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Abstract

The coronavirus of 2019 (COVID-19) was declared
a global pandemic by World Health Organization in
March 2020. Effective testing is crucial to slow the
spread of the pandemic. Artificial intelligence and
machine learning techniques can help COVID-19 de-
tection using various clinical symptom data. While
deep learning (DL) approach requiring centralized data
is susceptible to a high risk of data privacy breaches,
federated learning (FL) approach resting on decen-
tralized data can preserve data privacy, a critical factor
in the health domain. This paper reviews recent ad-
vances in applying DL and FL techniques for COVID-
19 detection with a focus on the latter. A model FL
implementation use case in health systems with a
COVID-19 detection using chest X-ray image data
sets is studied. We have also reviewed applications of
previously published FL experiments for COVID-19
research to demonstrate the applicability of FL in
tackling health research issues. Last, several challenges
in FL implementation in the healthcare domain are
discussed in terms of potential future work.
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1 | INTRODUCTION

The coronavirus disease of 2019 (COVID-19) instigated a global pandemic of viral pneumonia which
commenced in late 2019. In the span of a year, there have been more than 123 million cases and
more than 2.7 million deaths worldwide. While different parts of the world are at different levels of
outbreak, despite early precautionary actions, quality clinical measures and mandatory im-
plementations of public health practices, coronavirus cases are still soaring globally. There is a
universal growing urgency to slow the COVID-19 spread by efficient testing and isolation. The
research community can help by applying the most advanced artificial intelligence (AI) techniques to
generate new insights and methods for COVID-19 detection, which is possible as the significant
increase in the number of COVID-19 cases enables a huge amount of relevant data to be collected
daily.

With advancements in computer technologies, access to big data, and significant algorithmic
developments, machine learning (ML) helps address COVID-19 challenges by refining diagnosis
capacity, modelling techniques, and predicting likely epidemics." Traditional ML as shown in
Figures 1 and 2A uses manually extracted features that are not only prone to errors but also time-
consuming and tedious to develop, particularly in the case of COVID-19-like situations when data is
highly sensitive and massively scattered. Instead of manual extraction, deep learning (DL) as shown
in Figures 1 and 2B learns hierarchical representations from the data itself and scales better with
more data. However, individual COVID-19 data may be scarce for DL analyses. To overcome data
scarcity, data integration across scattered locations in a centralized repository is both expensive and
complex. Time, resources, and privacy constraints to pool and train such enormously scattered data is
a major challenge. While DL addresses ML challenges to learn hidden pattern from COVID-19 data
and to build much more efficient decision rules, DL is impractical where data sharing invades the
company's privacy in settings such as thosewhere personal data directly affects the owners’ privacy,
that is, when hospitals would like to protect the privacy of their patients or where competitors are
competing for patient populaces, grants, and researchers.’

Recently, there has been an explosion of intelligent devices that are able to collect and process a
substantial amount of data, especially in health systems such as personal wearable devices. These
devices typically gather data in a private environment, often without the consent and knowledge of
the users. Thus, it is crucial to develop a learning technique which trains a model for decentralized
data while maintaining privacy. Federated learning (FL), also known as collaborative learning, is

Al- Artificial Intelligence
ML- Machine Learning
DL- Deep Learning

FL- Federated Learning
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Artificial Intelligence Research Timetable

FIGURE 1 The relationship between the subsets of artificial intelligence is shown in the Venn diagram
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Basic structure of (A) traditional ML, (B) traditional DL, and (C) privacy preserving FL
framework. DL, deep learning; FL, federated learning; ML, machine learning [Color figure can be viewed at
wileyonlinelibrary.com]

such a technique. FL was initially developed for mobiles, the Internet of Things (IoT), and edge
devices,” and recently attained popularity in the health domain for data privacy preservation.” > FL
allows users to train an algorithm across multiple decentralized databases without sharing their data
samples as shown in Figures 1 and 2C. FL is broadly used in the last few years in various fields;
however, FL implementation is still a challenging task. Table 1 highlight some of the FL potential
risks and benefits. In Yang et al.,” author extensively discussed possible solutions to potential FL
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TABLE 1 Potential risks and benefits of federated learning
Types Major consequence

Risk of Information « During model training”* Compromise privacy’’
leakage « Through gradient””’

« To central server or third party'*"’

Risk of data Data poisoning attacks'” can be random or targeted ~ Miss-classification with high

poisoning . By data™ confidence'®

N By modell%.lil()
« By backdoor'’

Risk of model « Insider'*—by the FL server/participants in the Compromise the integrity of
attacks FL system the learning process'® '
« Outsider'—by the FL server/participants
during communication, and by users of the
final FL model

« At training'’ or inference phase’™’

Benefits of FL 1. Allow fruitful collaboration with private data.
2. Unlock data sets analysis rarely available to
public.
3. Collaboratively analyse sensitive data
sets.””
4. Generalizable outputs.

challenges. However, still there exist many open issues presented by Google in Kairouz et al.,” which
may help set future directions for the researchers.

Currently, there are specifically designed platforms to support FL implementation such
as PySyft- a python library for secure DL, TFF (https://www.tensorflow.org/federated), FATE
(https://www.fedai.org/cn/), and Tensor/IO (https://github.com/doc-ai/tensorio), which are
developed by OpenMined, Google, Webank, and Dow et al. respectively.”

The rest of the manuscript is organized as follows. In Section 2, we briefly review the existing
DL results on COVID-19 detection. In Section 3, we present a simple FL implementation with an
exemplary COVID-19 detection use case using chest X-ray (CXR) image data sets. Existing works
on FL for COVID-19 detection are reviewed in Section 4. In Section 5, we discuss scope of FL in
medical research. We discuss the implementation challenges of FL in medical research as a
conclusion in Section 6 followed by the future work in Section 7.

2 | DL FOR COVID-19

The clinical symptoms of COVID-19 are mostly a dry cough, fever, chills, and systemic pain
although some patients have abdominal manifestations.”” Current COVID-19 detection and
classification DL approaches are mainly based on, including but not limited to, pre-scan, la-
boratory testing and medical image (CXR and computed tomography [CT]) analysis, that is, see
Table 2, for more details.

Prescanning approaches analyse coughing and breathing data, which could be a first
step in the diagnosis and detection of COVID-19. However, these approaches are not robust
and cannot replace clinical testing. The timely infection detection by additional screening and

26,27
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combining the antibody testing with quantitative-polymerase chain reaction (QPCR) can
significantly improve detection sensitivity and accuracy,”® however, incorrect sample col-
lection in qPCR or false-negative diagnosis can result in grave consequences by allowing
diseased patients to spread the virus. Medical imaging such as CXR and CT scan analysis is
one of the most auspicious research fields which facilitates the diagnosis of viral infections
like COVID-19.°” In comparison, CT images are more powerful in detecting viral infections
however less accessible and a costly test to the public, although CXR images perform the
same task with greater accessibility and relatively at a lower cost.”’ However, it should be
noted that these approaches are unable to efficiently address data privacy concerns,””*’ the
infeasibility of model generalization due to small data sets,”’ ** centralized processing,”””” a
lack of set criteria for the selection of the most suitable algorithm for a precise problem,

Hospital B Hospital
B
Central
Server
Hospital C Hospital N Hospital C Hospital N
(C) Centralized FL topology. Decentralized FL topology.
Step 1- FL initialize model from central Step 2- Model synchronization from server to | Step 3- Model trained with each hospitals’ Step 4- Send locally trained model updates to
servers local data various hospitals. local data. server.
Central Server Central Server Central Server Cetiral Server Aggregate
Model
synchronization Upload
Hospital A Hospital B Hospital C Hospital N| Hospital A_Hospital B_Hospital C Hospital N| Hospital A Hospital B Hospital C Hos Hospital A Hospital B Hospital C Hospital N
Repeat iterations until termination criterion is met.
(D) FL via aggregation server approach.
Step 1- FL initialize model synchronization Step 2- Model training with local data Step 3- Model updates exchanged Step 4- Model aggregation
Hospital A Hospital C | Hospital A Hospital C spi Hospital C | Hospital A Hospital C
Hospital B Hospital N Hospital B Hospital N Hospital B Hospital N | Hospital B Hospital N
Repeat iterations until termination criterion is met.
FL via peer to peer approach.
Key
Central server for secure aggregation.
Various hospitals’ data are FL training nodes.
x Model aggregation.
%»
%< Initial model.

,@ Global model.
—

Model update/gradient/weight exchange

FL compute plan for aggregation server FL compute plan for peer to peer approach

FIGURE 3 FL workflow. (A) Centralized FL topology, (B) decentralized FL topology, (C) FL via aggregation
server approach, (D) FL via peer-to-peer approach, (E) FL computation plan for aggregation server, and (F) FL
computation plan for peer-to-peer approach. FL, federated learning. [Color figure can be viewed at
wileyonlinelibrary.com]
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expensive model training, and communications and implementations requirement.”* Here FL
is useful in addressing these issues to some extent.

3 | FL SYSTEM

FL is an ML architecture to address the data privacy issue by collaborative training approaches
that do not require a single pool of centralised data.

3.1 | A model FL implementation in the healthcare setting
FL is an iterative process as shown in Figures 2C and 3C.

Step 1: Central server initializes the training model from its local data.

Step 2: Central server synchronises (or transmits) the model to participating hospitals/clients.

Step 3: Upon receiving the model from the server, each hospital trains the model locally with
their own data samples.

Step 4: Each hospital returns the locally trained incremental model updates to the central server
as shown in Figures 2C and 3E. Then, the central server aggregates the model results and
generates a global model without knowing the individual data samples of the hospitals.

The process from Steps 1 to 4 is termed as one FL round. In Step 4, the central server pools
all the updated models from the clients and generates the new global model. The activated
nodes’ generated data are stored and treated locally, and the central server received model
updates only. Multiple FL rounds are executed. The central server ends the iteration process
when a prespecified termination criterion is met.

Healthcare applications commonly use FL via either aggregation server approaches
(Figure 3C) or peer-to-peer approaches (Figure 3D).” The basic topology and computation plans
of FL via the aggregation server and peer-to-peer approaches are presented in Figure 3A-F,
respectively. Although FL mainly serves for privacy preservation, where aggregation server ap-
proaches ensure participants remain unknown from each other, models subject to conditions
retain some information.”” To overcome privacy leakage in the FL framework, differential
privacy ' or encrypted data learning approaches*” have been suggested. Peer-to-peer workflow
creates connections between all or a subsection of directly linked nodes.** Overall, FL benefits its
stakeholders, such as clinicians, patients, hospitals, Al researchers, pharmaceutical companies,
health care providers and software developers.”* Overall, FL is an emerging approach to break
down barriers to share data between industries while the local data is protected.’

3.2 | FL case study for Covid-19 detection

Input: Chest X-ray images data set labelled as

» Normal

« COVID-19

Output: Classification model for the identification of CXR images with COVID-19.
Notations: Let

(Continues)
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« N =Total number of hospitals participating in FL model building.

« K =Number of hospitals that participate in every communication round where K < N.

kth hospital holds ny training data samples: Xy 1, Xk 2, X35 --r Xk

« T =Total number of rounds.

« E = Number of local (epochs) iterations performed in a hospital between two communications. Hence,
T/E = Number of communications.

» wy = Initial model weight.

« Wy = kth hospital's model update.

« b =Local minibatch size.

» n, = Learning rate or step size.

» | =Loss function.

Problem formulation: Let [ be a user specified global loss function obtained from a weighted
combination of K local losses {I;}i,, calculated from private data which is stored in the

individual hospitals’ repository and is never shared between them:
minl(X:p) with [(Xip) = S5, wiele (Xic:9)
?

where wy >0 denote the weights of the kth hospital and X, wy =1.**

Pseudo code of FL: The pseudo-code of FL via the aggregation approach (FedAvg with
centralized topology) is presented in Table 3, targeting updates from K clients per round.

Communication cost: The centralized aggregation (FedAvg) approach incurs costs in two
ways per iteration:

1. The central server transmits the latest model update to all the participating hospitals and
then performs local updates.
2. The central server aggregates the outputs from all the participating hospitals.

Learning parameters: There are three key parameters:

1. K, the partial contribution of the hospitals that perform computation on each round.

2. E, the number of local training iterations each hospital makes over its local data set on each
round.

3. b, the local minibatch size intended for the client updates.

Client's participation: When there are many participants, the partial participation of the
collaborators is more realistic and cost efficient. Users set the threshold K (1 < K < N). For one
iteration, the central server aggregates the output of the first K responded hospitals and stops
waiting for the rest.

4 | FL FOR COVID-19

In this section, we review the three most recent results’* ** to apply FL for COVID-19 detec-
tion, which study medical diagnostic images, for example, CT scan and/or X-ray. The in-
formation and comparisons are summarized in Table 4. Overall, the insufficiency of data and
privacy concerns are the two main motivations for applying the FL approach in these works.
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TABLE 3 Algorithm of FL via aggregation approach (FedAvg with centralized topology) *°
Server-side execution:
//Start procedure
Initialize wy//Initialize global model
for each round t = 1,2,3,... do
Select K collaborating hospitals to calculate model updates
Wait for updates from K hospitals.
(A¥, nF) = Client's update (w) from hospital k e [k].
W, = Y, A//Sum of weighted updates
;= Y, n¥//Sum of weights
A: = A¥/7 , //Average update
W1 < W + Ay
Client-side updates (w):
n < |8l //Update weight
Winit <— W
for batch b € 8 do
w<«w — nVI(w;b)
A < n. (w — wy,;)//Weighted update.
//End procedure
//Procedure stops when some user prespecified criteria is met.
//A can be compressed more than w return (A, n) to server.

//In a real-world situation, the assumption of independent and identical distribution (i.i.d.) data does not
meet. The aggregation step varies in this case.

//The aggregation step also varies in the case of the full or partial participation of the hospitals.

To stress the importance and to motivate further research on FL, experiments are performed on
open-source pneumonia CXR and/or CT Images data sets to detect COVID-19. Research data
access information, availability and sources are also detailed in Table 4.

Mostly up-to-date COVID-19 data are provided by government organizations organiza-
tions.”® Open source COVID-19 data sets are in raw text format and are often unstructured.
Raw data in the form of comma separated value (CSV) files permit a quick and easy data
download yet require substantial data pre-processing is required to prepare it for further
analysis. CXR images resize model augmentation technique is adopted in Yan et al.”* for model
training, whereas the authors used scaling in Kumar et al.”’ for data preprocessing.
Most COVID-19-related research work deals with the binary class (positive or negative) which
may incur vagueness for the detection of a disease. For example, Kumar et al.?* concerns the
binary class for recognition of COVID-19, which is unable to detect other viral pneumonia,
whereas the multiclass approach in Yan et al.”” provides a better and deeper understanding of
data and helps achieve better screening.
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In these works, FL models are implemented on PyTorch® and pretrained on ImageNet and
Scratch,” where the authors used different configurations of GPU.”>** The data size for training and
testing is specified in Table4. The works [22,23] highlight a trade-off between model accuracy and
privacy-preserving but do not consider communication efficiency. In Yan et al.,”” the authors provide
visual explanations on the models and highlight the critical regions on the patient's CXR images in
addition to generating maps for classification. In contrast, in Kumar et al.”’ the decentralized
blockchain technology is an obvious development in the recognition of DL models. In a blockchain,
the integration of differential privacy and FL is complicated as the design lacks clarity because of
several opposing features. To mitigate the complexity, the authors propose a theoretical framework to
enable differential privacy to COVID-19 CT imaging data using FL. Blockchain technology ensures
the traceability of data which helps identify the social connections between people which is a key risk
factor in the spread of COVID-19. In Kumar et al.,”’ the authors provide all the technical details of
the DL model implementation and achieved enhanced sensitivity for COVID-19 detection from lung
CT scans. In contrast to [22,23], the author proposed a novel dynamic fusion-based FL approach to
achieve communication efficiency and improved model performance while securing data privacy for
COVID-19 identification in Zhang et al.,”* however, the performance is not significant for the models
with a simple structure and few parameters.

5 | SCOPE OF FL IN MEDICAL RESEARCH

Machine DL techniques have shown efficiency in tackling a huge amount of curated data to
feature millions of parameters to gain precise, unbiased, secure, and generalizable medical
grade outputs.”’ "’ However, high quality full spectrum curated medical data are often hard to
obtain such as sensitive and well controlled data.”” The collection of such data is challenging
and may have substantial business value as it requires significant time, cost, and energy, thus
making it improbable to access publicly. Data privacy could be preserved by removing meta
data but not anymore,”" as CT or MRI data can possibly restructure the patient's face.’” In such
situations, the FL approach comes in handy.

The databases, for example, pathology,”” radiology,”* and so on, store a huge amount of
medical data, however, such data collaborations are prone to scalability issues, in addition to
technical and privacy concerns.”” FL is currently gaining popularity in medical research where
each institute can hold its data and executes decentralized computing which not only preserves
privacy but also captures greater data variability. For example, FL helps to discover patients
with similar symptoms,’® predicting hospitalizations due to heart diseases,” brain cancer seg-
mentation,” and whole brain segmentation through MRIs,”” and smartwatches/smartphones
classify human activity using a huge amount of sensor data,”® multisite fMRI analysis to classify
biomarkers related to disease disease,”” breast density classification based on breast imaging,”’
and so on. Recent FL-based model approaches comparatively perform better than ML tradi-
tional approaches which either require centralized or single-sited data.” There is a huge scope
in this field as limited research has been conducted on FL so far in healthcare settings.

6 | CONCLUSION

COVID-19 has brought unprecedented challenges. However, FL has been promising in solving
the issues related to COVID-19 detection and classification as aforementioned reviewed.
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However, as a conclusion of our review paper, we are listing several challenges must be
addressed before FL can be applied more broadly.

1. Shortage of data: Analysing multisite data without pooling is an inherent ability of FL
which helps solve the data shortage issue to some extent. However, better model
training largely depends on data quality, bias, and scalability.”” Some problems are
general, such as, the shortage of quality data, data cluttering and a lack of efficiency
issues within the healthcare system. In such cases, sample results cannot be general-
ized. There are a few specific data-related problems in the COVID-19 situation. Only
lab-confirmed COVID-19 infections are agreed to be confirmed cases. A limited diag-
nostic capacity and a shortage of testing kits are a major problem mostly in low-income
countries. To produce generalizable results, the availability and access to biased data
which share similar demographics, device brands and environment is a challenging
part of health care research.

2. Data heterogeneity issues: Multi-institutional collaboration causes data standardization
problems. The harmonization of heterogeneous COVID-19 data requires preprocessing
such as data scaling,”*”’ resizing of images,”’ resizing of model augmentation,”” and so on,
to make it compatible for FL analysis. Intrinsically, traditional FL frameworks are designed
for balanced data, that is, each institution consists of the same amount of data, which is
typically not feasible in the COVID-19 situation. The FL algorithm, FedAvg, is likely to fail
under an extremely skewed data distribution.” Due to data imbalance, the FL model ex-
periences accuracy degradation as observed in several studies.”’°* Although a few novel FL
frameworks which cater for such imbalanced data® are favourable, more researchers are
encouraged to explore FL further.

3. Communication overhead: Naively, the synchronization procedure of FL model training
from distributed data entails uplink (user to server) and downlink (server to user) com-
munication.”” In general, model performance is directly proportional to the number of
users who participated in training, and the computation and communication overhead.’”
Communication efficiency is discussed in very few COVID-19 research studies™ and is not
considered in most.”>*’ A huge communication overhead is reported in other areas of
research®”®* and an effort to reduce communication overhead while preserving data
privacy is also reported in Xia et al.”’

4. Trade-off between privacy and performance: A trade-off between FL model accuracy and
privacy has been observed not only in COVID-19 research”>*’ but also in other fields.”*°
Better quality data is fundamental to achieve the optimized performance of the model.
Ensuring secure access to several organizations to find relevant data for FL model training
is a challenging task and may greatly affect model performance.

5. Privacy leakage issue: FL naturally promises secure collaboration; however, it does not
tick all the boxes to provide guaranteed privacy. Healthcare data collection is directly
linked with the augmented risk of privacy leakage. Moreover, the FL training process
based on shared information is largely at risk of leakage by model gradients, reverse
engineering of model updates, model manipulation, and so on. Data leakage issues
have been reported in multiple studies.”’” Patient's information can be back-tracked
from the shared gradient.®” Research addressing this problem was reported in Kumar
et al.,”> however, more secure FL frameworks®” are encouraged for COVID-19-like
sensitive research areas. Some untapped counter steps are required to secure data
privacy, which makes it an active research area.”
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10.

Mutual trust issues: FL systems collaborate with decentralized parties either in trusted or
nontrusted relationships. Trusted collaboration is a kind of standard collaboration with
enforceable agreements and set principles, and vice-versa in nontrusted collaboration.
Nontrusted collaboration provides a broad spectrum of information, however, it introduces
risks, such as privacy concerns, integrity execution, model encryption, malicious attacks,
and so on. A strong trusted collaboration is vital in the health care setting, particularly in
light of the COVID-19 situation, where each party is not only concerned about the privacy
of their patients but they also want to keep information from their business rivals or from
the general public to avoid panic. The FL collaborative mechanism requires either a
trustworthy third party to play the part of overall controller or stricter mutually agreed
protocols, both of which involve extra cost and effort.

Low participation issues: COVID-19 data is either stored in data centres or sits in data silos,
where all users are almost always available. The low participation issue is mostly reported
in cross-device FL,” such as wireless communication and IoT settings. The federated
averaging procedure by default takes into equal consideration the likely contribution of
each user to complete one round, which is sometimes not feasible in practice. Users may
not participate sufficiently in the FL process for several reasons, such as low battery power,
poor connection, and so on. The low participation issue during FL model training has been
highlighted in several studies.”"

Reliability issues: A user's reliability depends on its availability to participate in a round
of computation for FL model training. Data-centre distributed learning and cross-silo
FL results are relatively reliable as both face few dropouts, whereas cross-device FL
may produce highly unreliable output as more than 5% of dropouts are likely in a
round of computation.” Healthcare collaborators equipped with strong computational
resources and advanced systems for better model training are considered relatively
more reliable.””

. Traceability and accountability issues: The traceability of resources is mandatory in FL

systems which includes data access history, training structure, hyperparameter selection,
and modifications, and so on. Once the optimality of the model is achieved, traceability and
accountability determine the level of contribution of the participants to give them relevant
compensation and build a revenue model.”” Traceability and accountability may help re-
searchers in explaining and interpreting a global model by investigating the data source
from which the models are being trained, where each user can view its own raw data with
intra-node security imposed. Issues related to the traceability of FL training data records
are discussed and addressed in a few research studies.”’

Implementation/System architecture issues: FL system implementation is a significant
task in the healthcare setting which faces challenges, but somehow all are manageable.
The continuous efforts of researchers make it certainly more surmountable. The
healthcare setting holds high-throughput relatively reliable data whose model training
requires more communication rounds and more local training steps, and carries with it
certain challenges, such as data integrity, communication with redundant nodes, data
leakage prevention, reduction in model training time, and so on."* Fortunately, to stay
ahead of the curve when implementing FL, we use readily available resources, for
example, TensorFlow, a free and open-source platform or PyTorch, a free and open-
source ML library. There are still significant nontechnical challenges linked with the
healthcare setting, such as health protocols, intellectual property, legal and agreement
issues.
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7 | SUMMARY AND FUTURE WORK

The medical sector produces an enormous amount of data which is not being fully exploited by
MLs yet.” Privacy concerns demand that medical data be stored in data silos where the sedentary
behavior of data prevents ML approaches from unleashing their full potential. FL, a promising
approach in ML, is a true definition of global collaboration. FL efficient and robust models exploit
sensitive medical data stored across different health care institutions without accessing or decen-
tralizing the actual data and help to improve diagnosis and drug discovery which eventually
improves patient care worldwide. Since the beginning of the COVID-19 situation, FL has been used
by researchers and industry not only for the detection and identification of coronavirus patients, but
also for timely and cost-efficient drug discovery, data privacy, data fairness, optimization, statistical
solutions, and cryptography. FL is an interesting and growing research topic in recent times” and a
revolutionizing collaborative learning approach for training ML models.

Few FL reviews have been published recently. Current reviews covers diverse fields, for ex-
ample, potential general privacy preservation techniques which could be implemented in an FL
setting are reviewed in Yang et al.,” a detailed discussion of recent advances and open problems are
surveyed in Kairouz et al.,” FL system heterogeneity is reviewed in Kairouz et al.,” personalization
techniques for the FL setting are surveyed in Kulkarni et al.,”’ potential threats to FL models are
reviewed in Lyu et al.,”” applications in FL are reviewed in Li et al.”> and Rehouma et al.,”* FL
blockchain with a particular focus on the in vitro fertilization (IVF) field is reviewed in Hickman
et al.”” and a comprehensive survey is conducted on mobile edge networks in Lim et al.”” We
reviewed FL as a crucial Al framework, envisioned the scope of FL research in healthcare including
but not limited to COVID-19, and highlighted the main FL challenges in the health sector parti-
cularly in COVID-19-like situations. Our work aims to motivate researchers to help build a more
secure FL setup which is compliant with ethical data handling.

Although, FL has a potential impact on health care at a global level, not all the technicalities
of this approach have been efficiently addressed yet, but it is safe to assume that FL will be a
dynamic research area in the following years.” In the future, we will continue our significant
interest in exploring FL capabilities in healthcare settings over the wireless network.

Here we summarize several unaddressed problems in the FL setting to give future direc-
tions to researchers:

« Availability and accessibility of quality data that share similar demographics and environ-
ments to produce more generalizable results.

« Legal, regulatory, or ethical issues that may encourage or coerce the use of FL.

« Business issues that will possibly inspire or constrain the use of FL.

« Electronic Health Records to help build a prediction model for patients’ readmission risk
while keeping patients’ information secure.

Regardless of a few technical restrictions, we strongly believe that FL has a promising
impact on improving health care. We hope this review motivates and helps to scope FL
research, including but not limited to the COVID-19 situation.
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