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A multivariate statistical test 
for differential expression analysis
Michele Tumminello1,2, Giorgio Bertolazzi1, Gianluca Sottile1,2*, Nicolina Sciaraffa3, 
Walter Arancio3 & Claudia Coronnello3*

Statistical tests of differential expression usually suffer from two problems. Firstly, their statistical 
power is often limited when applied to small and skewed data sets. Secondly, gene expression data 
are usually discretized by applying arbitrary criteria to limit the number of false positives. In this work, 
a new statistical test obtained from a convolution of multivariate hypergeometric distributions, the 
Hy-test, is proposed to address these issues. Hy-test has been carried out on transcriptomic data 
from breast and kidney cancer tissues, and it has been compared with other differential expression 
analysis methods. Hy-test allows implicit discretization of the expression profiles and is more selective 
in retrieving both differential expressed genes and terms of Gene Ontology. Hy-test can be adopted 
together with other tests to retrieve information that would remain hidden otherwise, e.g., terms of 
(1) cell cycle deregulation for breast cancer and (2) “programmed cell death” for kidney cancer.

Differential expression analysis (DEA) is a large-scale inference procedure used to identify genes whose expres-
sion differs under different biological conditions. Several variants of the t-test have been developed to perform 
DEA1,2. However, the small and skewed data typically analysed make the parametric assumptions rarely satisfied 
and, therefore, t-test p-values are often unreliable3. The easiest solution to small data size would be to increase 
the number of experiments, which, however, would increase experimental costs accordingly. Furthermore, data 
collected for poorly expressed genes are characterized by several zeros in the data. This evidence violates the 
typical assumptions under which t-test statistics are reliable. As a result, t-tests tend to increase type I errors and  
overestimate the number of significant genes. Alternative definitions of the t-test have been proposed to reduce 
the impact of small samples and low expression variability, e.g., moderated t-test4 and Significance Analysis of 
Microarray (SAM)5. Indeed, we compare the performance of the proposed test for differential expression with the 
one of moderated t-test and SAM. Conversely, t-tests applied to large data sets also produce too many significant 
genes; this depends on the fact that average expression differences may be significantly different from zero from 
a statistical point of view but are not large enough to be biologically meaningful.

A common strategy to reduce the number of selected differentially expressed genes is to discretize the gene 
expression. The discretization of gene expression data (GED) is widely used in genomics analysis. Despite a 
certain loss of information, GED discretization is often used as a preprocessing step to reduce raw data noise 
and facilitate the interpretation of data6. Several algorithms require data discretization during the preprocess-
ing, e.g., the biclustering method7. Moreover, many network models require discrete data as input, e.g., Bayesian 
Networks and logical networks8,9. Despite the importance of discretization in transcriptomics, the criteria behind 
discretization methods are always arbitrary: the log2-Fold Change (FC)-discretization10 depends on an arbitrary 
set threshold, usually equal to 1, 1.5 or 2; the Equal Width discretization11 depends on a tuning parameter; a 
simple rank-based discretization depends on the Xth percentile that identifies the top-X% genes.

We propose a novel statistical test for DEA based on a convolution of multivariate hypergeometric distribu-
tions (Hy-test), which addresses both issues of t-test methods discussed before. Moreover, the method implicitly 
comprises a novel approach for data discretization, which is free from arbitrary parameters. At the price of a 
slight loss of information, Hy-test presents the following advantages with respect to the currently used methods:

(1)	 It is free from parametric assumptions;
(2)	 It allows implicitly provides a discretization of the expression profiles;
(3)	 It is more conservative than the t-tests, reducing type I errors.
(4)	 It can be integrated with other methods.
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In this paper, the Hy-test has been applied to investigate breast and kidney cancer tissues, and results have 
been compared to those obtained through the t-test approach. The results indicate that the joint use of the Hy-
test and moderated t-test allows one to understand the biological implications of DEA better.

Methods
Algorithm.  Let’s consider a gene expression profile recorded in two experimental conditions, e.g., normal 
and cancer tissues, for n pairs of tissues. We estimate a threshold couple able to discretize gene expression as 
“downregulated”, “upregulated”, and “no-changed”. The optimum thresholds are obtained by maximizing the 
disagreement between the discretized levels of the two different experimental conditions. Applying the thresh-
olds k1, k2 on the whole expression of a single gene, we obtain two discretized vectors, one for healthy tissues, 
say �vH , and one for diseased tissues, say �vD , with entries that take values {-1,0,1}, which means “downregulated”, 
“no-changed”, and “upregulated”, respectively. The thresholds k1, k2 are estimated by maximizing the quantity

where n+,−

(

n−,+

)

 is the number of tissue couples that present upregulated normal (cancer) tissues paired 
with downregulated cancer (normal) tissues. Optimization research has been carried out by using a genetic 
algorithm12. A threshold has been estimated for each gene of the dataset. However, this method can also be easily 
adapted to extract a single cut-off couple for all genes.

As soon as optimal values for the thresholds, k1and k2, are determined, we calculate a p-value to assess if gene 
expression is significantly different between cancer and normal tissues. To associate a p-value with H(�vH , �vD) 
it’s necessary, as a preliminary step, to evaluate the probability that a value of H(�vH , �vD) = n+,− + n−,+ occurs 
by chance. For the sake of readability, we describe the analysis in two steps. In the first one, we set constraints 
on the total number of positive, negative, and null signs on both vectors in the null hypothesis, then we describe 
the distribution of the null model after relaxing these constraints. Specifically, in the first step, the null model 
depends on the external parameters �KH =
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number of tissues with sign I in vector �vH (�vD) with, i in {-1.1,0}. Such parameters are not independent. Indeed 
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D = n , where n is the total number of tissue couples in the dataset. We are 
interested in calculating the probability that matrix

occurs by chance, subject to the aforementioned constraints. An entry ni,j of C represents the number of tissues 
that display sign i in vector �vH and sign j in �vD . Notation C is used here because sometimes matrices such as the 
one above are indicated as “confusion" matrices. Entries of matrix C are not independent due to the constraints 
on the number of positive, negative, and null signs described above. Specifically, they are linearly dependent 
according to the following six equations:

This linear system has rank equal to 5, because of the linear relationship between parameters: 
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D = n . Therefore, it can be solved as

This result indicates that matrix C is fully determined by the knowledge of n−,−, n−,+, n+,−, and n+,+ . There-
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The distribution of C allows to calculate the probability

As

According to this distribution, the p-value associated with an observation  x̂ = n̂−,+ + n̂+,− is :

In the second step, we relax the constraints on the total number of positive, negative, and null signs in both the 
vectors associated with healthy (H) and diseased tissues (D). This is done by only assuming that the overall (across 
H and D tissues) number of positive, K+ , negative, K-, and null signs, K0, are set. In this case, we have to modify 
the previous formula. Specifically, let’s indicate with K+ = K+

R + K+
G ,K− = K−

R + K−
G  and K0 = K0

R + K0
G the 

total number of positive, negative and null signs across the 2n = K+ + K− + K0 samples, that is, two times the 
number of paired tissues. In this case, the null hypothesis is attained by assuming that n tissues are randomly 
selected to be pathological, and paired with the others, which are supposed to be the healthy ones. Therefore:

where Q = {K+
D ,K−

D , n+,+, n−,−, n−,+ }, such that x ≥ x̂ . Therefore, at difference with Eq. (9), quantities K+
D  and 
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D  can vary, and the sum is carried over all possible values of parameters such that x ≥ x̂ , under the constrain 

K+
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D = n . In this manuscript, the Hy-test refers to Eq. (10). We use this test on a large set of genes, 

therefore a multiple comparison correction is required. In all subsequent analysis statistical significance indicates 
that a Bonferroni corrected p-value is below the 5% level13.

Preprocessing procedure for microarray data.  To test the effectiveness of the proposed method, we 
consider gene expression profiles of breast cancer (BRCA) cells in a pattern of paired tissues; 17.632 genes have 
been recorded in 75 tumour tissues and in the 75 paired normal tissues. Then the analysis has also been per-
formed by considering 67 kidneys with renal clear cell carcinoma—KIRC—paired with 67 normal tissues. Data 
has been downloaded from The Cancer Genome Atlas (TCGA) database using the TCGA-assembler tool14. 
The expression profiles of duplicated genes have been replaced by their mean expression. Moreover, the expres-
sion of each gene has been normalized using a quantile normalization procedure implemented in R package 
preprocessCore15. Finally, gene expression values were log2-transformed.

Quantitative analysis of GO‑terms.  The performance of the Hy-test has been compared to one of two 
classical methods of differential expression analysis, i.e., moderated t-test4 in combination with fold change 
larger than 2 and significance analysis of microarray5. Both tests are available from the Bioconductor repository 
and are implemented in the packages “limma” and “siggenes”, respectively. According to the three methods, 
genes that turned out to be significant were also compared by exploiting their functional roles with a Gene 
Ontology (GO) enrichment analysis16. We obtained three separate lists of significant GO-terms from the three 
sets of differentially expressed genes. GO-analysis has been done using the topGO package from Bioconductor, 
focusing on biological process terms. Fisher exact p-values have been associated with each GO-term. To identify 
GO-terms (e.g., cell cycle) conceptually associated with a specific cell line (for example, breast cancer), we have 
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defined a novel procedure that counts the PubMed articles related to the biological concepts under exam, for 
example, breast cancer and cell cycle. We assume that more articles related to both concepts indicate a stronger 
conceptual association between them. The automated PubMed search has been carried out using the R package 
RISmed17. The used query considers articles published between January 2000 and December 2020. The prob-
ability of observing nC,T PubMed articles with both keywords “breast cancer” and “cell cycle” is

where N is the number of articles available on PubMed, NC is the number of articles with the keyword “breast 
cancer” and NT is the number of articles with “cell cycle” as keywords. Using a hypergeometric test we have 
associated a p-value of conceptual association with each GO term as

Results
The three methods, i.e. Hy-test, moderated t-test and SAM, have been compared. Venn diagrams reported in 
Fig. 1 clearly show the differences between the outcomes of the three considered methods.

Considering breast (kidney) tissues, the Hy-test identifies 1.304 (2.720) significant genes, whereas both SAM 
and the moderated t-test select many more genes: 7.620 (8.347) and 3.362 (4.192) significant genes, respectively. 
More importantly, panels A (breast cancer) and D (kidney cancer) of Fig. 1 clearly show that the Hy-test mostly 
identifies differentially expressed genes also identified by both the other methods. These results indicate that 
the Hy-test is more conservative than the other two tests. According to a GO-enrichment analysis of the lists 
of differentially expressed genes, 109 (245) significant terms result from the Hy-test gene list, 230 (457) from 
the moderated t-test list, and 66 (162) from the SAM list. The intersections among the detected lists of terms 
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Figure 1.   Venn diagrams of the differentially expressed genes and significant terms found in each of the three 
analysis steps by the three methods: Hy-test, moderated t-test, and SAM. The upper panels (A, B, C) refer to the 
breast tissue and the lower panels (D, E, F) to the kidney. The first column (A and D) refers to the DE analysis, 
the second column (B and E) to the enrichment analysis and the third column (C and F) to the PubMed 
research. Significance is assessed when a Bonferroni corrected p-value is below the 5% level.
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are pictured in Fig. 1B, E. A selection of significant terms with breast (kidney) cancer evaluated by researching 
PubMed papers is reported in Table 1 (Table 2).

The list of all terms is reported in Supplementary Table S1 (Table S2). Just 8 (37) of those terms have been 
found by all the methods, as shown in Fig. 1C, F. It’s worth noticing that SAM analysis provides such a large 
number of differentially expressed genes, more than 5000 in both the applications, that it is reasonable to assume 
the presence of many false positives, while the Hy-test alone or the combined use of Hy-test and moderate t-test 
suggest better recovery of significant terms associated with both types of cancer.

A crucial issue in interpreting results from transcriptomics studies is the bias due to the significantly high 
and increasing number of cancer-related studies with respect to any other disease18. The consequence is that 
almost any gene has been (or will be) associated with cancer. Evaluating the performance of our algorithm by 
measuring its ability to retrieve cancer-related genes might not be sufficient. On the other hand, several differ-
ent perturbations can trigger concerted “expression waves” marking state transitions that could cause global 
transcriptomic changes with common underlying characteristics19. The consequence, in this case, is the reported 
presence of a “generic signature” of differentially expressed genes, i.e. genes that are frequently detected as dif-
ferentially expressed, despite the comparison performed20. Therefore, we evaluated the algorithms by considering 

Table 1.   GO-terms significantly associated with breast cancer among significant GO-terms found using 
Hy-test, moderated t-test and both procedures. Term size is the number of genes that compose a GO-term; 
BR term size is the number of GO-term genes associated with breast cancer; p-value is computed by using the 
hypergeometric distribution.

Sign. GO-term GO ID Analysis Term size BR term size p value

Cell cycle checkpoint signaling GO:0000075 Hy-test 167 34  < 1.11E−16

Mitotic spindle checkpoint signaling GO:0071174 Hy-test 38 14  < 1.11E−16

Regulation of cell cycle GO:0051726 Hy-test 951 134  < 1.11E−16

Regulation of cell cycle process GO:0010564 Hy-test 594 102  < 1.11E−16

Spindle assembly checkpoint signaling GO:0071173 Hy-test 37 15  < 1.11E−16

Cell surface receptor signaling pathway GO:0007166 Mod t-test 2485 643  < 1.11E−16

Cell–cell signaling GO:0007267 Mod t-test 1545 436  < 1.11E−16

Regulation of signal transduction GO:0009966 Mod t-test 2734 619  < 1.11E−16

Regulation of signaling GO:0023051 Mod t-test 3107 719  < 1.11E−16

Signal transduction GO:0007165 Mod t-test 5175 1210  < 1.11E−16

Angiogenesis GO:0001525 Both 493 171  < 1.11E−16

Cell communication GO:0007154 Both 5681 1342  < 1.11E−16

Cell population proliferation GO:0008283 Both 1835 473  < 1.11E−16

Mitotic cell cycle GO:0000278 Both 833 217  < 1.11E−16

Tissue development GO:0009888 Both 1749 483  < 1.11E−16

Table 2.   GO-terms significantly associated with “kidney cancer” among significant GO-terms found using 
Hy-test, t-test and both procedures. Term size is the number of genes that compose a GO-term; KIRC 
term size is the number of GO-term genes associated with kidney cancer; p-value is computed by using the 
hypergeometric distribution.

Sign. GO-term GO ID Analysis Term size KIRC term size p value

Apoptotic process GO:0006915 Hy-test 1761 363  < 1.11E−16

Cell death GO:0008219 Hy-test 1951 396  < 1.11E−16

Programmed cell death GO:0012501 Hy-test 1808 371  < 1.11E−16

Cell differentiation GO:0030154 Mod t-test 3844 1159  < 1.11E−16

Kidney development GO:0001822 Mod t-test 283 115  < 1.11E−16

Kidney epithelium development GO:0072073 Mod t-test 133 61  < 1.11E−16

Regulation of cell differentiation GO:0045595 Mod t-test 1432 459 1.98E−05

Renal system development GO:0072001 Mod t-test 292 118  < 1.11E−16

Antigen processing and presentation GO:0019882 Both 102 54 2.37E−09

Cell killing GO:0001906 Both 173 79 6.80E−15

Immune system development GO:0002520 Both 881 301 6.86E−04

Leukocyte mediated cytotoxicity GO:0001909 Both 117 62 7.01E−09

Lymphocyte proliferation GO:0046651 Both 276 133 4.07E−07

Regulation of signaling GO:0023051 Both 3110 924  < 1.11E−16
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their ability to avoid the selection of the generic signature, not because the genes selected are not related to the 
comparisons we are performing, but by testing which algorithm can retrieve more specific features of the system 
under investigation and not the effect of the generic perturbation. To measure the condition specificity of the 
used tests, i.e., the ability to select differentially expressed genes specifically related to the performed sample’s 
comparisons, we used the DE prior score defined and computed in20. The genes selected with the SAM test show a 
DE prior score cumulative distribution very close to the diagonal, explained by selecting a high number of genes, 
most of which are probably false positive (Supplementary Fig. 1). The DE prior scores of the genes selected as 
differentially expressed in breast cancer tissues with the Hy-test and the moderated t-test are similarly distributed. 
On the other hand, the Hy-test in kidney data analysis selects differentially expressed genes with significantly 
lower DE prior scores. Even though the Hy-test selects a smaller number of differentially expressed genes, its 
focus is not on the genes that appear differentially expressed in any condition of comparison but, at least in these 
examples, on genes more peculiar to the system under investigation.

Correlation structures and spectral analysis.  Besides using statistical techniques to identify differen-
tially expressed genes, it is also important to use statistical charts to detect normalization problems, differential 
expression designation problems, and common analysis errors. For example, as shown in Fig. 2 (Fig. 3) for breast 
(kidney)-cancer data, a simple comparison between the correlation matrices of tissues is constructed by using 
(1) all available genes, (2) the genes selected by the moderate t-test and (3) the ones selected by the Hy-test, 
allows one to perform a quality check on the two analyses of differential expression. Specifically, it is possible to 
observe how the panel of genes selected by the Hy-test can be considered a better filter than the one obtained 

Figure 2.   Correlation structure of breast cancer expression genes. Top-left panel refers to all genes, the top-
right panel refers to the set of genes selected by moderated t-test, and the bottom panel refers to the set of genes 
selected by the Hy-test. ¯̺ is the block average correlation.
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through the moderated t-test since the former amplifies gene expression differences between the two types of 
tissues-healthy (H) and cancer (C) tissues. Furthermore, results reported in Fig. 3 about kidney cancer data 
suggest a misclassification of one (H, C)-pair tissue, namely, TCGA.CW.5591, which corresponds to the straight 
lines of opposite colours in the figure.

Many times genes do not work in isolation, but their “effect” is organised into “eigengene” modes, which one 
can study by performing a Principal Component Analysis (PCA)21. The first component typically reflects the 
batch effect corresponding to the “average expression profile” of genes, whereas minor components may identify 
disease (or any other perturbation) effects22. The dimensionality reduction obtained by considering principal 
components provides relevant insights into the considered selection procedures of differentially expressed genes. 
Using all the genes, the first eigenvector, which explains about 90% of the total variance, also captures the dif-
ferential effect of the two types of paired tissues as a background effect, making it impossible to use it to identify 
the gene-disease association. However, analysing the two reduced sets of genes that we identified through the 
moderated t-test and the Hy-test, we observe that the two effects (background and difference between healthy and 
cancer tissues) are split into the first two principal components. The variance explained by the two components 
together is the same as the one explained by the first component obtained from the whole dataset, i.e., about 90%. 
When looking at the distribution of gene scores projected on the first component (top panels of Supplementary 
Figs. 2a and 3a), we note a peak in the right tail of the distribution, which smooths out if one considers only genes 
selected through the t-test, and eventually disappears if one only focuses on genes selected through the Hy-test 
(batch effect). This evidence suggests using the second principal component (bottom panels of Supplementary 
Figs. 2a and 3a) to obtain more insights into the involvement of the selected genes in the differentiation between 

Figure 3.   Correlation structure of kidney cancer expression genes. Top-left panel refers to all genes, the top-
right panel refers to the set of genes selected by moderated t-test, and the bottom panel refers to the set of genes 
selected by the Hy-test. ¯̺ is the block average correlation.
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the two types of tissue. Remarkably, the second component for the Hy-test selected genes explains about twice the 
variance that the same component for t-test selected genes does. In the Supplementary Material, we report the 
first two eigenvectors (Supplementary Figs. 2a and 3a) and the correlation structures obtained by ordering the 
genes according to the second principal component scores (Supplementary Figs. 2b and 3b). This unsupervised 
procedure can be used in conjunction with ours to visualise high-dimensional space better and investigate the 
structure of several complex systems in biology23.

Robustness analysis.  To evaluate the finite sample properties of our test, we perform a Monte Carlo 
simulation in various scenarios. We assessed the performance of both the Hy-test and moderated t-test in 
terms of power functions (i.e., rejection rate) under the null (a) and alternative (b) hypotheses, respectively. 
Simulations are performed by generating paired vectors (Y1,Y2) of length n ∈ {50, 75} of synthetic expression 
profiles, once log-normally distributed and once power-law distributed. ( Y1 ∼ PL(xmin = 20,α = 3.5) and 
Y2 ∼ PL(xmin = 40,α = 3.5) ) Under the null hypothesis we simulated two independent samples, { Y1 } and { Y2 }, 
such that (1) E[Y2]− E[Y1] = 0 and (2) Var[Y1] = Var[Y2] = 0.25 , whereas under the alternative we con-
sidered (1) E[Y2]− E[Y1] = 1 and (2) Var[Y1] = Var[Y2] = 0.25 . For the latter, we assessed the sensitivity of 
both methods, the Hy-test and moderated t-test, according to three different correlation structures among the 
synthetic paired tissues, i.e., ρ ∈ {0.1, 0.2, 0.4} . For each block of simulations, we performed 250 Monte Carlo 
replicates. Table 3 shows the mean rejection rate after adjusting the p-values with the Bonferroni correction. 
Results of simulations under the null hypothesis of no differential expression block (a) of simulations are not 
shown because both tests were robust in detecting true negatives.

According to the results reported in Table 3, the Hy-test method shows greater robustness than the moderate 
t-test in identifying true positives, even in low correlation and especially with highly leptokurtic distributions, 
such as the power-law distribution.

Discussion
DEA plays a central role in comparative transcriptomic studies, which represent the vast majority of gene expres-
sion analyses. The core action that defines a transcriptomic comparative study is the definition and retrieval of 
differentially expressed genes in different conditions. Working with data generated by a plethora of procedures in 
a very noisy and variable system, such as a biological one, requires one to adopt different approaches to analyse 
a given phenomenon. We provide a biological interpretation of the results obtained by performing a differential 
expression analysis of breast and kidney cancer genes through the moderated t-test and our Hy-test.

In the case of the real breast cancer profiles analysed, both moderated t-test and Hy-test reveal that DE genes 
are enriched in functions involved in tissue development and cell proliferation, as expected24. While the t-test 
approach focuses on signal transduction25–27, the Hy-test highlights a central role in regulating the cell cycle in 
breast cancer, as strongly supported by recent literature28,29.

In detail, the mammary gland is a tissue characterised by a high proliferation rate, and the developmental 
programs are prompt to be subverted to promote cancer progression. In the gland, many cells are extremely 
polarised. When extrinsic or intrinsic factors disrupt the maintenance of this organisation, this disruption may 
act as a promoter of hyperplasia and transformation30. Several studies also suggest that the disruption of the 
typical apical-basal polarity may contribute to the metastatic event31. The deregulation of extracellular matrix 
proteins and signalling is sufficient to promote breast cancer development and progression24. Signal transduction 
has a central role in breast cancer; indeed, breast cancer molecular classification usually follows the presence or 
absence of specific hormone and growth factor receptors25,26 with direct implications in diagnosis, prognosis, 
and therapy. Both tissue development and signal transduction have a central role in breast cancer. However, the 
moderated t-test is not efficient in retrieving the cell-intrinsic cell cycle deregulation GO terms that the Hy-test 
has pinpointed. Indeed, cell cycle deregulation is crucial to breast cancer development and cell cycle control 
machinery targets novel therapeutic strategies, such as CDK4/6 inhibitors28,29.

In the case of kidney cancers, the differences between the Hy-test results and those from the moderated t-test 
are even more apparent. Both approaches retrieve an enrichment in cell signalling, particularly in the contest 
of the immunological microenvironment32,33, and the t-test only finds the involvement of functions related to 

Table 3.   Results of simulation block (b), where two vectors of paired synthetic expression profiles (Y1, Y2) , 
have to satisfy (1) E[Y2]− E[Y1] = 1 and (2) Var[Y1] = Var[Y2] = 0.25. Average rejection rates after 250 
Monte Carlo replicates is reported for two different sample sizes, i.e., n ∈ {50, 75} , and distributions (log-
normal and power-law), after adjusting the p-values with the Bonferroni correction.

Cor(Y1,Y2) = 0.1 Cor(Y1,Y2) = 0.2 Cor(Y1,Y2) = 0.4

Log-normal Power-law Log-normal Power-law Log-normal Power-law

n = 50

Hy-test 0.89 0.94 0.94 0.97 1.00 0.99

Mod t-test 0.85 0.70 0.96 0.88 1.00 0.98

n = 75

Hy-test 1.00 1.00 1.00 1.00 1.00 1.00

Mod t-test 0.90 0.76 0.98 0.93 1.00 1.00
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kidney development34. However, Hy-test only points to “programmed cell death” , which is a central mechanism 
in kidney cancer, targeted by some therapeutic approaches to the disease33.

In detail, it is known that the reshaping of the metabolism is one of the key steps that kidney tumour cells 
must undergo during cancer progression. This metabolic reshape strongly relies on the cross-talk between can-
cer cells and the tumour microenvironment35. In particular, the inflammatory microenvironment is involved in 
developing of both pre-neoplastic alterations and kidney cancer36. To further support our findings, we can also 
mention that, for patients with renal clear cell carcinoma, a model has been proposed based on a few immune-
related genes that can predict the prognosis based on tumour immune microenvironments37. Considering that the 
programmed cell death subversion plays a central role in kidney cancer development, it is intriguing to ascertain 
that only the Hy-test leads to retrieving this GO term from the enrichment analysis, strongly suggesting that a 
dual approach using both the Hy-test and moderated t-test can be even more suitable than single methods alone 
to investigate the biological meaning of a DEA on real data.

Conclusions
Hy-test can be adopted alone or jointly with other existing DEA tests to identify differentially expressed genes 
in a very conservative way, as confirmed by the analyses of real data of breast and kidney cancers reported in 
this paper. Such robust information would remain otherwise hidden within the extremely large number of genes 
identified by standard DEA tests as differentially expressed, likely including many false positives. According to 
our results, the moderated t-test increases substantially the number of significant genes retrieved from DEA 
with respect to the Hy-test, broadening the differential gene ontology enrichment. Consequently, the Hy-test is 
more selective than moderated t-test in both retrieving DE genes and relevant terms of GO. On the other end, 
the SAM test detects even more statistically significant genes than the moderated t-test, leading to apparent 
issues in identifying of enriched GO terms. To evaluate the performance of the analysed DEA tests in detect-
ing cancer-related genes, we have focused on the enriched ontology terms validated through the automated 
PubMed-search procedure described in the “Methods”section. In this way, we can focus our attention only on 
terms with a widely established involvement in cancer diseases. The excluded terms might also carry important 
cancer information, but their analysis goes beyond the purpose of the present performance evaluation. Hy-test 
is not only able to narrow the window of selected genes but focusing the functional analysis. It can also retrieve 
specific terms of GO that would be otherwise missing. This is particularly evident in the breast cancer dataset, 
where the moderated t-test also collects the vast majority of DE genes retrieved by the Hy-test. However, the 
enrichment analysis shows only a moderate overlapping, strongly suggesting that Hy-test can retrieve a different 
set of genes that points to functions of biological relevance that would be otherwise missed. This is also true to 
a lower extent for the kidney dataset.

Data availability
Our source codes and data are available for downloading in the GitHub repository (https://​github.​com/​gianl​
uca-​sotti​le/A-​Novel-​Stati​stical-​Test-​For-​Diffe​renti​al-​Expre​ssion-​Analy​sis).
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