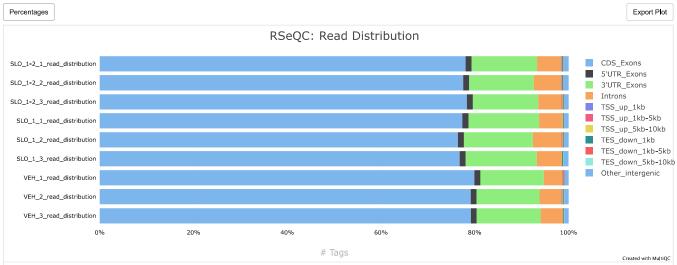


A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

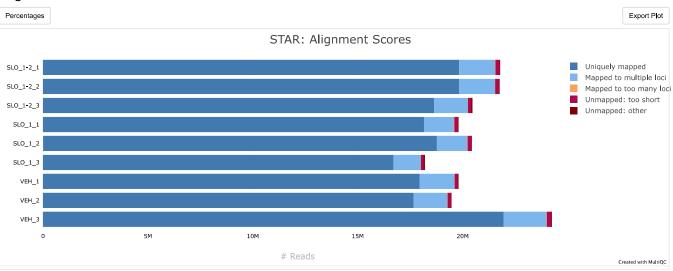
General Statistics


. Copy table	Ⅲ Configure columns	Scatter plot	■ Violin plot	Showing	$^{18}\!\!/_{18}$ rows and $^{6}\!\!/_{9}$ columns.						Export as CSV
Sample Nan	ne % Aligno	ed	M Aligned		% Dropped % Dups			% GC		M Seqs	
SLO_1-2_1	91.1%		19.8 M								
SLO_1- 2_1_S35_R1_001					0.0 %	52.1 %		46 %		21.8 M	
SLO_1-2_2	91.1%		19.8 M								
SLO_1- 2_2_S36_R1	_001				0.0%	51.7 %		46 %		21.8 M	
SLO_1-2_3	91.2%		18.6 M								
SLO_1- 2_3_S37_R1	_001				0.0 %	51.9%		46 %		20.4 M	
SLO_1_1	91.7%		18.2 M								
SLO_1_1_S38_R1_001					0.0%	50.3 %		46 %		19.8 M	
SLO_1_2	91.9%		18.8 M								
SLO_1_2_S39_R1_001					0.0 %	49.3 %		46 %		20.4 M	
SLO_1_3	91.9%		16.7 M								
SLO_1_3_S40_R1_001					0.0 %	48.9 %		46 %		18.2 M	
VEH_1	90.7 %		18.0 M								
VEH_1_S32_R1_001					0.0 %	53.0 %		46 %		19.8 M	
VEH_2	90.7 %		17.7 M								
VEH_2_S33_R1_001				0.0 %	51.9 %		46 %		19.5 M		
VEH_3	90.5%		22.0 M								
VEH_3_S34_	R1_001				0.0 %	55.1 %		46 %		24.3 M	

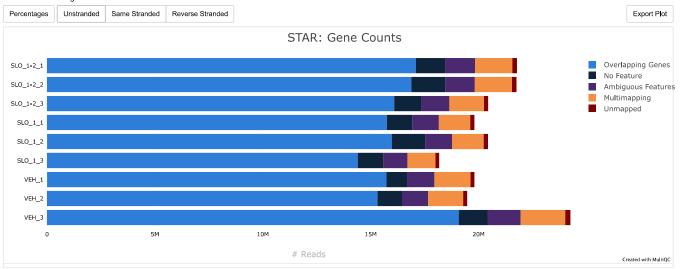
RSeQC

RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput RNA-seq data. DOI: 10.1093/bioinformatics/bts356.

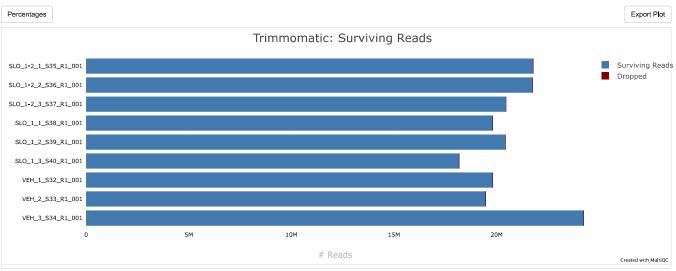
Read Distribution


Read Distribution calculates how mapped reads are distributed over genome features.

STAR

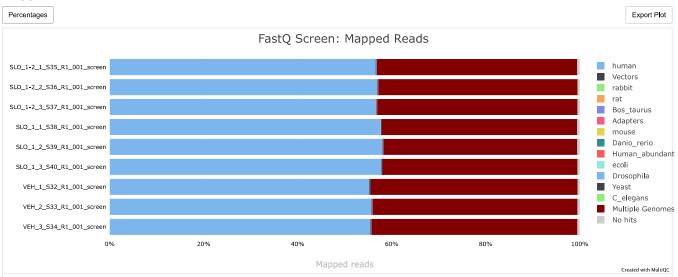

STAR is an ultrafast universal RNA-seq aligner. DOI: 10.1093/bioinformatics/bts635.

Alignment Scores


Gene Counts

Statistics from results generated using --quantMode GeneCounts . The three tabs show counts for unstranded RNA-seq, counts for the 1st read strand aligned with RNA and counts for the 2nd read strand aligned with RNA.

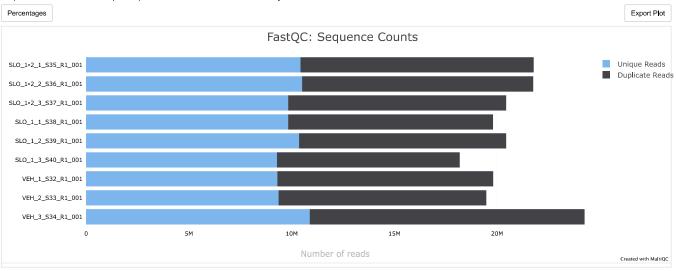
Trimmomatic


Trimmomatic is a flexible read trimming tool for Illumina NGS data. DOI: 10.1093/bioinformatics/btu170.

FastQ Screen Version: 0.14.0

FastQ Screen allows you to screen a library of sequences in FastQ format against a set of sequence databases so you can see if the composition of the library matches with what you expect. DOI: 10.12688/11000research.15931.2.

Mapped Reads

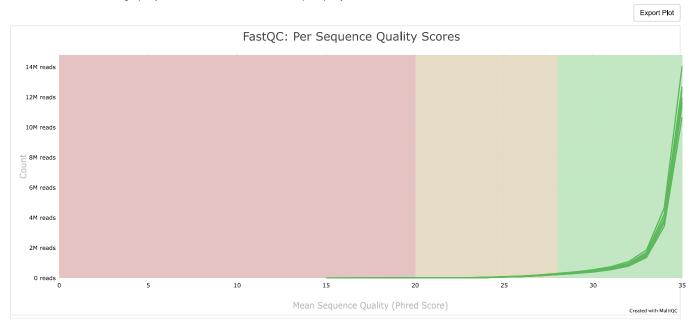


FastQC Version: 0.11.9

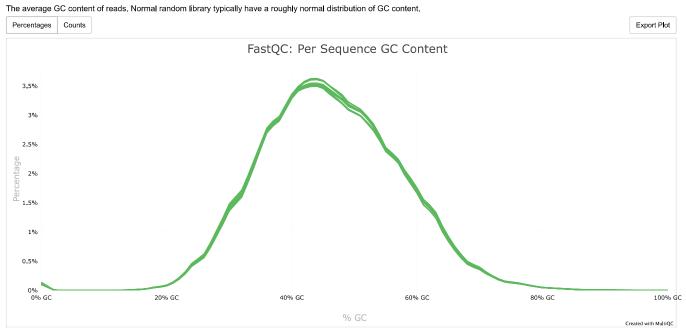
FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

Sequence Counts

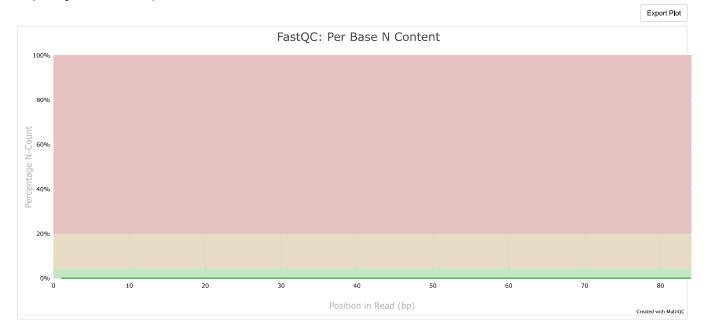
Sequence Quality Histograms


The mean quality value across each base position in the read.

Per Sequence Quality Scores

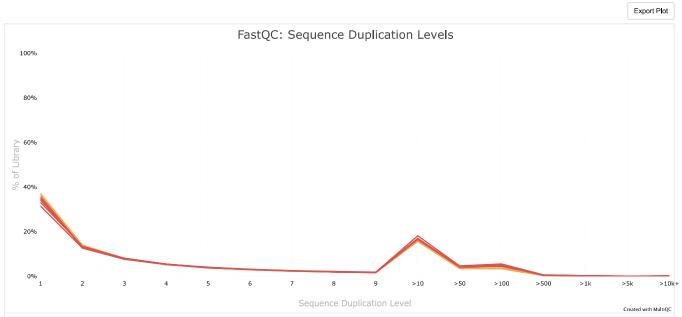


The number of reads with average quality scores. Shows if a subset of reads has poor quality.


Per Base Sequence Content The proportion of each base position for which each of the four normal DNA bases has been called. ♣ Click a sample row to see a line plot for that dataset. ♣ Rollover for sample name Position: ♣ T. ♣ C: ♣ A: ♣ G: ♣ A: ♣ A: ♣ G: ♣ A: ♣ A:

The percentage of base calls at each position for which an N was called.

Sequence Length Distribution

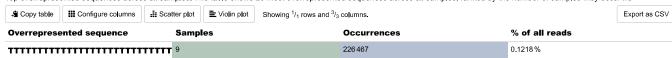


All samples have sequences of a single length (84bp).

Sequence Duplication Levels

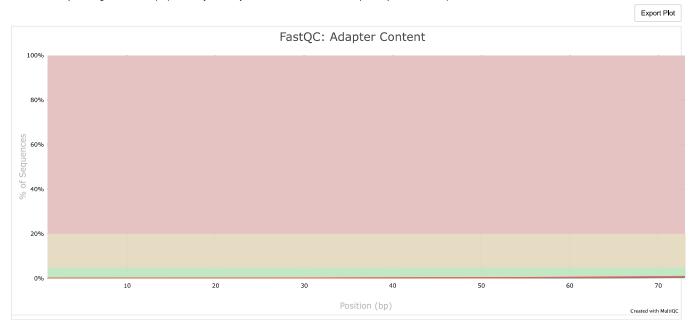
The relative level of duplication found for every sequence.

Overrepresented sequences by sample

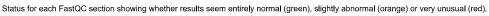


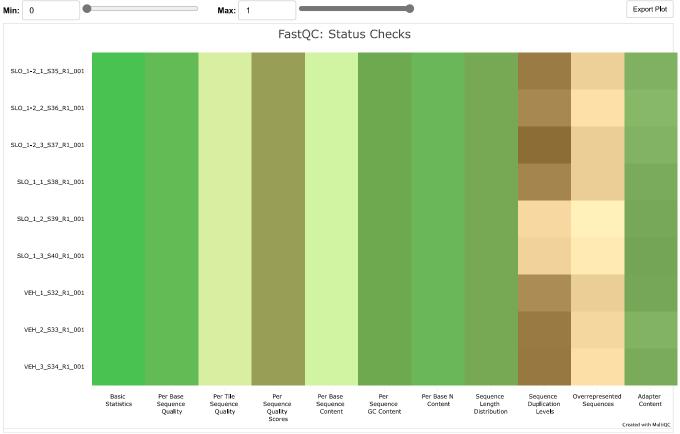
The total amount of overrepresented sequences found in each library.

9 samples had less than 1% of reads made up of overrepresented sequences


Top overrepresented sequences

Top overrepresented sequences across all samples. The table shows 20 most overrepresented sequences across all samples, ranked by the number of samples they occur in.




Adapter Content

The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.


Status Checks

Software Versions

Software Versions lists versions of software tools extracted from file contents.

MultiQC v1.21 - Written by Phil Ewels. available on GitHub.

This report uses HighCharts. jQuery, jQuery UI. Bootstrap, FileSaver,js and dipboard.js.

