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Abstract: In this paper, we approach the problem of detecting and diagnosing COVID-19 infections
using multisource scan images including CT and X-ray scans to assist the healthcare system during
the COVID-19 pandemic. Here, a computer-aided diagnosis (CAD) system is proposed that utilizes
analysis of the CT or X-ray to diagnose the impact of damage in the respiratory system per infected
case. The CAD was utilized and optimized by hyper-parameters for shallow learning, e.g., SVM and
deep learning. For the deep learning, mini-batch stochastic gradient descent was used to overcome
fitting problems during transfer learning. The optimal parameter list values were found using
the naïve Bayes technique. Our contributions are (i) a comparison among the detection rates of
pre-trained CNN models, (ii) a suggested hybrid deep learning with shallow machine learning,
(iii) an extensive analysis of the results of COVID-19 transition and informative conclusions through
developing various transfer techniques, and (iv) a comparison of the accuracy of the previous models
with the systems of the present study. The effectiveness of the proposed CAD is demonstrated using
three datasets, either using an intense learning model as a fully end-to-end solution or using a hybrid
deep learning model. Six experiments were designed to illustrate the superior performance of our
suggested CAD when compared to other similar approaches. Our system achieves 99.94, 99.6, 100,
97.41, 99.23, and 98.94 accuracy for binary and three-class labels for the CT and two CXR datasets.

Keywords: computer-aided diagnosis (CAD); COVID-19; data mining; deep learning; diagnosis;
machine learning; medical information system; transfer learning

1. Introduction to COVID-19 and Diagnosis

The widespread COVID-19 pandemic constitutes a severe threat to global health.
Therefore, most new research has used tools and techniques for tracking COVID-19 and
discovering various infection areas to minimize the risk of its spread. Because of the massive
quantity of data available every day for COVID-19 infection, spread, detection, deaths, etc.,
there is a need for big data analytics, storage, and security in NoSQL database management
systems [1,2]. Machine learning and AI approaches can evaluate large quantities of COVID-
19 data to create new models and techniques for diagnosing COVID-19. Big data analysis
techniques are crucial to analyze more data in less time, as time is a critical factor for treating
COVID-19 infection cases. Furthermore, AI techniques enable a global visualization of
the analyzed big data of COVID-19. The visualization uses AI to present an overview of
global health and confirmed cases of COVID-19. In addition, the presented images of the
lungs can indicate the presence of COVID-19. Therefore, the tracking of COVID-19 diseases
to enhance community health needs comprehensive data and intelligent computational
instruments. In a variety of approaches, numerous researchers have employed big data
and AI tools to track COVID-19 disorders, as shown in Figure 1.
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cally, 2020 was considered a volatile year for humans worldwide compared to previous 
years because of COVID-19, as it is a massive threat to global health. As of March 2021, 
there have been more than 128 million confirmed illnesses and approximately 3 million 
deaths worldwide [2]. Therefore, the number of infected subjects is increasing, with more 
than 150 countries reportedly having at least one case [3]. 
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images to diagnose COVID-19 [13]. This can be automated to assist experts in making a 
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COVID-19 is an infectious disease where coronaviruses are a large family of viruses
that can affect both humans and animals and cause respiratory difficulties [1]. Historically,
2020 was considered a volatile year for humans worldwide compared to previous years
because of COVID-19, as it is a massive threat to global health. As of March 2021, there
have been more than 128 million confirmed illnesses and approximately 3 million deaths
worldwide [2]. Therefore, the number of infected subjects is increasing, with more than
150 countries reportedly having at least one case [3].

Image scanning is helpful to diagnose COVID-19 for infected subjects. Patients that
have been exposed and have terrible symptoms of the virus may not be identified by
the outcome of RT-PCR tests [4–6] that can still be non-deterministic. Image scanning
includes X-rays (CXR), and computed tomography (CT) images. CT scans have proven to
be one of the most accurate methods of diagnosis for COVID-19 [7]. However, there are
several significant drawbacks [8], such as the high cost and not being conducive to bedside
testing [9]. Consequently, it is not usually used in COVID-19 diagnosis, and it is also not
necessary for the progression of specific cases to be observed, especially in seriously ill
patients [10]. On the contrary, the X-ray technique is a less sensitive method than CT for
COVID-19 detection, with a reported baseline hypersensitivity of 69 percent [11]. The X-ray
is also a cheaper, faster option and can be used in many healthcare centers. Positive X-ray
results reduce the need for CT screening if there is a strong clinical suspicion of COVID-19
infection [11]. However, this presents limitations for patients, including pregnant women,
since it can affect the fetus [12]. In both lungs, radiologists also examine multiple patchy,
segmental, or sub-segmental shadows in the ground glass density when analyzing X-ray
images to diagnose COVID-19 [13]. This can be automated to assist experts in making a
decision [14–16].

Therefore, big data and AI technology offer an essential role in the battle against
COVID-19. Both tools might help doctors to diagnose COVID-19 cases more quickly and
accurately. Accordingly, computer-based models for predicting, foretelling, analyzing, and
distributing SARS-CoV-2 drugs have been designed and developed, allowing machine
learning, computer vision, and robotic technology to be applied. In addition, AI and big
data tools include visualization to illustrate information that supports regional transmission
and risk allocation.

Different studies [17,18] were carried out based on in-depth learning technologies to
diagnose and classify various diseases, such as viral pneumonia and organ tumors. Today,
deep learning technologies have been used widely in the healthcare domain. This study
makes the following contributions:

• A deep learning sample-efficient algorithm for the diagnosis of COVID-19 based on
CXR and CT scans.

• Three COVID-19 datasets were used to train and test the proposed CAD. The datasets
include 4001 positive CT scans of COVID-19 clinical results and 3835 positive CXR
images. It is the most widely accessible CT dataset for COVID-19 as far as we are aware.

• An extensive analysis of the results of COVID-19 transition was planned and con-
ducted; informative conclusions are presented through developing various trans-
fer techniques.
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• Self-controlled learning with transfer learning was utilized to learn strong, impartial
representations of features to reduce the chance of over-fitting to learn from restricted
labeled information.

• Detailed studies were carried out to show that our CAD was successful. The results, on
average, were a 99.18% accuracy, 99.69% recall, and 99.4% precision on the COVID-19
CXR and CT imaging datasets.

This paper discusses the most recent research in Section 2. Section 3 presents an
overview of the methods and techniques used. The proposed model is presented in
Section 4. Section 5 gives a brief description of the dataset used and explains the computer
system configuration, parameter settings, and performance metrics. Section 6 presents
the experiment and discussion. Finally, Section 7 concludes the paper with an outline of
future work.

2. Background on Machine Learning and Deep Learning

Deep learning (DL) is a subset of the machine learning (ML) branch, the third gen-
eration of artificial neural networks. The principal objective of DL is the simulation of
high-level data abstractions [19–21]. Different DL utilizes numerous layers to remove
upper-level functions progressively from the raw data. DL produces several neuron layers,
organized layer per layer.

For computer vision and image processing, there are numerous architectures of various
types, such as generative adversarial networks (GANs) [22], convolutional neural networks
(CNNs) [23,24], and DE convolutional networks [25].

CNNs are mainly utilized for images. CNNs are new deep learning algorithms
suggested by Badrinarayana [24]. CNN lines distinguish among the weights of different
artifacts in the image. This approach needs less pre-processing comparing with other
shallow classification algorithms [26]. For input images, a CNN uses filters to capture
spatial and time dependencies [27]. In CNNs, the height, m, and width, n, and r correspond
to the channel number or depth. The input is separated by m and r instead of the three
input components, m × m × r. There are several kernels of size k in every convolution
layer [28]. As mentioned previously, the filtering is the base of relations, along with
the development of k maps of each size (m, m, 1), each with the same parameters. The
convergence layer calculates the point product, similar to MLP, among weights and inputs,
except for a small amount of the original volume of the input, as shown in Equation (1). In
addition, an activation function for the non-linearity function activates the contribution of
the convolutional layers [27]:

hk = f
(

Wk ∗ s + bk
)

(1)

The output of the current k-layer is denoted by hk, the kernel or weight of the current
layer is indicated by Wk, s presents the output of the previous layer, and bk represents the
current bias of the current layer. The number of computational parameters is an essential
indicator of a deep learning model’s complexity. The output characteristic maps can be
described according to the following formula [27]:

M =
(N − F)

S
+ 1 (2)

The input map dimensions are denoted by N and filter dimensions or receptive area
by F, while M refers to output map dimensions and S to the stride length. Usually, padding
is used to guarantee input and output during convolution operations that are the same size.

The padding number varies according to the kernel size. The number of rows and
columns for padding is calculated in Equation (3) [29].

P =
(F − 1)

2
(3)
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where the amount of padding is symbolized by P, and F represents the dimensions of
the kernels.

One of the most important principles in computer engineering is the reusability of com-
ponents. In turn, many architectures have been introduced, including AlexNet, ResNet-50,
ResNet-101, VGG-16, and VGG-19 [27,30]. Therefore, we intend to reuse the model regards
to transfer learning guidelines. The transfer learning process reuses information from the
source domain in the target domain [31]. See Figure 2 for extra explanation. Parameter
optimization, structural reformulation, regularization, etc., are different improvement cate-
gories that were interested by many research communities. However, the main drive in
CNN performance improvement appears to have come from the rearrangement of process-
ing units and the design of new blocks. The majority of advancements in CNN designs
have been carried out in the areas of depth and spatial exploitation to develop an excellent
internal representation from raw pixels without requiring extensive processing.
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AlexNet is considered as a type of feed-forward CNN with depth of eight layers and a
spatial exploitation architecture [32]. It has five convolution layers (conv1 through conv5)
as well as three completely connected layers (fc6, fc7, fc8) [33]. It was trained by classifying
1 million photos into 1000 different categories [23].

VGG-16 was trained using the same training set used for AlexNet. It contains three
fully connected layers (fc6, fc7, fc8) and five convolutional blocks comprising 13 con-
volutional layers [34]. On the other hand, VGG-19 comprises 19 layers, including five
convolutional blocks of 16 convolutional layers and three fully connected layers (fc6, fc7,
and fc8).

Each ResNet type, such as ResNet-50 and ResNet-101, has its residual block. ResNet-50
is a 50-layer network that is cascaded from a convolution layer to 16 residual blocks within
the network and finally to a fully linked layer. ResNet-101 has a total of 101 layers and
33 residual blocks [35]. Table 1 shows how contemporary models compare in terms of error,
network parameters, the maximum number of connections, and more.

Machine learning (ML) algorithms are known for learning underlying relationships
in data and making decisions without the need for explicit instructions. The capacity
of a CNN to utilize spatial or temporal correlation in data is one of its most appealing
features. A support vector machine (SVM) is a shallow classification algorithm developed
by Vapnik [36]. The SVM is classification algorithm reduces learning steps and offers a
quicker solution than other common algorithms [37,38]. The SVM classifier is built on the
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concept of the most appropriate hyper-planes, which are used to differentiate between two
classes, positive or negative as shown in Equation (4) [39] by including the central function.

f (x) = sign((∑n
i=1 αiyiK(xi, x)) + b) (4)

Table 1. Characteristics of convolutional neural networks used in this study.

Model VGG ALEXNET RESNET

Size of input 224 × 224 227 × 227 224 × 224
Stride 1 1.4 1.2

NO. of FC layers 3 3 1
Top five errors 7.4 16.4 5.3

Number of macs 15.3 M 666 M 3.86 G
Number of feature

maps 3–512 3–256 3–1024

NO. of CONV. layers 16 5 50
Number of weights 14.7 M 2.3 M 23.5 M

Size of filter 3 3, 5, 11 1, 3, 7

3. Brief Coverage of Previous Works

Many researchers are currently encouraged to establish early detection models to
detect COVID-19 infection before outbreak:

Zhou Tao et al. [40] proposed EDL_COVID (an ensemble deep learning model) to
detect COVID-19 disease from 2933 CT images. The proposed model depends on the three
ensemble models AlexNet, GoogleNet, and ResNet.

An ensemble strategy was proposed by Rohit Kundu et al. [41] for detecting COVID-
19 in CT scan images for human lungs. They employed two datasets of CT scan images
to create decision scores for the proposed ensemble model utilizing three CNN models:
VGG-11, ResNet-50-2, and Inception v3.

The authors proposed a deep convolutional 3D neural network called DeCoVNet
to identify COVID-19 from CT images [15]. Thus, when COVID-19 was diagnosed, the
algorithm worked in a black box because it focused on DL and was still at an early stage of
explanatory ability.

COVNET [16] has developed and tested the efficiency of COVID-19 detection utilizing
chest CT. The researchers have proposed a 3D deep learning system. The robustness
evaluation of the model included community-acquired pneumonia (CAP) and other non-
pneumonia exams.

In contrast with the RT-PCR assay of COVID-19, Yang et al. [18] assessed the agnostic
and consistency value of chest CT. They suggested that chest CT should be considered,
particularly in epidemic areas with a high preliminary possibility of disease for screening
of COVID-19, comprehensive assessment, and follow-up.

Horri et al. [32] used three different methods of physician imaging (X-ray, ultrasound,
and CT) for diagnosing COVID-19 stably and automatically. They utilized a deep VGG
transmission learning network to refine their analysis. The accuracy of their classification
was stated to be 86 percent, 84 percent, and 100 percent for three different datasets.

Ying et al. obtained a 94% accuracy and a 99% AUC with CT images utilizing a deep
model based on ResNet50, known as DRE-Net [42]. They also considered an approach for
target identification, i.e., indicating the areas of concern with bounding boxes [43]. VGG
architecture [44] has been used to diagnose symptomatic lung regions [34]. A suggested
method distinguishes cases of pneumonia (CAP) and non-pneumonia from COVID-19 (NP)
in the population.

Jiang et al. [15] proposed an early screening strategy using pulmonary CT imaging
to distinguish COVID-19 mutations from viral influenza pneumonia and stable cases.
Several CNN models were suggested and utilized to identify the CT image datasets and
quantify the risk of infection with COVID-19. The results may be beneficial in deep learning
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technologies for the early screening of COVID-19 patients. In the classic ResNet for feature
extraction, the authors have proposed a location-attention mechanism.

The AIMDP model was suggested [42] for use with mutable artificial intelligent tech-
niques to improve the model’s diagnosis and predictive role. The authors [32] developed a
framework focused on the deep learning of the detection of CT viral pneumonia.

The authors in [44] also provide an overview of the most recent artificial intelligence
systems in X-ray images for COVID-19 diagnostics. However, they used X-ray images, as
their work was based on this only. To estimate COVID-19 diagnostics, Ghoshal et al. [45]
presented a Bayesian convolutional neural network, differentiating between COVID-19
and non-COVID-19 cases, with a 92.9 percent accuracy. Binary classification was carried
out by Narin et al. [46] for detecting COVID-19 to achieve the best accuracy of 98.0% with
ResNet50 models, compared to the various deep learning (DL) models. Zhang et al. [47]
submitted the COVID-19 (0.952 AUC) ResNet model to illustrate the pneumonia areas
affected by applying the Grad-CAM approach for the gradient activation.

Finally, Wang et al. [48] suggest a deep CNN rated as 83.5 percent accurate between
the VCOVID-19, non-COVID-19, and uninfected cases.

These studies have provided detailed solutions for combating the pandemic COVID-19.
However, there are certain drawbacks to be taken into account. In the best case, researchers
used small datasets of fewer than 400 images of COVID-19. In some cases, only 10 X-ray
images were used for the COVID-19 class to validate the framework. Furthermore, there
was no ground for comparison or medical surveillance with the obtained results, which can
suggest not only COVID-19 identification but also the location of influenced areas in the
lungs. For iteratively sliced COVID-19 identification using X-ray pictures, a deep learning
model ensemble is proposed [49]. This research made use of a CNN and a set of pre-trained
models. The proposed algorithm enhances memory efficiency while reducing complexity.

4. Architecture of the Smart CAD System

The proposed CAD system depends on deep learning, transfer learning, and shallow
machine learning. In deep learning, multi-hidden layers are stacked for learning objects.
These layers require a training process including “fine-tuning” to slightly adjust the weights
of the DNN found in pre-training during the backpropagation procedure. Hence, DL nets
can extract, classify the features, and effectively make a precise decision after an efficient
training process. Transfer learning is used in the proposed CAD system to optimize multiple
CNN architectures for datasets. However, the transfer-learning methodology generates
optimal fitted CNNs for the datasets capable of classifying and diagnosing infection of
COVID-19 scan images. In addition, these fine-tuned models can extract the feature set
usable by the different shallow classifiers. Figure 3 shows a context diagram starting from
scanning the image of the inspected case until detecting the infection response using the
proposed smart CAD system, in which there are key components comprising the proposed
CAD system, including:

• Scanning: The source of the input image used to check the status of COVID-19 infection.
The supported format of scans can be either CT or CXR images.

• Pre-processing: A set of procedures performed for every newly scanned image before
investigating the diagnosis process. It comprises auto color correction, auto contrast
enhancement, resizing the image to the standard size, and normalizing color channels.

• Diagnosing: A key component of the medical CAD system to detect, assist, and advise
the doctors in their inspection and symptom analysis during the examination process.
It can be divided into:

X Classification: A vital component of the smart CAD system in which different
architectures can be alternately used. These models are responsible for extracting
the features and the classification.

X Decision Unit: This depends on the most common and powerful DL activation
function, ReLu. It is a subsequent responsibility of the classification component to
make a decision.
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Figure 4 shows different phases of the proposed system in a layered sub-black box
style, in which the essential layers are briefly described for the proposed smart CAD
system. According to current knowledge, all COVID-19 detection systems consist of a few
significant layers: input data, model layer, activation layer, and model layer output for CXR
or CT scan image analysis. In turn, the classification and decision in every CAD system
using deep learning must include a collection of these different layers. Each group of these
layers with a specific order is called a network architecture starting from input layer to
output layer (e.g., AlexNet, VGG-16, VGG-19). Next, a brief description defining each role
is discussed in detail along with its importance for the medical CAD system.
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4.1. Input Layer

This layer reads the image data collection in advance. In other words, the CXR and
the CT scan images are pre-processed independently. In the pre-processing phase, the
images are reconstructed and resized. The images are taken from various sources, and
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their dimensions vary since the taken images from medical instruments were created from
several letters, arts and crafts, and medical symbols. Moreover, the model layer of each
of these products needs separate image dimensions to be managed. Therefore, the input
image size was adjusted to fit the templates used in this analysis rather than cutting the
lung and chest area as far as possible.

4.2. Model Layer

This layer represents the leading layer of the proposed smart CAD system, in which
most calculations are carried out. The calculations include extracting image dataset features
and preserving the spatial relationship between image pixels. Next, the data are moved
from the input layer to the model layer. This layer contains four sub-black boxes. The
CNN-based AlexNet was used with the aim of utilizing AlexNet’s pre-trained approach
to diagnose COVID-19. The second sub-layer is the CNN-based RESNET of two versions
RESNET50 and RESNET101, distinguished from other architectures by adding to the model
blocks that feed the values into their following layers. This value changes the device value
as described by adding a block every two layers between the linear and the ReLu activation
codes. However, ResNet101 architecture uses more layers than the blocks of ResNet50 with
three layers. The ResNet50 model offers fast training and considerable benefit because
image residuals are learned rather than functionality [35].

The third sub-layer is the VGG sub-layer based on the CNN. Although it is a single
model, the main advantage related to previous versions is that the CNN models are
commonly used, so they are organized more thoroughly and accompanied by two- or
three-color layers. VGG has a strong representation of features, and the model can serve as
a helpful extractor for new images [34]. The last sub-layer is the SVM classification. Since
the SVM is a good classification algorithm, it can be used to classify features that have
already extracted. The methods used for feature extraction were derived from previous
sub-layers (see Figure 5).
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4.3. Activation Layer

This layer is a non-linear map of CNN architectures that works at the end of the
learning phase to replace negative pixel values with zero in the convolved functions.
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4.4. Output Layer

Based on the output score of the activation layer, the final response of classification is
provided as an output label. The resulting label can be numerically categorized or encoded;
for example, “0” is marked with COVID-19 (i.e., the positive event), “1” is marked with
regular cases, and “2” is marked with other cases of pneumonia, etc.

5. Experimental Result

The proposed model was evaluated in-depth to assess the efficiency of the solutions
and examine the impact on transfer learning and self-controlled learning. In the following
subparagraphs, we describe the utilized datasets for the proposed CAD system, experimen-
tal environment, settings, and results due to performance metrics.

5.1. Dataset Description

Three datasets were used in these experiments, two of which have images of CXR
type, and the last has CT images. The acquired dataset of CT scans was divided into
4001 COVID-19 and 15,684 non-COVID-19 images, whereas the first CXR dataset consists
of 219 COVID-19 and 2686 non-COVID-19 images. The second CXR dataset comprises
3616 COVID-19 and 17,549 non-COVID-19 images. The evaluation supports the holdout
procedure using 80% training set and 20% testing set. See Table 2 for a brief description of
dataset details. Figures 6 and 7 show a montage preview of the CT and CXR images.

Table 2. Technical characteristics data of patients with COVID-19 and non-COVID-19 group.

Data
Type

Total No.
of Images

No. of
Classes

COVID-19
Image No.

Other Pneumonia
Image No.

Normal
Image No.

Non-Informative
Image No.

Lung Opacity
Image No.

CT 19,685
3

4001 - 5705 9979 -

CXR
2905 219 1345 1341 - -

21,165 4 3616 1345 10,192 - 6012
Healthcare 2022, 10, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 6. Sample of CT dataset collection: (a) normal cases (b) COVID-19 cases. 

 
Figure 7. Sample of CXR dataset collection: (a) normal cases (b) COVID-19 cases. 

  

Figure 6. Sample of CT dataset collection: (a) normal cases (b) COVID-19 cases.

5.2. Experimental Details
5.2.1. Computer System Configuration

The proposed CAD system was implemented using MATLAB R2020a, computer
vision, image processing, neural networks, and deep learning toolboxes. The CAD system
works on a HP Zbook workstation with Windows 10 64-bit, CPU: i7-6820HQ, RAM: 32GB
DDR5, and GPU: 8 GB.
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5.2.2. Parameter Settings

All networks were trained as follows: optimizer, SGDM initial learning rate 0.0001, and
validation frequency 5. Every epoch, which is a complete cycle of training iteration, in the
dataset was shuffled, and the training process stopped if the it did not change significantly.
For all networks, the dataset was divided into 80% and 20% for training and validating sets,
respectively. For all networks, the same training and validation datasets were chosen to
facilitate the performance comparison of networks.

5.2.3. Performance Metrics

For the proposed CAD system, there are different performance metrics for evaluating
efficiency and effectiveness. In such cases, the negative and positive cases were assigned
to the non-COVID-19 and COVID-19 infection groups, respectively. In sequence, the
number of correctly detected COVID-19 and non-COVID-19 infections is represented
by NTP and NTN, respectively, whereas NFP and NFN indicate the number of incorrectly
diagnosed COVID-19 and non-COVID-19 infections, respectively. Table 3 represents a brief
description of the most common metrics used for evaluating the proposed CAD system.

Table 3. Common performance metrics for CAD evaluation.

Metric Formula Description

Accuracy accuracy = NTP + NTN
NTP + NTN + NFP + NFN

Ratio of number of all correct detected cases to the total number
of cases.

Precision precision = NTP
NTP + NFP

Number of correct detected COVID-19 cases divided by the
total input number of COVID-19 infection.

Recall recall = NTP
NTP + NFN

Proportion of COVID-19 cases that are correctly classified as
COVID-19, with respect to COVID-19 cases.

Specificity specificity = NTN
NTN + NFP

Proportion of negative data points that are correctly classified as
normal, with respect to all normal cases

6. Experiment Design: Result Evaluation and Discussion

The proposed CAD system was evaluated using two scenarios per single dataset;
hence, six experiments were performed. The first scenario depends on optimizing parame-
ters and fine-tuning pre-trained networks as an end-to-end CAD component. The second
scenario involves employing the developed component in the first scenario as a feature
extractor engine. The feature extractor engine then passes these feature sets to an SVM
classifier boosted by optimizing the kernel function as a hybrid learning CAD component.
The recorded results were captured per the dataset regarding the stated two scenarios, and
the most effective model of the dataset was determined. In the following, the results are
divided into three subsections for each dataset.
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6.1. CT Scan Dataset

Firstly, the experiments were started with CT scan images, and as mentioned above,
there are two scenarios for each dataset. The first scenario is exhibited here with the
two-class label as the normal state and COVID-19. The same scenario was performed for
the three-class dataset.

Tables 4 and 5 show the numerical results for the first scenario for the CT scan dataset.
Tables 4 and 5 show all the results for the proposed models with three metrics, namely
accuracy, precision, and recall, for each of the fully deep learning and the hybrid learning
solutions. The experimental analysis shows the superiority of the proposed models over
various metrices. Therefore, the same experiment was repeated for two new datasets for
the X-ray images, as outlined in the following two subsections.

Table 4. The performance measures in applying different learning models for the CT scan images dataset
(two-class) where the bolded number indicates the best result among the other classification models.

Algorithm
Accuracy Precision Recall

Feature Extraction Classification

Enhanced TL AlexNet AlexNet 99.48 99.93 99.44

Enhanced TL ResNet-50 ResNet-50 99.63 100 99.56

Enhanced TL ResNet-101 ResNet-101 99.79 99.81 99.94

Enhanced TL VGG-19 VGG-19 99.84 99.81 100

Enhanced TL VGG-16 VGG-16 99.94 99.94 100

Enhanced TL AlexNet SVM 99.63 99.75 99.81

Enhanced TL ResNet-50 SVM 99.83 99.84 99.95

Enhanced TL ResNet-101 SVM 99.87 99.9 99.95

Enhanced TL VGG-19 SVM 99.79 100 99.75

Enhanced TL VGG-16 SVM 99.79 99.87 99.87

Table 5. The performance measures in applying different learning models for the CT images dataset
(three-class) where the bolded number indicates the best result among the other classification models.

Algorithm
Accuracy Precision Recall

Feature Extraction Classification

Enhanced TL AlexNet AlexNet 99.365 99.55 99.78

Enhanced TL ResNet-50 ResNet-50 99.54 99.65 99.83

Enhanced TL ResNet-101 ResNet-101 99.41 99.45 99.9

Enhanced TL VGG-19 VGG-19 99.49 99.57 99.88

Enhanced TL VGG-16 VGG-16 99.2634 99.97 99.18

Enhanced TL AlexNet SVM 98.9 99.51 99.33

Enhanced TL ResNet-50 SVM 99.51 99.6 99.83

Enhanced TL ResNet-101 SVM 99.55 99.7 99.78

Enhanced TL VGG-19 SVM 99.6 99.91 99.66

Enhanced TL VGG-16 SVM 98.5 99.11 99.26
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6.2. The First X-ray Dataset

As shown in the previous subsection, our proposed models are either fully deep learn-
ing or a hybrid model with the SVM by applying the first X-ray dataset. This experiment
starts with the two-class label then the three-class label as discussed before. Tables 6 and 7
show the results for the two-class label and three-class label, respectively.

Table 6. The performance measures in applying different learning models for the X-ray dataset
(two-class) where the bolded number indicates the best result among the other classification models.

Learning Mode Algorithm
Accuracy Precision Recall

Feature Extraction Classification

Fully deep
learning (E2E

Solution)

Enhanced TL AlexNet AlexNet 96.38 96.95 98.62

Enhanced TL ResNet-50 ResNet-50 96.72 97.25 99.87

Enhanced TL ResNet-101 ResNet-101 95.35 95.8 97.1

Enhanced TL VGG-19 VGG-19 90.7 95.96 99.24

Enhanced TL VGG-16 VGG-16 97.41 97.6 100

Hybrid learning
solution

Enhanced TL AlexNet SVM 99.67 100 98.86

Enhanced TL ResNet-50 SVM 99.35 98.86 98.86

Enhanced TL ResNet-101 SVM 99.67 100 98.86

Enhanced TL VGG-19 SVM 100 100 100

Enhanced TL VGG-16 SVM 99.67 100 98.86

Table 7. The performance measures in applying different learning models for the X-ray dataset
(three-class) where the bolded number indicates the best result among the other classification models.

Learning Mode Algorithm
Accuracy Precision Recall

Feature Extraction Classification

Fully deep
learning (E2E

Solution)

Enhanced TL AlexNet AlexNet 96.38 96.95 98.62

Enhanced TL ResNet-50 ResNet-50 96.72 97.25 99.87

Enhanced TL ResNet-101 ResNet-101 95.35 95.8 97.1

Enhanced TL VGG-19 VGG-19 90.7 95.96 99.24

Enhanced TL VGG-16 VGG-16 97.41 97.6 100

Hybrid learning
solution

Enhanced TL AlexNet SVM 91.4 93.92 93.22

Enhanced TL ResNet-50 SVM 83.3 83.89 80.02

Enhanced TL ResNet-101 SVM 81.17 81.71 82.69

Enhanced TL VGG-19 SVM 97.2 98.37 99.01

Enhanced TL VGG-16 SVM 92.9 97.05 93.79

In this experiment, the two classes’ dataset hybrid VGG19-SVM shows the best perfor-
mance measures compared to both the other models. Even with the three-class dataset, the
fully deep learning (enhanced TL of VGG16) method gives better results for accuracy and
recall than the hybrid learning solutions.

6.3. The Second X-ray Dataset

Lastly, the two scenarios were applied for the second X-ray dataset. This experiment’s
results are shown in Tables 8 and 9 for the two-class label and the three-class label, respectively.
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Table 8. The performance measures in applying different learning models for the X-ray dataset
(two-class) where the bolded number indicates the best result among the other classification models.

Learning Mode Algorithm
Accuracy Precision Recall

Feature Extraction Classification

Fully deep
learning (E2E

Solution)

Enhanced TL AlexNet AlexNet 96.59 97.62 95.78

Enhanced TL ResNet-50 ResNet-50 98.62 99.71 97.65

Enhanced TL ResNet-101 ResNet-101 98.94 99.37 98.61

Enhanced TL VGG-19 VGG-19 98.44 99.35 97.65

Enhanced TL VGG-16 VGG-16 98.84 98.57 99.24

Hybrid learning
solution

Enhanced TL AlexNet SVM 97.7 97.91 97.72

Enhanced TL ResNet-50 SVM 98.98 98.94 98.99

Enhanced TL ResNet-101 SVM 98.75 98.81 98.64

Enhanced TL VGG-19 SVM 98.98 99.3 98.75

Enhanced TL VGG-16 SVM 99.23 99.44 99.1

Table 9. The performance measures in applying different learning models for the X-ray dataset
(three-class) where the bolded number indicates the best result among the other classification models.

Learning Mode Algorithm
Accuracy Precision Recall

Feature Extraction Classification

Fully deep
learning (E2E

Solution)

Enhanced TL AlexNet AlexNet 96.3 98.16 97.63

Enhanced TL ResNet-50 ResNet-50 98.48 99.29 99

Enhanced TL ResNet-101 ResNet-101 97.78 98.89 98.65

Enhanced TL VGG-19 VGG-19 98.54 99.44 99.12

Enhanced TL VGG-16 VGG-16 95.37 99.36 95.25

Hybrid learning
solution

Enhanced TL AlexNet SVM 97.32 98.35 98.22

Enhanced TL ResNet-50 SVM 98.46 99.29 99.08

Enhanced TL ResNet-101 SVM 97.91 98.83 98.64

Enhanced TL VGG-19 SVM 98.94 99.59 99.38

Enhanced TL VGG-16 SVM 98.74 99.52 99.22

7. Discussion

This section discusses the superiority of the proposed models versus the related models
in recent literature studies. The proposed model has multi-source scan images based on
modularity, including CT scan and X-ray images. First, for the CT scan, Table 10 shows our
proposed model deducted from the comparative study in Table 4 and the literature for the
same dataset and inputs—results of this experiment are visualized in Figure 8. The second
scenario was performed on the three-class label for the same dataset. All comparative
results were replicated according to the three-class label dataset, as shown in Table 11 and
Figure 9. In turn, the experiments were carried out in which the end-to-end VGG16 with
the binary class demonstrated its superiority to the hybrid model. With three classes, the
hybrid model achieved better results, and both showed better results than the comparative
study from the literature.



Healthcare 2022, 10, 109 14 of 20

Table 10. Comparison between proposed model versus other related models for the CT scan dataset
(two-class).

Algorithm Accuracy Precision Recall

Proposed (Enhanced E2E of VGG16) 99.94 99.94 100

Coen de Vente et al. [50] 87.63 74.00 66.00
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Table 11. Comparison between proposed model versus other related models for the CT scan dataset
(three-class).

Algorithm Accuracy Precision Recall

Proposed (Enhanced Hybrid of
ResNet-101 and SVM) 99.6 99.91 99.66

Coen de Vente et al. [50] 87.63 74.00 66.00
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Second is the first X-ray dataset where the proposed model obtained accuracy lower
than Muhammed E.H. et al. [51] of around 0.89%, and the proposed model achieves a much
more reasonable recall rate. Consequently, our proposed model does not stick in under-fit
or over-fit with regards to a specific label (see Table 12). The proposed model satisfies the
balance classification rates between different labels in the given dataset. Furthermore, the
proposed model achieves a notable enhancement compared to others in terms of accuracy,
precision, and recall by a significant rate as illustrated in Figure 10 for binary classification.
Table 13 and Figure 11 demonstrate the superiority of the proposed model versus the
models in the literature for three classes.

Table 12. Comparison between proposed model versus other related models for the X-ray dataset
(two-class).

Algorithm Accuracy Precision Recall

Proposed (Enhanced TL of VGG19) 100 100 100

Muhammed E.H. et al. [51] 98.30 100.00 96.70

Armando Ugo Cavallo et al. [52] 91.80 – 93.00

Sheetal et al. [53] 94.40 – 94.50

Amira et al. [54] 91.34 91.00 88.33
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Figure 10. Comparative study between proposed model and other literature models using X-ray
dataset (two-class) [51–54].

Table 13. Comparison between proposed model versus other related models for the X-ray dataset
(three-class).

Algorithm Accuracy Precision Recall

Proposed (Enhanced E2E of VGG16) 97.41 97.6 100

Muhammed E.H. et al. [51] 98.30 100.00 96.70

Armando Ugo Cavallo et al. [52] 91.80 – 93.00

Sheetal et al. [53] 94.40 – 94.50

Amira et al. [54] 91.34 91.00 88.33
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Figure 11. Comparative study between proposed model and other literature models using X-ray
dataset (three-class) [51–54].

In the third dataset, the hybrid learning solution provided better results than fully
deep learning. For the binary label, the proposed enhanced TL VGG16+SVM demonstrated
its superiority (see Table 14). Figure 12 represents the visual analysis of the proposed model
for binary classifier in terms of accuracy, precision, and recall. The proposed enhanced
TL VGG19+SVM showed its effectiveness for the three-class label dataset (see Table 15).
Figure 13 shows a graphical bar chart analysis of the proposed model versus the models in
the literature; both binary and multiclass models show improvements in accuracy compared
to those in the literature.

Table 14. Comparison between proposed model versus other related models for the X-ray dataset
(two-class).

Algorithm Accuracy Precision Recall

Proposed (Enhanced TL VGG16) 99.23 99.44 99.1

Muhammed E.H. et al. [51] 98.30 100.00 96.70

Armando Ugo Cavallo et al. [52] 91.80 – 93.00

Sheetal et al. [53] 94.40 – 94.50

Amira et al. [54] 91.34 91.00 88.33

Table 15. Comparison between proposed model versus other related models for the X-ray dataset
(three-class).

Algorithm Accuracy Precision Recall

Proposed (Enhanced TL VGG-19+SVM) 98.94 99.59 99.38

Muhammed E.H. et al. [51] 98.30 100.00 96.70

Armando Ugo Cavallo et al. [52] 91.80 – 93.00

Sheetal et al. [53] 94.40 – 94.50

Amira et al. [54] 91.34 91.00 88.33
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Figure 12. Comparative study between proposed model and other literature models using X-ray
dataset (two-class) [51–54].
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8. Conclusions

This paper proposes a CAD system for detecting COVID-19 infection. An excellent
diagnostic performance was demonstrated in using both CT and CXR images. In addition,
the CAD system is superior to those found in the literature. The CAD system could be
a supplementary reliable analysis tool for diagnosing COVID-19 cases using CXR and
CT images. Visible features in CT scan images, such as the intensity, shape, size, and
nodule margins, may influence the diagnostic efficiency of the CAD system. Furthermore,
junior radiotherapists lacking experience can use these helpful suggestions provided by
the proposed CAD system.
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