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Purpose: To accurately assess disease progression after Stereotactic Ablative

Radiotherapy (SABR) of early-stage Non-Small Cell Lung Cancer (NSCLC), a

combined predictive model based on pre-treatment CT radiomics features and

clinical factors was established.

Methods: This study retrospectively analyzed the data of 96 patients with early-

stage NSCLC treated with SABR. Clinical factors included general information

(e.g. gender, age, KPS, Charlson score, lung function, smoking status), pre-

treatment lesion status (e.g. diameter, location, pathological type, T stage),

radiation parameters (biological effective dose, BED), the type of peritumoral
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radiation-induced lung injury (RILI). Independent risk factors were screened by

logistic regression analysis. Radiomics features were extracted from pre-

treatment CT. The minimum Redundancy Maximum Relevance (mRMR) and

the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for

the dimensionality reduction and feature selection. According to the weight

coefficient of the features, the Radscore was calculated, and the radiomics

model was constructed. Multiple logistic regression analysis was applied to

establish the combined model based on radiomics features and clinical factors.

Receiver Operating Characteristic (ROC) curve, DeLong test, Hosmer-

Lemeshow test, and Decision Curve Analysis (DCA) were used to evaluate

the model’s diagnostic efficiency and clinical practicability.

Results: With the median follow-up of 59.1 months, 29 patients developed

progression and 67 remained good controlled within two years. Among the

clinical factors, the type of peritumoral RILI was the only independent risk

factor for progression (P< 0.05). Eleven features were selected from 1781

features to construct a radiomics model. For predicting disease progression

after SABR, the Area Under the Curve (AUC) of training and validation cohorts in

the radiomics model was 0.88 (95%CI 0.80-0.96) and 0.80 (95%CI 0.62-0.98),

and AUC of training and validation cohorts in the combined model were 0.88

(95%CI 0.81-0.96) and 0.81 (95%CI 0.62-0.99). Both the radiomics and the

combinedmodels have good prediction efficiency in the training and validation

cohorts. Still, DeLong test shows that there is no difference between them.

Conclusions: Compared with the clinical model, the radiomics model and the

combined model can better predict the disease progression of early-stage

NSCLC after SABR, which might contribute to individualized follow-up plans

and treatment strategies.
KEYWORDS

non-small cell lung cancer, stereotactic ablative radiotherapy, progression, radiomics,
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Introduction

Lung cancer is the second incidence of diagnosed tumor and

is the primary leading cause of cancer-related deaths worldwide

(1). Non-small cell lung cancer (NSCLC) accounts for 80-85% of

lung cancer. Currently, surgery remains the standard of care for

NSCLC (2). For patients who are medically inoperable due to

their existing severe chronic disease or their rejection of surgery,

the treatment of stereotactic ablative radiotherapy (SABR) has

been established as the standard alternative therapy (3–5).

SABR is a non-invasive external beam radiation modality

which could facilitate the delivery of ablative doses to the tumor,

sparing the surrounding normal tissues over a limited number of

fractions. Previous studies had shown that the local control rate

could reach 85%~98%, and the 3-year overall survival (OS) can

get 48%~65% after SABR in early-stage NSCLC (6–8). However,
02
the patients still had the risk of locoregional recurrence (4%

~14%) and distant metastasis (13%~23%) after SABR (9, 10),

which is a great challenge for clinicians. Chemotherapy is not

ideal because most patients who receive SABR cannot take the

risk of surgery due to poor cardiopulmonary function and aged

physical condition. In the era of immunotherapy, Immune

Checkpoint Inhibitors (ICI) have represented a revolution in

treating various stages of NSCLC. The addition of ICI to SABR

seems promising, and several multicenter, prospective,

randomized controlled clinical trials are underway. A

systematic literature review indicated that the ICI-SABR

combination has a good safety profile and achieves high rates

of local control and greater chances of obtaining abscopal

responses than SABR alone, with a relevant impact on

progression-free survival (PFS) (11). However, most patients

with early-stage NSCLC could be cured after SABR alone, and
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they shall be waived from the suffering of the harm of systematic

therapy. For this reason, finding out those patients will have a

high risk of disease progression is becoming essential. Therefore,

establishing an effective predictive model to assess the risk of

progression and survival probability of early-stage NSCLC

patients is of great significance for treatment plan selection or

the individual design of follow-up.

Resulting from the heterogeneity of tumors, the growth rate,

invasive ability, drug sensitivity, and prognosis of tumors can be

different, and the divergence can limit the usefulness of molecular

testing-based tissue biopsies (12). Radiomics extracts quantitative

features from Computed Tomography (CT), Magnetic Resonance

Imaging (MRI), Positron Emission Tomography (PET), and other

medical images with high throughput by utilizing computer

software (13). Through statistical or computer learning

methods, the characteristics most related to clinical results are

selected to establish models, which can provide valuable predictive

information for the diagnosis and treatment of diseases, and can

provide information on tumor cells more comprehensively,

systematically, and deeply (12–17). In this study, the radiomics

method was used to deeply mine the pre-treatment CT radiomics

features, combined with clinical factors, to construct and validate a

predictive model for the disease progression of early-stage NSCLC

after SABR, providing a feasible and practical reference for clinical

guidance of individualized treatment of patients.
Materials and methods

This retrospective study was approved by the ethics

committees of Cancer Hospital of the University of Chinese

Academy of Sciences (Zhejiang Cancer Hospital). The

requirement for informed consent was waived.
Patient data

The clinical and imaging data of patients with early-stage

NSCLC treated with SABR in the Department of Thoracic

Radiation Oncology, Cancer Hospital of the University of

Chinese Academy of Sciences from 2012 to 2018 were

collected. General information (e.g. gender, age, KPS, Charlson

score, lung function, smoking status), pre-treatment lesion status

(e.g. diameter, location, pathological type, T stage), radiation

parameters (biological effective dose, BED), and the type of

peritumoral radiation-induced lung injury (RILI) was classified.

Inclusion criteria: 1) Pathologically confirmed primary

NSCLC by bronchoscopy or percutaneous CT-guided biopsy;

2) The TNM clinical stage I~II according to the American Joint

Committee on Cancer (AJCC) (8th edition); 3) Have not

received other prior antitumor therapy; 4) Thorax CT

examination performed before treatment and every 3-6

months follow-up after SABR. Exclusion criteria: 1) coexisting
Frontiers in Oncology 03
with other primary malignant tumors; 2) incomplete clinical and

imaging data; 3) lesions cannot be accurately segmented (e.g. the

lesion and peripheral atelectasis cannot be accurately

segmented.); 4) lost to follow-up.
SABR treatment

All patients performed four-dimensional CT simulations

with free breathing. The Internal Gross Target Volume

(IGTV) was derived from the Maximum Intensity Projection

(MIP) of 4DCT and the Planning Target Volume (PTV) was

expanded by a 5-mm margin in all directions around the IGTV.

The total radiation dose and fraction dose were determined by

the radiation oncologists based on the lesion location, volume,

and peripheral organs at risk. Target delineation, conformity,

and dose limitations in normal tissues were referred to the

American Radiation Therapy Oncology Group (RTOG) 0236

study (18). The prescription dose was 5-15Gy per fraction, once

a day, with a total dose of 40-70Gy. The BED was calculated

using the formula, BEDa/b = nd (1+ d/a/b), where n=number of

fractions, d=dose per fraction, and a/b=10 Gy for the

lung cancer.
Follow-up

All patients underwent enhanced thorax CT examination

one month after the end of treatment and every three months

thereafter, and every six months after two years. If progression is

suspected, PET-CT or pathological biopsy is performed.

Enhanced thorax CT was performed with GE 64-slice CT or

Siemens 64-slice CT, tube current 100~300mAs, tube voltage

120 kV, pitch 5.0 mm, slice thickness 5.0 mm. The contrast agent

was selected from Opitiray (Ioversol) or Ultravist (Iopromide),

and the high-pressure syringe was injected rapidly through the

dorsal vein of the hand, the injection rate was 2.5ml/s, and the

dose was 80-95ml. Enhanced thorax CT examination was

performed 38s after contrast agent injection. Disease

progression within two years of follow-up was defined as a

high-risk group, and progression or no progression for more

than two years was defined as a low-risk group.
Radiomic analysis

The workflow of the study was shown in Figure 1.

Medical imaging segmentation
The lung-window CT images (window width of 1600

Hounsfield units (HU) and window level of -450 HU; DICM

format) of early-stage NSCLC patients before SABR treatment

were imported into ITK-SNAP software (Version 3.4.0,
frontiersin.org
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http://www.itksnap.org/). A region of interest (ROI) was

manually delineated layer by layer by an attending radiologist

(who had 10 years of experience with thorax CT images), and a

Volume of Interest (VOI) was synthesized. Adjacent aorta, ribs,

and pulmonary bullae were excluded. At the same time, a senior

radiologist (who had 15 years of experience with thorax CT

images) randomly selected 30 patients and repeated the

delineation process. The Intraclass Correlation Coefficient

(ICC) was used to evaluate consistency between observers.

Feature extraction and selection
Image preprocessing and radiomics feature extraction were

performed using python pyradiomics (version 3.0.1), which

complies with IBSI (19). Image preprocessing includes

resampling, denoising, and intensity standardization. Feature

parameters include morphological features, first-order features,

texture features, and transformation-based features. Before

feature selection, radiomics features of different dimensions

were normalized using a Z-score, which was used to remove

the mean and variance normalization. The minimum

Redundancy Maximum Relevance (mRMR) and the Least

Absolute Shrinkage and Selection Operator (LASSO) were

used for dimensionality reduction and feature selection.

Model construction and evaluation
Univariate logistic regression analysis was used to screen

independent clinical risk factors. According to the ratio of 7: 3,

the patients were randomly divided into the training cohort and

the validation cohort. The data of the training cohort were used to

construct the model, and the data of the validation cohort were

used to test. According to the radiomics labels and their weight

coefficients, the radiomics score (Radscore) of every patient was

calculated, and a radiomics model was established. Multivariate

logistic regression analysis was used to establish a combined
Frontiers in Oncology 04
model based on radiomics features and clinical factors, and a

nomogram was constructed. The area under curve (AUC) was

calculated by receiver operating characteristic (ROC) curve

analysis, and the performance of the training cohort and the

validation cohort models was evaluated. The accuracy, sensitivity,

specificity, Positive Predictive Value (PPV), and Negative

Predictive Value (NPV) of the models were obtained. Delong

test, Hosmer-Lemeshow test, and Decision Curve Analysis (DCA)

were used to evaluate the diagnostic efficiency and clinical utility

of the model.
Statistical analysis

All data analysis was performed by using IBM SPSS version

24.0 (IBM Corp., Armonk, NY, USA). The continuous variables

that conformed to be normally distributed were analyzed by the

independent samples t-test. Otherwise, the continuous variables

were analyzed by the Wilcoxon Rank-Sum test. The categorical

variables were used the chi-square test or Fisher’s exact test. P<

0.05 was considered statistically significant.
Results

Patient characteristics

A total of 96 patients were included in this study. With the

median follow-up of 59.1 months, 29 patients developed

progression and 67 remained good controlled within two

years. All patients were randomly assigned to the training

cohort (n=68) and the validation cohort (n=28). There were

no statistically significant differences in clinical factors between

the training and validation cohorts (P > 0.05). Statistical
A CB D

E GF H

FIGURE 1

|The framework for the radiomics workflow. (A, B) Medical imaging segmentation; (C, D) Feature extraction and selection; (E, F) The ROC curves
and nomogram; (G, H) Hosmer-Lemeshow Test and the decision curve.
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characteristics were summarized in Table 1. Univariate logistic

regression analysis showed that the type of peritumoral RILI was

significantly different between the high-risk group and the low-

risk group for disease progression (OR, 0.48; 95% CI: 0.25-0.90;

P=0.022). Thus, a clinical model is established through this

independent risk factor.
Frontiers in Oncology 05
Analysis based on CT radiomics features

Feature selection and model construction
A tota l o f 1781 radiomics fea tures ( inc luding

morphological features, first-order features, texture features,

and transformation-based features) were extracted from the
TABLE 1 Characteristics of patients in the training and validation cohorts.

Training Cohort Validation Cohort

High-risk (n=21) Low-risk (n=47) p High-risk (n=8) Low-risk (n=20) p

Gender (%)

Female 4 (19.0) 12 (25.5) 2 (25.0) 9 (45.0)

Male 17 (81.0) 35 (74.5) 0.7849 6 (75.0) 11 (55.0) 0.58188

Age, years (mean ± SD) 74.5 (6.7) 73.6 (7.9) 0.6588 72.5 (6.6) 72 (9.2) 0.88141

KPS 88.8 (8.6) 89.8 (6.4) 0.6034 90 (7.6) 89.5 (7.6) 0.87475

Charlson 0.9 (1.2) 0.7 (1) 0.5613 1.6 (1.5) 0.6 (0.9) 0.02219*

Diameter, cm (mean ± SD) 2.3 (0.8) 2.5 (0.8) 0.2269 2.1 (0.7) 2.4 (0.9) 0.47013

Histology

Adenocarcinoma 9 (42.9) 25 (53.2) 2 (25.0) 11 (55.0)

Squamous cell carcinoma 10 (47.6) 13 (27.7) 3 (37.5) 4 (20.0)

Not otherwise Specified 2 (9.5) 9 (19.1) 0.2404 3 (37.5) 5 (25.0) 0.34642

T stage

1 16 (76.2) 34 (72.3) 4 (50.0) 17 (85.0)

2 5 (23.8) 12 (25.5) 4 (50.0) 3 (15.0)

3 0 (0.0) 1 (2.1) 0.7814 0 (0.0) 0 (0.0) NA

Tumor location

Central 2 (9.5) 3 (6.4) 1 (12.5) 0 (0.0)

Peripheral 19 (90.5) 44 (93.6) 1.0000 7 (87.5) 20 (100.0) 0.62906

Involved lobe

RLL/RML 8 (38.1) 15 (31.9) 2 (25.0) 8 (40.0)

LLL 8 (38.1) 11 (23.4) 3 (37.5) 2 (10.0)

LUL 2 (9.5) 7 (14.9) 2 (25.0) 4 (20.0)

RUL 3 (14.3) 14 (29.8) 0.3922 1 (12.5) 6 (30.0) 0.31476

Pulmonary function

Normal 3 (14.3) 4 (8.5) 1 (12.5) 1 (5.0)

Mild 1 (4.8) 8 (17.0) 1 (12.5) 4 (20.0)

Moderate 11 (52.4) 18 (38.3) 3 (37.5) 5 (25.0)

Severe 6 (28.6) 17 (36.2) 0.3853 3 (37.5) 10 (50.0) 0.76868

Smoker

No 6 (28.6) 21 (44.7) 4 (50.0) 10 (50.0)

Yes 15 (71.4) 26 (55.3) 0.3241 4 (50.0) 10 (50.0) 1.00000

BED 98.1 (14.5) 98.5 (12.5) 0.9062 86.4 (14.8) 93.7 (19.3) 0.33499

BED≥100

No 7 (33.3) 18 (38.3) 4 (50.0) 10 (50.0)

Yes 14 (66.7) 29 (61.7) 0.9044 4 (50.0) 10 (50.0) 1.00000

Type

1 10 (47.6) 34 (72.3) 5 (62.5) 14 (70.0)

2 3 (14.3) 7 (14.9) 2 (25.0) 3 (15.0)

3 8 (38.1) 6 (12.8) 0.0524 1 (12.5) 3 (15.0) 0.82186
frontie
KPS, karnofsky performance status; RLL, right lower lobe; RML, right middle lobe; LLL, left lower lobe; LUL, left upper lobe; RUL, right upper lobe; BED, biologically effective dose; Type,
the type of peritumoral radiation-induced lung injury. *p< 0.05, expressive significance.
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pre-treatment CT images of early-stage NSCLC treated with

SABR by using the python pyradiomics (version 3.0.1),

ICC=0.82>0.75, indicating good inter-group consistency.

After dimensionality reduction and feature selection by

mRMR and LASSO, the 11 most valuable features and their

corresponding coefficients were retained, as shown in Figure 2.

The values of 11 features were input into the formula to obtain

Radscore, and the radiomics model reflecting the disease

progression was established. The box plot showed the

Radscore distribution of high- and low-risk group for disease

progression in training and validation cohorts, as shown in

Figure 3. The resulting formula was as follows:
Frontiers in Oncology 06
Combined with the Radscore and the type of peritumoral

RILI, a combined model was constructed, and a visual

nomogram was formed, as shown in Figure 4.

Model performance evaluation
Figure 4 showed that the AUCwith its 95% confidence interval

(CI) of the radiomics model, clinical model, and combined model

was 0.88 (95%CI 0.80-0.96), 0.64 (95%CI 0.51-0.78), and 0.88 (95%

CI 0.81-0.96) in the training cohort and 0.80 (95%CI 0.62-

0.98),0.53 (95%CI 0.32-0.73) and 0.81 (95%CI 0.62-0.99) in the

validation cohort, respectively. Table 2 showed that the accuracy

values of the radiomics model, clinical model, and combined
Radscore = −0:12*lbp − 2D_ firstorder _Median + 0:879*wavelet − LLH _glrlm _LongRunEm

phasis + −0:237*lbp − 3D − k_ngtdm_Busyness + 0:254*logarithm_glcm_ClusterShade + −0:

266*square_glcm_ClusterShade + −0:852*wavelet-HLL_firstorder_Skewness + −0:635*

wavelet-HHL_glcm_Imc1 + −0:442*lbp-3D-k_glcm_ClusterTendency + 0:3*exponential

l_glszm_ZoneVariance + 0:297*wavelet-LLH_firstorder_90Percentile + 0:059*lbp-2D_

firstorder_90Percentile + 1:212
A C

B

FIGURE 2

Textural feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) binary logistic regression. (A) Tuning parameters(l)
for the LASSO model were selected by 10-fold cross-validation using the minimum criteria. Partial likelihood deviance was plotted against log
(l). The dotted vertical lines correspond to the optimal values according to the minimum criteria and 1-SE criterion. The 11 features with the
smallest binomial deviance were selected. (B) A feature coefficient convergence graph for filtering features using 10-fold cross-validation in the
LASSO regression model. (C) LASSO coefficient profiles of texture features. Vertical lines correspond to the values selected by 10-fold cross-
validation of the log(l) sequence; the 11 nonzero coefficients are indicated.
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model were 82.3%, 72.1%, and 79.4% in the training cohort, and

71.4%, 64.3%, and 85.6% in the validation cohort, respectively. The

results showed that both the radiomics model and the combined

model have good prediction efficiency in the training cohort and

the validation cohort.

According to the DeLong test, the performance of the

radiomics model and combined model in the training and

validation cohort was significantly better than that of the clinical

model (P<0.05), but there was no statistically significant difference

between the radiomics model and combined model (P > 0.05), as

shown in Table 3. Hosmer-Lemeshow Test of the nomograms of

the training and validation cohorts were shown in Figure 5, in
Frontiers in Oncology 07
which the results showed that the prediction of disease progression

in the training cohort was well-calibrated (P>0.05). DCA results for

the three discrimination models were shown in Figure 6. The

results showed that the radiomics and combined models have high

clinical benefits.

Discussion

Radiomics can extract many disease features that cannot be

observed with the naked eye from medical images and non-

invasively capture information inside tumors that may be related

to tumor recurrence, thereby realizing the goal of personalized
A

C

B

D

FIGURE 3

Box plot showing the Radscore distribution of high and low risk group for disease progression on training and validation cohorts. p-value from
Wilcoxon Rank-Sum test (A, B). Receiver Operator Characteristic (ROC) curves (training and validation cohorts) (C, D). The prediction
performance of the ROC curves for radiomics signature for training and validation cohorts.
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TABLE 2 Predictive performance of three prediction models for training and validation cohort.

Training cohort AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Clinical model 0.64 0.51-0.78 0.872 0.381 0.721 0.759 0.571

Radiomics model 0.88 0.80-0.96 0.830 0.810 0.824 0.907 0.680

Combined model 0.88 0.81-0.96 0.971 0.606 0.794 0.723 0.952

Validation cohort AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Clinical model 0.53 0.32-0.73 0.850 0.125 0.643 0.708 0.250

Radiomics model 0.80 0.62-0.98 0.750 0.625 0.714 0.833 0.500

Combined model 0.81 0.62-0.99 0.864 0.833 0.857 0.950 0.625
Frontiers in Oncology
 08
 frontiers
AUC, the area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
A

C

B

FIGURE 4

Receiver Operating Characteristic (ROC) curves of the clinical, radiomics, and combined model used to discriminate between the high and low
risk of disease progression of lung cancer treated with SABR in the training and validation cohorts (A, B). Radiomics nomogram (C) was used to
discriminate the high and low risk of disease progression in lung cancer patients treated with SABR. The nomogram was based on the training
cohort; the Radscore was shown. Initially, vertical lines were drawn at the Radscore values to determine the values of the points. The final point
value was the sum of those of the two points. Finally, a vertical line was drawn at the total point value to determine the risk of disease
progression of lung cancer treated with SABR.
in.org

https://doi.org/10.3389/fonc.2022.967360
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.967360
medicine. In our study, a combined model based on pre-

treatment thorax CT radiomics features and clinical factors

was developed and validated to predict the likelihood of

disease progression after SABR in early-stage NSCLC.

Distant metastasis was one of the main reasons for SABR

treated in early-stage NSCLC. The RTOG 0236 study showed

that the 5-year distant metastasis rate was 31% (18). In addition,

the metastasis usually develops soon after the treatment of the

primary lesion, and the survival time is significantly reduced

once it occurs. For these patients with a high risk of early distant

metastasis, systemic therapy combined with SABR may reduce

the risk of metastasis and improve the OS. Therefore, it is of

great significance to establish an accurate and effective predictive

model to assess the risk of disease progression in patients of

early-stage NSCLC.

Several studies have focused on the relationship between

SABR prognosis and clinicopathological factors. Onishi et al.

showed that BED ≥100Gy had significantly better local control

rates and OS than those receiving BED< 100Gy (20). The

predictive survival model showed that BED10< 113Gy was an

independent risk factor for OS and PFS and was significantly

associated with both local and distant progression (21). The

prescription of BED ≥ 100Gy was currently recommended by

international guidelines, including the National Comprehensive
Frontiers in Oncology 09
Cancer Network (NCCN) and the European Society of Medical

Oncology (ESMO) guidelines. Kang et al. constructed a survival

prediction model for stage I NSCLC treated with SABR, showing

that tumor diameter >2.45 cm was an independent predictor of

OS and PFS, which had a significant correlation with both local

and distant progression (21). It is unclear whether there is any

difference in the prognosis of different pathological types after

SABR. Abel et al. analyzed 15,110 patients with early-stage (I ~

IIA) NSCLC who received SABR, and the 5-year OS of patients

with adenocarcinoma and squamous cell carcinoma were 36%

and 24% (P<0.0001), respectively. Squamous cell carcinoma was

an independent poor prognostic factor (22). In our study, BED,

tumor diameter, and pathological type did not correlate with

disease progression, which may be related to the relatively

concentrated BED dose (95% concentrated between 93.4Gy-

99.4Gy), relatively uniform clinical factors, and a small number

of cases and so on. Therefore, it is difficult to construct predictive

models solely on the clinicopathological characteristics.

The type of peritumoral RILI was the only independent risk

factor for tumor progression among clinical factors (P< 0.05).

The pattern of changes in lung parenchyma on CT post-SABR

can generally be categorized as acute (within six months,

corresponding to pneumonitis) or late (after six months,

corresponding to fibrosis) (23). Several papers have classified
A B

FIGURE 5

Hosmer-Lemeshow Test of the nomogram of the training (A) and validation (B) cohorts. The diagonal dotted lines represent the ideal
predictions; the solid lines represent nomogram performance. A closer fit to the diagonal line indicates that the model matches better.
TABLE 3 Comparison of ROC curves with DeLong test in the training and validation cohort.

Clinical vs Radiomics Clinical vs Combined Radiomics vs Combined

Z P Z P Z P

Training Cohort 2.87 0.004* 3.48 <0.001* 0.093 0.926

Validation Cohort 2.08 0.038* 2.35 0.019* 0.24 0.812
f

*p< 0.05, expressive significance.
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acute changes into one of five general patterns: diffuse

consolidation, patchy consolidation, diffuse ground-glass

opacities (GGO), patchy GGO, and no change (24–26). In the

past, the vast majority of literature discussed the identification of

RILI and tumor recurrence (27–29), and there were few studies

on the correlation between them. Based on the above

considerations, we redefined the peritumoral RILI and divided

them into three types (Figure 7). Type I is diffuse consolidation

around the tumor, also called severe RILI. Type II is diffuse GGO

around the tumor, which is distributed over 180 degrees around

the tumor; we also call it moderate RILI. Type III is patchy GGO

within a range of fewer than 180 degrees around the tumor, or

there is no change; we call it mild RILI.

In this study, a total of 1781 radiomics features were extracted.

After screening of radiomics features by mRMR and LASSO, 11

features were finally retained, including four first-order features

and seven texture features, all based on transformation. First-

order features describe the gray value distribution of tumor image

ROIs. In this study, Skewness reflects the asymmetry of gray value

distribution relative to the mean. The more low-signal gray

distribution in the lesion is, the higher the tumor heterogeneity.

In the texture feature, the Gray Level Co-occurrence Matrix

(GLCM) studies the spatial correlation characteristics between

the gray levels of two points in a certain distance and direction in

the image so as to reflect the texture information of the image in

direction, interval, change amplitude and speed. In this study,

Informational Measure of Correlation (IMC) 1 assesses the

correlation between the probability distributions of i and j

(quantifying the complexity of the texture); Cluster Tendency
Frontiers in Oncology 10
is a measure of groupings of voxels with similar gray-level values;

Cluster Shade is a measure of the skewness and uniformity of the

GLCM, a higher cluster shade implies more significant

asymmetry about the mean. The Gray Level Run Length

Matrix (GLRLM) mainly reflects texture roughness and

directionality. It is used to describe the length of the same

pixel gray level that appears continuously in a specified

direction. In this study, Long Run Emphasis (LRE) measures

the distribution of long-run lengths, with a more excellent value

indicative of long run lengths and more coarse structural

textures. The Gray Level Size Zone Matrix (GLSZM) provides

information about the spatial distribution of corresponding

adjacent pixels or voxels at the same gray level. In this study,

Zone Variance (ZV) measures the variance in zone size volumes

for the zones, and the more significant the value, the greater the

heterogeneity. The Neighbouring Gray Tone Difference Matrix

(NGTDM) represents the difference between the gray value of a

point and the average gray value in the neighborhood at a certain

distance, thereby capturing the spatial rate of gray intensity

changes. In this study, busyness is a measure of the shift from a

pixel to its neighbor; a high value for busyness indicates a ‘busy’

image, with rapid changes of intensity between pixels and their

neighborhood. The gray information of these images can

quantitatively analyze tumor heterogeneity so as to conduct

quantitative studies at the microscopic level, which can

effectively predict the disease progression of patients (30, 31).

The features selected in this study were all processed by filters,

which may be because filters can extract and reconstruct the parts

of the original images, thus mining deeper image information.
FIGURE 6

Decision Curve Analysis (DCA) results for the three discrimination models. The Y-axis represents the net benefit, calculated by summing the
benefits (true positives) and subtracting the weighted harm (i.e., deleting false positives). The optimal method for feature selection is that with
the highest net benefit.
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In this study, the AUC of the radiomics model and

combined model in the training and validation cohorts were

all above 0.80, and the accuracy rates were above 0.7. The model

we developed showed a good predictive efficiency of disease

progression after SABR, which provided important information

for subsequent clinical therapy and follow-up. Rainer et al. also

had similar findings. This study predicted tumor progression six

months after Stereotactic Body Radiation Therapy (SBRT) for

early-stage lung cancer, enrolled 399 patients from 13 different

units, and finally retained seven radiomics features to establish a

Support Vector Machine (SVM) model, using 10-fold cross-

validation and AUC to evaluate the performance of the classifier.

The results showed that the AUC was 0.789, sensitivity was

67.0%, and specificity was 78.7%, which was a good prediction

(32). Lafata et al. also proposed the potential relationship
Frontiers in Oncology 11
between radiomics features extracted from pre-treatment CT

images and clinical outcomes following SBRT for NSCLC; the

results showed that two features demonstrated a statistically

significant association with local failure: Homogeneity2

(p=0.022) and Long-Run-High-Gray-Level-Emphasis

(p=0.048) multivariable logistic regression models produced

AUC values of 0.83 (33).

In the DeLong test, we found no statistically significant

difference between the radiomics model based solely on the

CT images and the combined model, which indirectly confirmed

the dominant role of CT images in the prediction model. Even

so, compared with the ROC, the AUC value of the combined

model is higher than that of the pure CT radiomics model.

Therefore, clinical variables (the type of peritumoral RILI) still

have a specific positive effect on the comprehensive judgment of
FIGURE 7

The type of peritumoral radiation-induced lung injury. Type I, female, 51 years, adenocarcinoma in the right lung, DT40GY/5F; (A) pre-
treatment: a nodule with blurred boundary and spicule sign; (B) one month after treatment: the tumor shrunk and there was a surrounding
ground-glass opacity; (C) three months after treatment: the tumor area showed diffuse consolidation and was indistinguishable from the tumor;
(D) six months after treatment: the imaging findings were similar to (C). Type II, female, 79 years, adenocarcinoma in right lung, DT55GY/5F;
(E) pre-treatment: a nodule with a clear boundary and shallow lobed; (F)one month after treatment: the tumor has shrunk a little, no ground
glass opacity surrounding it; (G) four months after treatment: there was no significant change; (H) six months after treatment: the tumor was
surrounded by ground-glass opacity, more than 1/2. Type III, male,70 years, adenocarcinoma in left lung, DT50GY/5F; (I) pre-treatment: a
nodule with a clear boundary and shallow lobed; (J) two months after treatment: there was no significant change; (K) four months after
treatment: there was no significant change; (L) six months after treatment: the tumor was surrounded by ground-glass opacity, less than 1/2.
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the model. Luo et al. and Li et al. also proposed that clinical

variables were significantly correlated with the clinical outcomes

of patients receiving SBRT for lung cancer and proved that the

combined model based on clinical factors and radiomics features

could effectively improve model prediction efficiency (34, 35).

Limitations of this study: Firstly, this study was a retrospective

study, which can only be analyzed based on existing data, and

prospective studies can be carried out in the future to incorporate

some new variables. Secondly, the number of cases in this study

was limited, and the sample size needed to be further expanded to

improve the stability of the model. Thirdly, the data in this study

came from the same hospital, and only internal validation was

performed. Data from other hospitals should be added for external

validation to improve model repeatability.
Conclusions

In conclusion, the radiomics model established based on

pre-treatment thorax CT images of early-stage NSCLC can

predict the disease progression after SABR treatment. At the

same time, the nomogram we developed has a better predictive

ability for the disease progression and provides a feasible and

practical reference value for clinical guidance of individualized

treatment, follow-up, and evaluation strategies for patients

undergoing SABR.
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