurf_Wp3) 0.16 dipole, 1.00 ASA, 0.52
PEOE_VSA_HYD, 0.16
vsurf_Wp3

Key: ASA = water accessible surface area, PEOE_VSA_HYD = total hydrophobic van der Waals surface area, vsurf_Wp3 = polar volume at 21.0 Å, zagreb = zagreb index.
doi:10.1371/journal.pone.0053367.t002

Table 3. Comparison of Tg data for poly(BA-a) using selected initiators.

QSPR model Initiator Reported Tg (6C) [25] Predicted Tg (6C) Average difference (6C)

1.1 PCl5 215 216 1.86

1.1 PCl3 216 210 1.86

1.1 POCl3 210 212 1.86

1.1 TiCl4 222 222 1.86

1.1 AlCl3 186 189 1.86

1.1 Methyl triflate 193 193 1.86

1.1 Methyl tosylate 142 141 1.86

1.2 PCl5 215 215 0.63

1.2 PCl3 216 215 0.63

1.2 POCl3 210 212 0.63

1.2 TiCl4 222 223 0.63

1.2 AlCl3 186 186 0.63

1.2 Methyl triflate 193 192 0.63

1.2 Methyl tosylate 142 142 0.63

1.3 PCl5 215 214 1.63

1.3 PCl3 216 218 1.63

1.3 POCl3 210 212 1.63

1.3 TiCl4 222 222 1.63

1.3 AlCl3 186 187 1.63

1.3 Methyl triflate 193 189 1.63

1.3 Methyl tosylate 142 143 1.63

doi:10.1371/journal.pone.0053367.t003
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designed for polymer calculations. To form the cross-linked

polymer network (the polybenzoxazine of BA-a) to different

selected degrees of conversion, a curing programme produced in

house [30] was employed with the PCFF force field. For the

construction of the network, the cut-off was set at between 5.0–

6.0 Å, the dynamics duration was set at between 1,000 and

10,000 ps and the simulated cure temperature was 453 K (180uC).

The network produced under these conditions was apparently

79% cured (a= 0.79), which is in good agreement with literature

data for a post cured sample (cf a= 0.70 achieved after 15 minutes

at 210uC [30]) suggesting that the cut off distance during the

curing programme is not currently optimised and work continues

to address this.

Molecular Simulation After Cure
The temperature ramped Molecular Dynamics (MD) simula-

tions were performed using the Temperature Cycle option in the

Amorphous Cell Protocols. A collection of MD simulations was

run over different temperatures, with decrements of 10 K from the

starting temperature. The starting temperature was set at 573 K,

and a typical total of 31 MD simulations were performed, ranging

between 573 K and 273 K. At each temperature stage a 125 ps

MD simulation was created. The first 25 ps of each simulation

were used to equilibrate the system and the subsequent 100 ps

simulation was used to record the results. The NPT ensemble

(298 K, 0.0001 GPa) with a time step of 1 fs was utilized with the

Anderson thermostat in combination with the Parinello Barostat

[31]. COMPASS was used with the atomic van der Waals

summation, a cut-off at 10.00 Å, a spline width of 3.00 Å and a

buffer width of 1.00 Å.

The Tg is a second order phase change, which shows a change

in thermal expansion coefficient when the temperature and

volume of a polymer are plotted. The point of gradient change

in the plot pinpoints the position of the Tg. The process of

indicating the best point of gradient change can be quite complex.

Hall et al. [32] developed an in-house technique of calculating this

hinge point by finding when the fit quality of a line is at its

maximum. This method is based on finding the best fit for a

gradient change as a function of temperature. As the degradation

temperature of polymers shows a similar change in volume as a

function of the temperature, the same technique has been applied

within this work.

Results and Discussion

Generation of QSPR models to predict Tg for poly(BA-a)
using different initiators

MOE 2011.10 has a database of 334 descriptors divided into

three classes, 2D descriptors that only use atom and connection

data; i3D that use 3D coordinate information but are invariant to

rotations and translations of the molecule and 63D that also use

3D coordinate information but require a frame of reference for the

molecule set. In the initial stage of design of a QSAR equation one

does not know which descriptors to choose, so an inspired guess is

made. As we are trying to model Tg, it was thought that size and

shape would be important, so descriptors that related to these were

chosen. Each iteration of model fitting gives an R2 value for the fit

along with an evaluation of the relative importance of each

descriptor to the fit. This relative importance is presented on a

scale of 0–1, with 1 being the most important. Therefore after each

iteration, the descriptor with the least importance was deleted and

the fit recalculated until the R2 value was as close to 100% as

possible with the set of descriptors chosen. New descriptors were

then added to the set and the process repeated until the maximum

R2 value with the minimum set of descriptors was found. Naturally

it is impossible to try all combinations and with the small size of

the datasets there will be several possible solutions anyway.

Initially, the data presented in Table 1 (taken from reference [33]

were used as a training set. Three QSPR models were deemed

Table 4. QSPR models to predict Tg for bisphenol A polybenzoxazines (molar equivalence of initiator = 20:1).

Initiator Predicted Tg (6C) m±1 s m±2 s m±3 s Observed Tg range (6C)

CuCl2 194 194–195 193–196 193–196 119–218

CuCl 256 255–256 255–257 254–258 118–211

MnCl2 199 198–199 197–200 197–201 107–214

NiCl2 237 234–235 233–236 233–236 115–213

ZnCl2 198 198–199 197–200 196–200 114–220

FeCl2 234 234–235 233–236 232–236 118–216

FeCl3 250 250–251 249–252 249–252 111–213

Tg obtained by DSC rescan at 10 K/min.
doi:10.1371/journal.pone.0053367.t004

Figure 2. 3D atomistic model of the BA-a monomer constructed
using Materials Studio.
doi:10.1371/journal.pone.0053367.g002

QSPR and Modelling of Benzoxazines
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suitable for the prediction of Tg (Table 2); all had R2 values .0.99

indicating a reasonable degree of confidence and of these, QSPR

model 1.2 had the highest R2 value (0.999), although all three were

similar in magnitude.

Validation of QSPR model
The data set (n = 8) was deemed too small for the use of

LOOCV for validation, but the $Z-SCORE cross validation

properties were calculated for each QSPR model where a $Z-

SCORE value of $2.5 indicates molecules that are outliers in the

fit [26]. In all three of the QSPR models the $Z-SCORE values

were all well below 2.3 indicating that there were no outliers in the

data sets. The highest $Z-SCORE that was observed was 2.27

with POCl3 in QSPR model 1.2; a similar finding was reported for

this initiator in a study focused on prediction of char yield in

polybenzoxazines [34,35]. The predicted Tg values of the

polybenzoxazines formed from BA-a in the presence of the

different initiators. The three QSPR models (1.1–1.3) were first

used to make predictions for the initiator data set and compared to

the actual data originally reported by Wang and Ishida [25]. The

results are shown in Table 2: in all of the QSPR models there was

a high level of agreement between the actual data and the

predicted data. Based on comparisons of the predicted data

generated for the different QSPR models, QSPR model 1.2 had

the lowest average difference. Notably, the highest differences

between the predicted data and actual data were found with

POCl3 which also had the highest $Z-SCORE values in all the

QSPR models.

Analysis of QSPR model descriptors
In terms of the descriptors, the water accessible surface area

(ASA) was the most important descriptor in the prediction of Tg.

The water accessible surface area is defined as the area over which

the centre of a water molecule can be placed while retaining van

der Waals contact with that atom and not penetrate any other

atom [36]. The accessible surface area is inversely related to the

molecular surface or Connolly surface [37] and provides a

smoother interpretation of the surface of a molecule. Whilst it is

true that Tg is measured in the bulk state, without the presence of

solvent, the ASA effectively includes the excluded volume of the

polymer chains, i.e. when the chains are in motion at a given

temperature they cannot fit together exactly on van der Waals

volume. This may give some support to the old united atom theory

that was used in the past to model polymer chains. The ASA

descriptor falls under the category of descriptors related to surface

area, volume and shape, and is calculated by using a radius of

1.4 Å for the water molecule. A polyhedral representation is used

for each atom when calculating the surface area [27]. The second

most important descriptor in all three QSPR models was the total

hydrophobic van der Waals surface area.

Comparison of experimental data against predictions
calculated using QSPR model

The QSPR model data were compared to data obtained

experimentally in house. The following initiators (phosphorus

pentachloride, phosphorus trichloride, phosphorus oxychloride,

titianium(IV) chloride, aluminium chloride, methyl tosylate,

Figure 3. Plot of density (left axis) versus temperature of poly(BA-a) (cured using cut off distance of 5 Å).
doi:10.1371/journal.pone.0053367.g003
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methyl triflate and aluminium phthalocyanine chloride) were

successfully incorporated into the BA-a monomer and analysed by

DSC to determine Tg. Thus, the QSPR models presented in

Table 3 were applied to predict Tg for poly(BA-a) when cured with

the new set of initiators. Seven transition metal chlorides (CuCl2,

CuCl, MnCl2, NiCl2, ZnCl2, FeCl2 and FeCl3) were chosen for

testing the QSPR models. Predictions were made and compared

to observed experimental data. The predictions made based on

QSPR model 1.1 are presented in Table 4.

The Gaussian distribution is used in statistical analysis to

represent the frequency of distribution of experimental data. Based

on the Gaussian distribution, 68% of the data should be within 6

one standard deviation (s) from the mean value. In this case, the

standard deviation applied was based on the mean values obtained

for the Wang and Ishida [25] initiator set, where the mean value

(m) was set as the predicted value for that particular initiator. One

challenge is the assignment of Tg, which is variously reported as

the onset of the loss in storage modulus, the peak in the loss

modulus, or the tan d trace. More correctly, Tg commonly occurs

over a range of temperature, rather than at a single temperature

and thus our data are compared with the temperature range

determined from DSC data.

Molecular simulation of glass transition temperature for
poly(BA-a)

Prior to examining the glass transition temperature, it was

necessary to examine the molecular mechanics data to determine

whether the bis-benzoxazine monomer (BA-a) was well reproduced

before embarking on a study of the corresponding polymer. The

structure is shown in Figure 2, with the chair-like conformation of

the benzoxazine rings, clearly visible. Furthermore, comparison of

selected simulated bonds lengths and angles (following energy

minimisation) with analytical data obtained using X Ray

crystallography (Table S1) reveals the close agreement between

the two, offering confidence in the subsequent simulation

experiments involving the crosslinked forms of this material.

Two project/simulations were completed for poly(BA-a) by

setting the programme to cure within a 5 Å distance, which

yielded a densely cured network (a= 0.79). The temperature cycle

protocol was executed using the conditions in Table 4 and applied

to all frames (Figure 3). Under these conditions the simulated Tg

for poly(BA-a) is ca. 170uC (cf literature values of 170uC [38]).The

drop in simulated polymer density is quite marked and perhaps

reflects the empirical data reported for a similar polymer [39] in

which DMTA measurements show a drop of some 1200 MPa

between zero and 150uC. The simulated density is also in good

agreement with the reported [25] empirical value for the poly

(BA-a) of 1.195 g/cm3. From the same study, the glass transition

temperature of the polybenzoxazine was determined as (ca. 169–

173uC based on the peak maxima values of the loss modulus. In

the present study, the line indicating the best fit in the simulation

for the change in density is found to lie between ca. 170 and

180uC. A second simulation was undertaken using a longer cutoff

distance (6 Å) during cure, which resulted in a significantly larger

value for conversion (a= 0.88) and the initial density is slightly

higher (1.102 g/cm3 cf 1.07 g/cm3) (Figure 4).

Figure 4. Plot of density (left axis) versus temperature of poly(BA-a) (cured using cut off distance of 6 Å).
doi:10.1371/journal.pone.0053367.g004
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Conclusions

QSPR techniques have been shown to be effective in predicting

experimental Tg values for a data set based on a polybenzoxazine

derived from bisphenol A and aniline when blended separately

with eight well characterised initiators. Using model equations

formulated involving up to five descriptors agreement is found to

be good (within 0.63–1.86 K of the entire dataset). When the

model is extended to a new data set including seven initiators, the

reliability is reduced somewhat, but still able to able to predict the

Tg values (63 s) within the empirical range for 6 of these. The

QSPR model indicates the importance of the surface area of the

initiator in influencing polymerisation and Tg. The use of MD

simulation (atomistic modelling for oligomers of 70 repeat units

and a cut off distance of 6 Å) offers good agreement with the

QSPR models and experimental values yielding Tg values within

the middle of the empirical ranges. The two models can be used to

predict the glass transition temperatures of polybenzoxazines, the

QSPR providing information on the variation of Tg with respect to

initiator used and the atomistic simulation providing information

on the network resulting from the polymerisation.

Supporting Information

Table S1 Selected bond distances and angles obtained for BA-a

using Materials Studio (for the given conformations in Figure 1).

(DOC)
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