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HIV infection alters the natural history of several cancers, in large part due to its effect

on the immune system. Immune function in people living with HIV may vary from

normal to highly dysfunctional and is largely dependent on the timing of initiation (and

continuation) of effective antiretroviral therapy (ART). An individual’s level of immune

function in turn affects their cancer risk, management, and outcomes. HIV-associated

lymphocytopenia and immune dysregulation permit immune evasion of oncogenic

viruses and premalignant lesions and are associated with inferior outcomes in people with

established cancers. Various types of immunotherapy, including monoclonal antibodies,

interferon, cytokines, immunomodulatory drugs, allogeneic hematopoietic stem cell

transplant, and most importantly ART have shown efficacy in HIV-related cancer.

Emerging data suggest that checkpoint inhibitors targeting the PD-1/PD-L1 pathway

can be safe and effective in people with HIV and cancer. Furthermore, some cancer

immunotherapies may also affect HIV persistence by influencing HIV latency and

HIV-specific immunity. Studying immunotherapy in people with HIV and cancer will

advance clinical care of all people living with HIV and presents a unique opportunity to

gain insight into mechanisms for HIV eradication.
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INTRODUCTION

People living with HIV (PLWH) have an elevated risk of developing cancer compared to the general
population. This increased risk is partially attributable to comorbid conditions and social factors
such as smoking or poorer access to preventative services. However, there is strong evidence that
immunologic factors such as decreased immunologic surveillance and increased susceptibility to
oncogenic viral infection play a significant role (1–5). Historically, cancers developing in the setting
of HIV have been classified as AIDS-defining malignancies (ADM; cancers that, when present,
confer a diagnosis of AIDS) and non-AIDS definingmalignancies (NADM; cancers whose presence
does not necessarily indicate AIDS) (6). Many HIV-related cancers have a viral etiology (7). These
include Kaposi sarcoma (KS) [Kaposi sarcoma herpes virus (KSHV)]; cervical, anal, penile and
vulvar squamous cell cancer and oropharyngeal cancers [human papilloma virus (HPV)]; B cell
non-Hodgkin lymphomas (NHL) including diffuse large B-cell lymphoma, Burkitt lymphoma,
plasmablastic lymphoma, primary central nervous system lymphoma, primary effusion lymphoma,
classic Hodgkin lymphoma, and lymphoproliferative disorders [in some cases, Epstein-Barr
virus (EBV) and/or KSHV]; hepatocellular carcinoma [hepatitis B and C viruses (HBV/HCV)],
and Merkel cell carcinoma [Merkel cell polyoma virus (MPV)]. In epidemiological studies of
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non-Hodgkin lymphoma, Kaposi sarcoma, and anal cancer,
uncontrolled HIV viremia is an independent risk factor (4, 5, 8).

The introduction of antiretroviral therapy (ART) after 1996
resulted in a reduction in the incidence of many ADMs by
75–80% (9), largely due to reduced prevalence of profound
immunodeficiency. NADMs including lung cancer, Hodgkin
lymphoma, anal cancer, and oropharyngeal cancer now comprise
an increasing proportion of total cancers in PLWH in North
America (10, 11). A similar trend has been documented in
Europe, Australia (12) and the Asia-Pacific region (11, 13).
This epidemiological switch in prevalence away from ADMs
and virally-associated malignancies corresponds with increasing
life expectancy of PLWH, increased availability of ART and
promotion of viral suppression (14–16).

HIV LEADS TO PARTIALLY REVERSABLE
PERTURBATION IN T-CELL FUNCTION

HIV has multiple effects on T-cell immunity that may contribute
to cancer risk. Absent effective ART, uncontrolled HIV infection
leads to massive depletion of HIV-infected CD4 cells and
uninfected bystander CD4s in both blood and tissue (17). In
the same setting, CD8 counts often rise, leading to inverted
CD4/CD8 ratios that are an independent measure of immune
dysfunction. Moreover, HIV and other chronic viral infections
lead to increased expression of immune checkpoint proteins
(such as PD-1), exhaustion markers, and impaired CD8T cell
function (18–20), causing systemic immune dysfunction and
dysregulation (21). Untreated HIV perturbs not only the quantity
but also the breadth of T-cell immunity. HIV leads to decreased
numbers of naïve T cells, less diversity of the T-cell repertoire
in the blood (22, 23), and skewing of the T-cell receptor
(TCR) repertoire secondary to CD4 depletion and expansion
of oligoclonal CD8 populations (24). HIV viremia is rapidly
suppressed with modern ART. Immune reconstitution after
initiation of ART leads to CD4 recovery and CD8 decline over
time (25). The likelihood of full immune recovery improves
with earlier diagnosis and a younger age at ART initiation
(26), although immune recovery is often incomplete (27).
The heightened pro-inflammatory state associated with both
untreated and treated HIV contributes to long-term adverse
outcomes (28, 29).

ONCOGENESIS IN THE SETTING OF
HIV-INDUCED IMMUNE DYSFUNCTION

Immunodeficiency is an established risk factor for the
development of cancer, and the underlying causes are likely
many, including uncontrolled proliferation of oncogenic viruses
and inadequate immune surveillance. Many oncogenic viruses
have been shown to cause cancer in other immunosuppressed
states, including inherited immunodeficiencies and solid-
organ transplantation (30). CD4 deficiency is strongly linked
to malignancy (31), independent of HIV infection (32–35).
The presence, number, and functionality of CD4T cells are
important in multiple steps of the oncogenic pathway, including

recognition of tumor antigens, development of effective
neutralizing antibody, and cellular responses to viral pathogens,
and clearance of premalignant lesions. The risk of many HIV-
associated malignancies decreases with improved CD4 count
on ART (9, 12, 36–39) and cancer-specific mortality correlates
inversely with CD4 count (12, 40). The link between reduced
CD4 count and elevated cancer risk is profound in KS and
NHL (41–43), but also present in other malignancies (37). An
individual’s risk of cancer (and long-term immune dysfunction)
is likely influenced by the CD4 nadir, perhaps indicative of
a synergistic relationship between chronic inflammation and
impaired immune surveillance (10, 44–49).

CD4 lymphocytopenia, ineffective CD8 response, and
associated immune dysregulation lead to a reduction in
immunosurveillance, a key mechanism in HIV-associated
oncogenesis (21, 50). This is illustrated in the link between HIV,
immune status, and cervical cancer (37). PLWH are more likely
to acquire high risk HPV (51, 52), less likely to clear HPV, and
more likely to progress to higher-grade forms of dysplasia (53).
PLWH with lower CD4 counts are also more likely to progress
from dysplasia to invasive cancer (54). In an HPV vaccine trial
in adolescents with HIV, the induced antibody titer correlated
positively with CD4 count (55), supporting the importance of
CD4T cells in the production of high-affinity antibodies (51),
the primary correlate of protection of the HPV vaccine (56).
Tissue-localizing HPV-specific CD4 and CD8T cells are also
potentially important to tumor regression (57, 58).

Immune exhaustion and T-cell senescence are prominent
features of both chronic viral infections and malignancies (59).
In PLWH, T-cell dysfunction is most strongly implicated in
the development of EBV-related lymphomas and KS (60). In
HIV-associated B cell NHL, reduced T-cell polyfunctionality
and TCR diversity is associated with poorer prognosis (61).
These observations, among others (62), have led to interest
in remedying immune dysfunction to treat malignancy in
PLWH (63).

ANTIRETROVIRAL THERAPY AND OTHER
FORMS OF IMMUNOTHERAPY IN
HIV-RELATED CANCER

ART is itself an effective form of immunotherapy for ADM.
Improvements in ART in 1996 resulted in a decline in the
incidence and severity of KS, as well as changes in its natural
history (9, 64–66): the risk of death due to KS decreased at
similar HIV RNA levels and CD4 count (66), suggesting that
ART resulted not only in improved immune control of KSHV
but also decreased immune dysregulation. ART-induced immune
reconstitution results in regression of KS lesions in ∼80%
of PLWH with early KS (67). However, ART alone is often
insufficient in advanced KS.

Several immunotherapies have shown efficacy in KS and other
HIV-related cancers (Table 1). Interferon alpha (IFN-α), the first
true immunotherapy used in HIV-associated KS, generated a
20–40% response rate (98–100). IL-12, which enhances Th-1
type immune responses (91), has been shown to have anti-KS
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TABLE 1 | Select immunotherapeutic agents used in cancers that occur at increased frequency in people with HIV and their demonstrated or hypothesized effect on

measurements of the HIV reservoir.

Agent Mechanism Indication in cancer

that is associated

with HIV

Adverse events Potential effect on

HIV reservoir

References

Checkpoint

inhibitors

(ipilimumab

nivolumab,

pembrolizumab,

durvalumab, etc.)

Block inhibitory T cell receptors including

CTLA4, PD-1, or PD-L1, allowing T cell

activation and promoting cytotoxic killing

of target cells

Lung cancer, classical

Hodgkin lymphoma,

head and neck cancer,

liver cancer

Fatigue, rash,

arthralgia, pruritis, GI

toxicity, asthenia,

pulmonary toxicity,

pyrexia, autoimmune

phenomena, headache

Transient increases in

unspliced HIV RNA and

decreases in HIV DNA

in blood, variable

effects on plasma HIV

RNA

(68–72)

Pomalidomide Modulates substrate specificity of cereblon

E3 Ubiquitin ligase, altering protein

expression. Induces cell cycle arrest and

apoptosis in plasma cell malignancies.

Enhances T cell- and natural killer (NK)

cell-mediated cytotoxicity, inhibits

angiogenesis, modulates cytokines, and

cell microenvironment

Under evaluation for KS Thromboembolic

events, teratogenicity,

fatigue and asthenia,

cytopenias, GI toxicity,

dyspnea, back pain,

pyrexia

Immune stimulation,

increased killing of

reservoir cells

(73–75)

Brentuximab

vedotin

Monoclonal antibody drug conjugate with

anti-CD30 antibody (expressed on

Hodgkin Reed-Sternberg Cells) and MME

(microtubule disruptor) payload

Classical Hodgkin

lymphoma

Cytopenias, peripheral

sensory neuropathy,

fatigue, GI toxicity,

pyrexia, rash, cough

Transient loss of

detectable CD4 T-cell

HIV RNA and reduction

in plasma HIV viremia

(76, 77)

Alemtuzumab Monoclonal antibody to CD52 (expressed

on lymphocytes, monocytes,

macrophages, NK cells, and some

granulocytes)

Hematopoietic stem

cell transplant

conditioning

Infusion reaction,

serious infections,

cytopenias, secondary

autoimmune disorders

Ex vivo elimination of

latently-infected CD4T

cells. Evidence of

decreased frequency of

HIV-infected CD4T

cells in vivo.

(78–81)

IL-7 Modulates T cell development and

maturation in the thymus. Modulates T cell

homeostasis and proliferation and memory

differentiation. Inhibits T cell apoptosis and

promotes proliferation.

Under evaluation in

combination with CD19

CAR T-cells in relapsed

B-cell lymphoma

Infusion reaction,

hypersensitivity

Transient increases in

HIV viral load without

observed clinical

sequelae, as well as

enhanced anti-HIV CD8

activity

(82–90)

IL-12 Promotes activation and differentiation of T

lymphocytes and NK cells

Under evaluation in

therapeutic vaccines

for HPV associated

cancers, phase 1

studies in solid tumors.

Immune activation Latency reversal ex vivo (91–93)

IL-15 Stimulates the proliferation of memory T

cells and regulates their turnover.

Promotes the survival of naive T cells.

Under evaluation in

refractory B-cell

lymphomas and solid

tumors

Infusion reaction,

hypersensitivity

Ex vivo killing of

latently-infected CD4T

cells by cytotoxic

CD8T cells

(94–97)

activity in patients who are progressing despite ART (92) and is
currently being developed as a tumor-targeted immunocytokine,
NHS-IL12 (101). A recent trial of the immunomodulatory drug
pomalidomide in 22 participants with heavily pretreated KS who
were virally suppressed on ART noted an overall response rate
of 60% among HIV-infected participants, which is comparable
to traditional cytotoxic chemotherapy for KS. The investigators
observed expansion of central memory cells and decreases in
CD57+ immunosenescent T-cells (73, 74).

Despite immune dysfunction due to HIV, cancer in PLWH
is often responsive to immunotherapy. Thus far, the best-
studied agents are tumor-targeting monoclonal antibodies in
the management of HIV-associated lymphomas. Rituximab, a
monoclonal antibody to the B-cell antigen CD20 that works
in part through antibody-dependent cell-mediated cytotoxicity,
is associated with improved overall survival in NHL when
compared to chemotherapy alone (102–104). In people with

HIV-associated lymphoma, a pooled analysis of over 1,500
patients noted that rituximab improved overall survival in those
with a CD4 count >50 cells/µL (105). Brentuximab vedotin, an
antibody-drug conjugate directed at CD30 on Reed-Sternberg
cells, has been shown to have activity in HIV-associated Hodgkin
lymphoma: in a study of 6 patients with HIV and classical
Hodgkin lymphoma, all achieved a complete response with
minimal hematologic toxicity or infectious complications (106).

More recently, immune checkpoint inhibitors (CPIs),
monoclonal antibodies to cytotoxic lymphocyte associated
protein 4 (CTLA-4) or programmed cell death 1 or its ligand
(PD-1 and PD-L1), have gained widespread use due to their
demonstrated activity and favorable toxicity profile in many
malignancies. CPIs, which function by blocking T-cell inhibitory
signaling, have performed well in clinical trials of many
malignancies that are common in the setting of HIV, including
lymphoma, lung cancer, cervical cancer, liver cancer, and
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head and neck cancers (107, 108). While nearly all these trials
excluded PLWH (109), case reports and retrospective cohort
studies from US and European collaborative groups have
described an acceptable safety profile with the use of nivolumab,
pembrolizumab, and ipilimumab in PLWH, with reported
tumor responses in classical Hodgkin lymphoma, melanoma
and lung cancer (68, 69, 110–116). A systematic review of CPIs
in PLWH noted overall response and adverse event rates that
were similar to the general population. In the subset of patients
in whom viral load was measured, HIV remained suppressed
in 93% of participants, and CD4 counts increased modestly.
Notably, CPI use in KS was associated with an overall response
rate of 63% (117). A prospective cohort study of 10 PLWH with
NSCLC treated with nivolumab noted similar response rates to
HIV-uninfected patients: 2 patients had a partial response, 4 had
stable disease, and 4 progressed. All patients tolerated nivolumab
well with no serious adverse events (70). A prospective phase
1 study of pembrolizumab in PLWH with a CD4 count >100
cells/µl and advanced cancer demonstrated evidence of safety
and activity in KS, NHL, lung cancer, and liver cancer (118).
A study of durvalumab in 20 aviremic PLWH with advanced
solid tumors likewise reported no serious adverse events, nor
evidence of HIV reactivation during durvalumab therapy
(119). Ongoing studies evaluating CPIs in HIV-associated
cancers include a phase 1 study of nivolumab (anti-PD-1)
combined with ipilimumab (anti-CTLA-4) in relapsed classical
Hodgkin lymphoma or solid tumors (NCT02408861), a phase
2 study of nivolumab in advanced non-small cell lung cancer
(NCT03304093), a phase 2 study of durvalumab in advanced
cancer (NCT03094286), a study of pembrolizumab as first
systemic therapy in KS (NCT02595866), and intralesional
nivolumab for limited cutaneous KS (NCT03316274).

CANCER IMMUNOTHERAPY AND HIV
PERSISTANCE

Although HIV-infected individuals on ART may have
undetectable plasma HIV RNA by standard clinical assays,

a reservoir of latently HIV-infected cells (120, 121) persists
from which the virus will resurface after discontinuation of
ART (122). Persistence of the HIV reservoir is partly due to
the inherent longevity of resting memory CD4T cells; growing
evidence suggests that its persistence is maintained by clonal
expansion (123, 124). In whole genome-based studies, HIV
integration favors sites of active gene transcription (125) which
benefits HIV replication and establishment of latency (126, 127)
and promotes pathways associated with oncogenesis (124).
The HIV reservoir has been a major subject of research into
a functional cure for HIV. One theory called “kick and kill”
(Figure 1) (128, 129) proposes that HIV latency reversal in the
setting of ART (meaning activation of HIV replication within
a latently infected cell), can lead to increased immunogenicity
of HIV infected cells, enhancement of anti-HIV immunity, and
increased cell death of HIV reservoir cells.

Several immunotherapeutic agents used in the treatment of
cancer may have cause HIV latency reversal and/or have a
targeted effect on HIV persistence. CPIs have been proposed to
have latency reversal activity. Anti-PD-1 therapy is associated
with changes in CD4 count and HIV RNA (130–132), perhaps
due to direct targeting of the HIV reservoir. PD-1 and CTLA-4
expression are increased in the setting of chronic HIV infection,
and HIV DNA and unspliced RNA are enriched in PD-1+ cells
in blood and lymph nodes of individuals with HIV on ART
(133–136). Multiple case reports and prospective studies have
documented transient increases in HIV transcription in CD4
cells in people with HIV-associated malignancies on ART who
are treated with anti-PD-(L)1 drugs, although many of these
participants later experienced decreases in plasma HIV RNA
(117, 128, 129, 132, 137). In one study, 2 of 28 patients who
had undetectable HIV RNA prior to CPI therapy developed
detectable HIV RNA, whereas 5 of 6 patients who had detectable
viremia experienced a decrease in their viral load (117). A
prospective study of the effect of ipilimumab in 24 PLWH with
detectable viremia and without cancer, of whom 17 were on
ART, also demonstrated a range of responses: 2 participants
had slight decreases in HIV RNA but 14 had slight increases.
None experienced significant change in CD4 or CD8T cell

FIGURE 1 | Immunotherapy and the HIV reservoir. A variety of immunotherapeutic agents used to treat cancer may perturb the HIV reservoir through induction

of latency reversal or increased cell killing. Some of these agents are being evaluated in clinical trials targeting HIV persistence. CPI, immune checkpoint inhibitor;

IL, interleukin.
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count (138). These observations support the activity of CPIs to
produce latency reversal. Additional studies are being performed
to evaluate the effects of CPIs on anti-HIV T-cell function.

The effects of anti-CD30 monoclonal antibodies on HIV
latency have also been investigated. Early work in HIV
demonstrated that cross-linking of CD30 on latently-infected
CD4T cells induced HIV transcription (139). More recently,
brentuximab vedotin has been associated with transient loss
of detectable CD4 T-cell HIV RNA and reduction in plasma
HIV viremia (76). CD30 is therefore speculated to be a marker
of latent, but transcriptionally-active, HIV-infected cells and a
potential therapeutic target for HIV eradication (140).

Alemtuzumab is a monoclonal antibody targeting CD52,
which is expressed by T cells including HIV-infected T cells,
regardless of CD4 count or plasma viremia. Latently-infected
CD4T cells have been eliminated in vitro with alemtuzumab
(78). In vivo, a case report of alemtuzumab in an individual with
HIV and Sezary syndrome described decreased frequency but not
elimination of HIV-infected CD4T cells (79). Alemtuzumab was
also part of the conditioning regimen of one of the patients with
sustained HIV aviremia after HSCT (141).

T-cell growth factors, many of which are being investigated
for cancer indications, have also been shown to affect the
HIV reservoir. Interleukin 7 (IL-7) is a homeostatic cytokine
that increases T-cell repertoire diversity through expansion
of naive T cells (82) and is being investigated in several
malignancies. IL-7 levels increase in HIV-associated CD4
lymphocytopenia and decrease with immune reconstitution
(142). Exogenous administration of IL-7 is associated with dose-
dependent increases in CD4 and CD8T cells in PLWH on ART
(143), including HIV-specific CD8T cells (83). In patients with
suppressed HIV, administration of IL-7 led to transient increases
in HIV viral load without observed clinical sequelae (84), as
well as enhanced anti-HIV CD8 activity. Another T-cell growth
factor, IL-15, induces antigen-specific T-cell proliferation, most
pronounced in the CD8 compartment (94, 95, 144, 145). IL-15
is produced during acute HIV infection (95). Stimulating NK
cells with IL-15 ex vivo from participants with suppressed HIV
on ART led to ex vivo killing of latently-infected CD4T cells by
cytotoxic CD8T cells (96). Early phase studies of IL-7 and IL-15
in several malignancies are underway.

HEMATOPOIETIC STEM CELL
TRANSPLANTATION IN HIV

In 2007, an individual with HIV infection and leukemia
underwent hematopoietic stem cell transplant (HSCT) in Berlin,
using cells from a donor who was homozygous for CCR5-delta32,
a mutation that renders CD4 cells resistant to CCR5-tropic HIV.
After transplant, HIV was undetectable in blood and biopsy
specimens, despite discontinuation of ART (146, 147). Recently,
a second patient who underwent allogeneic HSCT for Hodgkin
lymphoma using cells from a homozygous CCR5-delta32 donor
and whose HIV remained undetectable 18 months after stopping
ART (141) was described. Allogeneic stem cell transplant itself

appears to substantially decrease the HIV reservoir. In the
European IciStem cohort of PLWH on ART who underwent
HSCT for hematologic malignancies from CCR5 wild-type
donors with full donor engraftment and who remained on ART,
5 of 6 were found to have no detectable HIV DNA in CD4 cells
from blood and tissues and no evidence of HIV in a humanized
mouse viral outgrowth assay (148). However, ART interruption
is required to demonstrate functional cure, and in cases of
allotransplants from CCR5 wild-type donors, HSCT has failed to
produce long-lasting viral suppression in the absence of ART. In
an ART interruption study of 2 PLWH who underwent HSCT
for hematologic malignancies from CCR5 wild-type donors and
had undetectable HIV RNA for years post-transplant while
on ART, both participants developed detectable viremia after
ART interruption: patient A at day 84 and patient B at day
225 (149).

Given the success of allotransplants from homozygous CCR5-
delta32 donors, CCR5-mutant cell products have been developed
via gene editing and have been shown to be safe when infused
into participants with chronic aviremic HIV. When ART was
interrupted, the edited CD4 cells declined at a slower rate
than endogenous CD4 cells. While these results are promising,
additional work is required to develop a scalable approach to
address HIV persistence on ART (150–153).

IMPROVING OUR UNDERSTANDING OF
HIV-RELATED CANCER

As PLWH are living longer, cancer has become a major cause
of morbidity and mortality, well above the burden faced by the
general population. Although the incidence of AIDS-defining
malignancies has decreased, mortality associated with NADMs
is rising. Given the persistent immune abnormalities despite
ART and the implications for cancer risk, immunotherapy is
uniquely poised to improve outcomes in HIV-associated cancers.
In order to advance our understanding, PLWHmust be included
in immuno-oncology studies. Recent recommendations from
ASCO and the FDA provide guidance for appropriate inclusion
of PLWH and cancer in clinical trials (109, 154). Furthermore,
studying cancer immunotherapy in this population represents
an opportunity to gain a better understanding of HIV itself.
Investigation of the immunologic and viral responses to cancer
immunotherapy in PLWH will lead to novel insights into HIV
elimination and, above all, improve the outcomes of people with
HIV and cancer.
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