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MiR-152 Regulates Apoptosis and 
Triglyceride Production in MECs via 
Targeting ACAA2 and HSD17B12 
Genes
Yuwei Yang2, Xibi Fang   2, Runjun Yang2, Haibin Yu2, Ping Jiang2, Boxing Sun2 & Zhihui Zhao1

Mammary epithelial cells (MECs) affect milk production capacity during lactation and are critical for 
the maintenance of tissue homeostasis. Our previous studies have revealed that the expression of 
miR-152 was increased significantly in MECs of cows with high milk production. In the present study, 
bioinformatics analysis identified ACAA2 and HSD17B12 as the potential targets of miR-152, which 
were further validated by dual-luciferase repoter assay. In addition, the expressions of miR-152 was 
shown to be negatively correlated with levels of mRNA and protein of ACAA2, HSD17B12 genes by 
qPCR and western bot analysis. Furthermore, transfection with miR-152 significantly up-regulated 
triglyceride production, promoted proliferation and inhibited apoptosis in MECs. Furthermore, 
overexpression of ACAA2 and HSD17B12 could inhibit triglyceride production, cells proliferation and 
induce apoptosis; but sh234-ACAA2-181/sh234-HSD17B12-474 could reverse the trend. These findings 
suggested that miR-152 could significantly influence triglyceride production and suppress apoptosis, 
possibly via the expression of target genes ACAA2 and HSD17B12.

Breast fatty gland tissues not only help to support the basic mammary structure, but also serve as the communica-
tion bridge between mammary epithelia and their local and systemic environment throughout the development 
of breast1, which are mainly consisted of a large number of mammary epithelial cell clusters. Cow has four mam-
mary glands in each breast which are responsible for the synthesis and secretion of milk proteins2. More impor-
tantly, the growth and development of mammary epithelial cells affect milk production capacity during lactation 
and new mammary epithelial cells formation is critical for maintenance of tissue homeostasis3.

MicroRNA (miRNA) as an mRNA suppresser regulates protein quantity and controls a variety of cellular and 
physiological processes by post-transcriptional processing, including cell proliferation, differentiation, apoptosis 
and tumor metastasis4–9. Recent studies have shown that miRNAs are involved in fat formation and lipolysis10–14. 
Certain miRNAs have been reported to either promote or inhibit triglyceride production and to suppressap-
optosis of MECs at growing stages. For instance, miR-224 overexpression could decrease triglyceride synthesis 
and promote apoptosis12. Bta-miR-29b promotes triglyceride production and suppress apoptosis11. In addition, 
miR-33a, miR-21, miR-23a, miR-877 have also been reported to affect triglyceride production and apoptosis of 
MECs10. Nonetheless, the effects of miR-152 expression on MECs have not been well studied.

The mature sequence of miR-152, a member of the miR-148/152 family (miR-148a, miR-148b, and miR-152), 
is relatively conservative15. Previous studies on miR-152 are mostly focused on tumor. It has been reported that 
miR-152 might be involved in the carcinogenesis of ovarian cancer through deregulation of cell proliferation and 
might be a novel biomarker for early detection or therapeutic purpose16. MiR-152 affects cell cycle progression in 
non-small cell lung cancer and liver cancer by targeting WNT-1 protein17. There are also evidences suggest that 
miR-152 is associated with epigenetics. MiR-152 and miR-185 could co- target DNMT1 (DNA Methyltransferase 
1) in ovarian cancer cells18,19. In recent years, increased studies indicate that miR-152 is involved in lipid metab-
olism, for example, miR-152 regulates DNMT1, which in turn influences lactation-related genes in dairy cow 
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mammary epithelial cells20. However, miR-152 has not been comprehensively investigated in MECs, especially 
the involvement of miR-152 in the mammary gland at the molecular level.

MiRNA could control gene expression either via target mRNAs degradation or translation inhibition by 
binding to the 3′-untranslated regions (3-UTR)19,21,22. Bioinformatics analysis suggest that ACAA2 (acetyl-CoA 
acyltransferase 2) and HSD17B12 (hydroxysteroid 17-beta dehydrogenase 12) are both potential target genes of 
miR-152.

Acetyl-CoA acyltransferase 2 (ACAA2) gene encodes an enzyme of the thiolase family, which is involved in 
mitochondrial fatty acid elongation and degradation by catalyzing the last step of the respective β-oxidation path-
way23. Meanwhile, BNIP3, a unique pro-apoptotic protein, belonging to the BH3-only subset of the Bcl-2 family, 
was found to have a linkage with ACAA2. Cell apoptosis from overexpression of BNIP3 or hypoxia treatment 
could be abolished by ACAA2 expression24. The Hydroxysteroid (17b) dehydrogenase type 12 (HSD17B12) gene 
belongs to the hydroxysteroid (17) dehydrogenase superfamily. HSD17B12 encodes a multifunctional enzyme, 
which is involved in the prolongation of very long chain fatty acid (VLCFA), especially in the conversion of pal-
mitic to archadonic (AA) acid and in the synthesis of arachidonic acid (AA)25–27.

The present study aims to identify the role of miR-152 in mammary epithelial cells. Our results suggested that 
miR-152 could regulate fatty acid metabolism by directly targeting ACAA2, HSD17B12, which in turn inhibited 
cellular apoptosis, promoted cell proliferation and enhanced triglyceride production. Further study of miR-152 in 
lipid metabolism and apoptosis in MECs might establish this microRNA as a novel biomarker for marker assisted 
selection of Holstein dairy cows, especially in the selection of butterfat rate.

Results
ACAA2 and HSD17B12 were the direct target genes of miR-152 which were verified in MECs.  
Many target genes of miR-152 were predicted by high-throughput sequencing. Among all the potential genes, 
ACAA2 and HSD17B12 were selected for further validation due to their potential roles in fatty acid and triglyc-
eride formation using DAVID system (Fig. 1A). Both ACAA2 and HSD17B12 genes had one miR-152 binding 
sites in 3′UTR region. (Fig. 1B). Co-transfection results showed that luciferase activities of MECs transfected with 
ACAA2-WT or HSD17B12-WT vector significantly decreased compared with MECs transfected with ACAA2-si/
mut vector and HSD17B12/mut vector (Fig. 1C). These results further confirmed that ACAA2 and HSD17B12 
were target genes of miR-152.

Figure 1.  Target sites of miR-152 and luciferase assay. (A) The pathways of ACAA2 and HSD17B12 were 
analyzed using the DAVID system. (B) Binding sites of miR-152 on the 3′UTR of ACAA2 and HSD17B12. (C) 
Luciferase activities were detected in MECs co-transfected with miR-152 and pmiR-RB-REPORT-ACAA2-mut/
WT/NC vector or pmiR-RB-REPORT- HSD17B12-mut/WT/NC vector. (**p < 0.01).
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ACAA2 and HSD17B12 were down-regulated by miR-152.  To test whether miR-152 down-regulates 
the expression of ACAA2 and HSD17B12, miR-152 mimics and miR-152 inhibitor were transfected into MECs and 
the expressions of GFP protein can be observed in cells transfected with miR-152 mimics, miR-152 inhibitor and 
miRNA-ShNC (Fig. 2), suggesting that the transfection was successful. The expressions of ACAA2 and HSD17B12 
at mRNA and protein level were examined (Fig. 3B,C and D) (Fig. S1.1). The results showed that the expression 
levels of miR-152 were remarkably increased in MECs transfected with miR-152 mimics as compared with that 
transfected with miR-152 inhibitor and miRNA-shNC (Fig. 3A). Moreover, transfection of miR-152 mimics sig-
nificantly decreased the expressions of ACAA2 and HSD17B12 at both mRNA and protein levels, indicating that 
miR-152 down-regulated the expression of both ACAA2 and HSD17B12 genes.

MiR-152 promoted cell proliferation and inhibited apoptosis.  The apoptosis rate of MECs trans-
fected with the miR-152 mimics, miR-152 inhibitor and miRNA-shNC were examined using flow cytometry. The 
results showed that the apoptosis rates were 14.59%, 21.99% and 18.1% in MECs transfected with the mimics, 
inhibitor and shNC of miR-152, respectively (Fig. 4A), suggesting that overexpression of miR-152 inhibited the 
apoptosis of MECs.

The cellular proliferation rate was determined by an MTT assay after the cells were transfected with miR-152 
mimics, miR-152 inhibitor, miRNA-ShNC and cultured for 0, 12, 24, 36, 48 or 72 h. As shown in Fig. 4A, miR-152 
mimics induced a significant decrease on the proliferation rate of MECs (p < 0.01) (Fig. 4B).

Figure 2.  MEC transfection efficiency. Green fluorescence could be observed under a fluorescence microscope 
24 h after the transfection. The expression rate of green fluorescence in mammary epithelial cells of dairy cow 
cells was 60%. (A) Cells transfected with miR-152 mimics; (B) Cells transfected with miR-152 inhibitor; (C) Cells 
transfected with miR-shNC.
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Regulation of triglyceride production by miR-152.  Triglyceride production was upregulated in MECs 
transfected with miR-152 mimics, and no significant differences were observed in MECs transfected with inhibi-
tor, shNC and blank, respectively (Fig. 4C) (p < 0.05).

ACAA2 and HSD17B12 effect on cell apoptosis, proliferation and triglyceride production.  
PBI-CMV3-ACAA2/HSD17B12 and sh234-ACAA2-181/sh234-HSD17B12-474 plasmids were respectively trans-
fected into cells using lipofectamine TM 2000. The apoptosis rates were detected as follows: PBI-CMV3-ACAA2 
(7.49%), PBI-CMV3 (4.89%), sh234-ACAA2-181 (7.08%), sh234 (6.62%), PBI-CMV3-HSD17B12 (8.9%), and 

Figure 3.  The expressions of miR-152b and target genes. (A) qPCR analysis of the expressions of miR-152 in 
MECs transfected with miR-152 mimics, miR-152 inhibitor and miR-shNC. (B) Western blot analysis of the 
protein levels of ACAA2 and HSD17B12 genes in MECs transfected with miR-152 mimics, miR-152 inhibitor 
and miR-shNC. (C) qPCR analysis for the mRNA levels of ACAA2 and HSD17B12 genes in MECs transfected 
with miR-152 mimics, miR-152 inhibitor and miR-shNC. (D) Relative levels of ACAA2 and HSD17B12 protein in 
MECs transfected with miR-152 mimics, miR-152 inhibitor and miR-shNC. (**p < 0.01, *p < 0.05).
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sh234-HSD17B12-474 (2.58%) respectively. The results showed that overexpression of ACAA2 and HSD17B12 
could induce cells apoptosis; but sh234-ACAA2-181/sh234-HSD17B12-474 could reverse the effect.

After MTT detection, cells proliferation ability was better in group of sh234-ACAA2-181/sh234-HSD17B12-474 
transfection than cells transfected PBI-CMV3-ACAA2/HSD17B12 plasmids.

In addition, overexpression of ACAA2 and HSD17B12 could inhibit triglyceride production. But 
sh234-ACAA2-181/sh234-HSD17B12-474 could improve the expression (Figs 5 and 6).

Discussion
Triglyceride, the main form of energy storage in the body, is stored in adipose tissue which is involved in a range 
of processes such as energy balance and fatty acids metabolism. Triglycerides are ester molecules derived from 
glycerol and three fatty acids28–31. Apoptosis is a process of programmed cell death that occurs in multicellular 
organisms32,33, which involve coordinated regulation of a broad range of genes.

Here we identified the regulatory roles of miR-152 on ACAA2 and HSD17B12 in triglyceride production 
and apoptosis of MECs. Our results suggested that miR-152 represses the expression of ACAA2 and HSD17B12 
through a direct interaction with the 3′UTR regions of the ACAA2 and HSD17B12. When RNA is bound by 
miRNAs, miRNA-induced silencing complex is thought to inhibit protein production either through blocking 
translation or by reducing messenger RNA stability34. Our results also indicated that miR-152 could suppress the 
expression of ACAA2 and HSD17B12 by reducing the stability of mRNA.

Furthermore, in our study, overexpression of ACAA2 and HSD17B12 could inhibit triglyceride production, 
cells proliferation and induce apoptosis; but sh234-ACAA2-181/sh234-HSD17B12-474 could reverse the trend. 
Gene pathway analysis suggests that upregulation of ACAA2 and HSD17B12 could induce fatty acid elongation. 
In mammals, HSD17B12 is involved in lipid metabolism35, such as in the synthesis of arachidonic acid. HSD17B12 
is also essential for normal neuronal development during embryogenesis36. ACAA2 encodes an enzyme of the thi-
olase family that is involved in fatty acid elongation and degradation by catalyzing the last step of the respective 
β-oxidation pathway. The increased energy needs for gluconeogenesis and triglyceride synthesis during lactation 
are met primarily by increased fatty acid oxidation. Therefore, ACAA2 enzyme plays an important role in the 
supply of energy and carbon substrates for lactation and may thus affect milk production traits23. In addition, the 
viability and apoptosis of MECs is also a key factor affecting lipid metabolism. Several recent studies show that 

Figure 4.  miR-152 effect on cell apoptosis, cell proliferation and triglycerides production in MECs. (A) 
Apoptosis ratio of MECs transfected with miR-152 mimics, miR-152 inhibitor and miR-shNC. (B) MECs 
proliferation determined by the MTT assay in MECs transfected with miR-152 mimics, miR-152 inhibitor and 
miR-shNC. (C) Triglycerides level in MECs transfected with miR-152 mimics, miR-152 inhibitor and miR-shNC. 
(*p < 0.05).
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tumor cell growth was inhibited and apoptosis was increased upon silencing of HSD17B1237,38. ACAA2 has also 
been shown to be a functional BNIP3 binding partner, which provides a possible link between fatty acid metab-
olism and cell apoptosis. ACAA2 counteracts the apoptosis induced by BNIP3. BNIP3 is a unique pro-apoptotic 
protein which belongs to the BH3-only subset of the Bcl-2 family and localizes on mitochondrial membrane in 
HepG2 cells24.

It has been reported that simultaneous inhibition of miR-148a and miR-152 could significantly protect MCF-7 
cells from 4-OHT induced cell viability reduction and inhibit cell apoptosis39. MiR-152-3p might also act as a 
tumor suppressor in human breast cancer cells via negatively regulating PIK3CA expression to inhibit the activa-
tion of AKT and RPS6, leading to the suppression of HCC1806 cells proliferation40. MiR-152 inhibits tumor cell 

Figure 5.  ACAA2 gene effect on cell apoptosis, proliferation and triglyceride production. (A) PBI-CMV3-
ACAA2 and sh234-ACAA2-181 plasmids were respectively transfected into cells. Then qPCR analysis of the 
expressions of ACAA2. (B) Proteins of ACAA2 in cells after transfection. (C) MECs proliferation were analyzed 
after PBI-CMV3-ACAA2 and sh234-ACAA2-181 plasmids treatment. (D) triglyceride production in MECs. (E) 
Apoptosis rate was detected in MECs transfected with PBI-CMV3-ACAA2 and sh234-ACAA2-181.

Figure 6.  HSD17B12 gene effect on cell apoptosis, proliferation and triglyceride production. (A) HSD17B12 
mRNA detected in MECs that transfected PBI-CMV3-HSD17B12 and sh234-HSD17B12-474 plasmids. 
(B) Proteins of HSD17B12 were analyzed by western blot in MECs. (C) MTT was used to assay the effect 
of HSD17B12 on MECs proliferation ability. (D) Influence of HSD17B12 on triglyceride was assessed. (E) 
Apoptosis rate were analyzed after plasmids transfection.
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growth by directly targeting RTKN in hepatocellular carcinoma41. In addition, miR-152 could enhance the viabil-
ity and multiplication capacity of DCMECs20. Similarly, our results showed that miR-152 could inhibit apoptosis 
and promote cell proliferation in MECs. In summary, ACAA2 and HSD17B12, two important genes involved 
in lipid metabolism, were targeted and regulated by miR-152. In addition, miR-152 could influence mammary 
epithelial cells apoptosis and triglyceride formation. Therefore, miR-152 could be considered as an important 
indicator for evaluation of cow’s milk fat quality and marker assisted cattle breeding.

Materials and Methods
The experimental design and procedures were performed in accordance with the approved Guidelines for 
Animal Experiments of Jilin University, China and were approved by the Animal Care and Use Committee of Jilin 
University, China (Approval ID: SYXK (Ji) 2008-0010/0011).

Experimental Reagents.  The primers were synthesized by Shanghai Sangon Biotech Company in China. 
The RNA Extraction Kit, cDNA reverse transcription Kit and the SYBR Green were from Takara (Takara 
Biological Company, Japan). ACAA2 antibody and HSD17B12 antibody were from abcam (abacm Reagent 
Company, USA). The Dual luciferase assay kit was from Promega (Promega Company, USA).

Target Prediction and KEGG Orthology Analysis.  Based on the sequences of the miRNAs, target genes 
were predicted by deep sequencing and screening. The KEGG of all small RNA target genes was analyzed using 
DAVID system (https://david.ncifcrf.gov/home.jsp). The predicted target genes were subsequently submitted to 
KOBAS for KEGG Orthology analysis (http://kobas.cbi.pku.edu.cn/home.do) using KEGG database.

Plasmid Construction.  Vectors of miR-152 mimics, miR-152 inhibitor and miR-shNC were purchased from 
GenePharma Company in China. The sequences of ACAA2 and HSD17B12 were amplified with PCR instru-
ment with Not I and Xho I restriction sites engineered at primer ends. Amplified DNA fragments were cloned 
into pmiR-RB-REPORT vector to construct recombinant vectors pmiR-RB-REPORT- ACAA2-mut/WT/si and 
pmiR-RB-REPORT- HSD17B12-mut/WT/si. To investigate the association between target genes with apop-
tosis, cell proliferation and triglyceride production, PBI-CMV3-ACAA2/HSD17B12 and sh234-ACAA2-181/
sh234-HSD17B12-474 plasmids were respectively constructed, and then transfected into cells using lipofectamine 
TM 2000 according to the manufacturer’s instructions.

Cells culture and Transfection.  6 heads of healthy cows were selected, then mammary epithelial cells was 
isolated from dairy cows with high-fat production. Mammary epithelial cells was isolated and cultured from the 
Laboratory of animal genetics in Jilin University. Progesterone was added into the basal medium. After determi-
nation of cell viability and concentration, cells were seeded in six-well culture plates (Corning Inc., Corning, NY) 
the day before transfection at a density of approximately 1 × 106 per well with DMEM/F12 (GIBCO, Grand Island, 
NY, USA) containing 10% fetal bovine serum (FBS; PAA, Pasching, Austria) and incubated at 37 °C in a 5% CO2 
incubator with humidified atmosphere.

For luciferase activity detection, 150 µL Opti-Minimal Essential Medium (MEM) serum-free medium 
(GIBCO, Grand Island, NY, USA) was mixed with 5 µL lipofectamine TM 2000 (Invitrogen, USA) and 1.25 µL 
20 µmol of the miR-152 mimics and 500 ng pmiR-RB-REPORT vectors. To validate the miR-152 effects on the 
target genes and triglyceride production, 150 µL Opti-MEM serum-free medium was mixed with 5 µL of lipo-
fectamine TM 2000 and 1.25 µL 20 µmol of the miR-152 mimics, inhibitor and miR-shNC. To investigate the asso-
ciation between target genes with apoptosis and triglyceride production, PBI-CMV3-ACAA2/HSD17B12 and 
sh234-ACAA2-181/sh234-HSD17B12-474 plasmids were respectively transfected into cells using lipofectamine 
TM 2000 according to the manufacturer’s instructions.

Luciferase Reporter Assay.  MECs were maintained in DMEM/F12 (GIBCO) supplemented with 10% 
fetal bovine serum (FBS, GIBCO). The cells were transiently co-transfected with 0.5 μg of reporter plasmids 
(pmiR-RB-REPORT-ACAA2-mut/WT/si or pmiR-RB-REPORT-HSD17B12-mut/WT/si) and miR-152 mimics. The 
activity of luciferase was detected by using the SpectraMax M5 Microplate Reader.

Real-time PCR Analysis.  qRT-PCR was utilized to measure the expression levels of miRNAs and mRNAs. 
The reverse transcription primers and fluorescence labeled primers for quantitative analysis of miR-152 and tar-
get genes were designed using Primer 6.0 as shown in Table 1. MECs transfected with miR-152 mimics, miR-
152 inhibitor and miRNA-ShNC were harvested at 48 h post-transfection and total RNA from cultured cells was 
extracted by using TRIzol reagent (Ambion, Austin, TX, USA) according to the manufacturer’s instructions. 
The cDNA was synthesized with the Reverse Transcription Kit. The expression levels of miRNA and mRNA 
were assessed with qRT-PCR using SYBR Green I (Takara, Dalian, China) on an Eppendorf AG-5341 instru-
ment. Three biological repeats and three technical replicates were measured. The expression levels of miRNA and 
mRNA were defined by the following formula:

ΔΔ = − − − .Ct {Ct(positive) Ct(reference)} {Ct(control) Ct(reference)}

Here, 2−ΔΔCt refers to the relative expression ratio and relative expression levels were calculated using the 2 
−ΔΔCt method. The expression levels of U6 small nuclear RNA was used as housekeeping gene of miR-152, and 
GAPDH was used as reference genes of target genes individually.

Western Blot Analysis.  Cultured cells were lysed in RIPA buffer (Boster, Wuhan, China) with 1% 
Phenylmethanesulfonyl fluoride (Beyotime, China) following the manufacturer’s instruction. Protein was loaded 
and seperated by SDS-PAGE gel and transferred onto PVDF membrane (Bio-Red Laboratories Inc, USA). Then, 
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the polyvinylidene difluoride (PVDF) membrane were incubated with anti-ACAA2 (1:1000, Abcam, Cambridge, 
MA, USA), anti-HSD17B12 (1:1000, Abcam) or anti-actin (1:1000, Abcam) at 4 °C overnight. After washing 3 
times by Tris Buffered Saline with Tween 20 (TBST), the PVDF membrane was incubated with goat anti-rabbit 
IgG (1:3000, Abcam) for 1 h at room temperature. Finally, protein bandings were obtained by enhanced chemi-
luminescence (ECL) Western Blotting Substrate (Invitrogen USA). And the signal intensities were captured by a 
Tanon 5200 chemiluminescence/fluorescence image analysis system. β-actin was used as the endogenous control.

Cell Apoptosis Analysis by Flow Cytometery.  After transfection for 36 h, cell apoptosis was analyzed by 
flow cytometry. The Annexin V-FITC Apoptosis Detection Kit (KeyGEN, Jiangsu, China) was used to stain the 
cells. Cells were harvested and wahsed twice with 1× PBS at a final concentration of 106 cells per ml. Then, 500 μl 
cell suspension, 5 μl Annexin V-FITC conjugate and 10 μl propidium iodide solution were added into a test tube 
sequentially. The tubes were incubated at room temperature for 10 min at dark. Cells were subsequently analyzed 
by flow cytometry (BD, USA) to verify the effect of miR-152 and target genes on cell apoptosis.

Cell Proliferation Assays.  To determine the effects of miR-152 and target genes on MECs proliferation, 
miR-152, ACAA2, HSD17B12 were overexpressed or silenced in MECs using the cell transfection methods indi-
vidually. Briefly, cells (2 × 104 per well) were seeded in 96-well plates. After transfection, proliferation was exam-
ined in the surviving fractions at 0, 12, 24, 36, 48 and 72 hours using the MTT assay (cellchipbj, Beijing, China). 
The absorbance was recorded at 450 nm using a micro-plate spectrophotometer (ACTGene, USA).

Triglyceride Detection.  Triglyceride was extracted from cells transfected with miR-152 mimics, miR-152 
inhibitor, miRNA-ShNC, PBI-CMV3-ACAA2/HSD17B12 and sh234-ACAA2-181/sh234-HSD17B12-474 fol-
lowing the manufacturer’s instructions (Sigma, USA). Then the absorbance of the samples was detected with a 
SpectraMax M5 Microplate Reader (MD, USA).
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Symbol Primer Primer Sequence (5′-3′)
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size

Bta-miR-152

RT-Primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCCAAGTT

22 bpF-Primer TGCGGTCAGTGCATGACAGAA

R-Primer CAGTGCAGGGTCCGAGGT

U6
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200 bp
R-Primer AGCACCATCGGAAACCCC
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F-Primer CCTACCTGGCACTGCGTATCTCA

183 bp
R-Primer CATTCCACGCTCTGCTAACTTTTCT

GAPDH
F-Primer ATTCTGGCAAGTGGACATCG

431 bp
R -Primer ACATACTCAGCACCAGCATCAC

Table 1.  Primer sequences of real-time PCR.
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