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Abstract 

The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would 

transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative 
magnetic resonance imaging (MRI) data into a biophysical model to predict patient-specific treatment response of locally advanced 

breast cancer to neoadjuvant therapy. Diffusion-weighted and dynamic contrast-enhanced MRI data is collected prior to therapy, after 
1 cycle of therapy, and at the completion of the first therapeutic regimen. The model is initialized and calibrated with the first 2 patient- 
specific MRI data sets to predict response at the third, which is then compared to patient outcomes (N = 18). The model’s predictions 
for total cellularity, total volume, and the longest axis at the completion of the regimen are significant within expected measurement 
precision ( P < 0.05) and strongly correlated with measured response ( P < 0.01). Further, we use the model to investigate, in silico , 
a range of (practical) alternative treatment plans to achieve the greatest possible tumor control for each individual in a subgroup 

of patients (N = 13). The model identifies alternative dosing strategies predicted to achieve greater tumor control compared to the 
standard of care for 12 of 13 patients ( P < 0.01). In summary, a predictive, mechanism-based mathematical model has demonstrated 

the ability to identify alternative treatment regimens that are forecasted to outperform the therapeutic regimens the patients clinically. 
This has important implications for clinical trial design with the opportunity to alter oncology care in the future. 
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Introduction 

It is well-known that neoadjuvant therapy (NAT) in the standard-of-care
setting is not optimized for each breast cancer patient. Currently, therapeutic
regimens are based on receptor status, tumor grade, body surface area, and
genetic markers (each with known shortcomings [1–7] ), rather than spatially-
resolved physiological characteristics describing tumor features specific to the
individual. While treatment plans may be altered due to lack of response,
significant side-effects, or when considering the quality of life for the patient,
this is implemented in an ad hoc manner. As there is no mathematical theory
in place to guide such decisions, we are left with trial and error. Moreover, with
our current clinical trial system, it is impossible to experimentally evaluate
all the possible combinations, timings, orderings, and dosing strategies for
unique subsets within a cancer population, let alone for an individual patient.
Therefore, we (and others; [8–20] ) propose that using mathematical models
designed to predict tumor response in individual patients can also be used
to determine individually-optimized therapeutic regimens based on each
patient’s unique tumor characteristics. 

One approach to individualizing mathematical models is to leverage
physiological information (acquired in 3D and at multiple time points)
from noninvasive imaging data to initialize and constrain model parameters,
thereby enabling patient-specific predictions [13] . Imaging-informed,
biologically-derived mathematical models have been shown to provide
accurate predictions for tumor development in the kidney [8] , brain [14–
16] , lung [17 , 18] , and pancreas [19 , 20] . Our own efforts in breast cancer
[21–24] employ diffusion-weighted magnetic resonance imaging (DW-
MRI) data to estimate tumor cellularity, mechanical-coupling of the breast
tissue properties with tumor growth based on each individual patient’s
anatomy, and estimates of drug delivery to each voxel via dynamic contrast-
enhanced (DCE-) MRI [25] . In the present work, we extend our efforts
by incorporating a mathematical description of the decay and efficacy of
chemotherapies (calibrated from each patient’s data set). We evaluate the
model’s predictive ability and then, for a subgroup of patients, identify
alternative—individualized—dosing strategies predicted to outperform the
therapeutic regimen each patient received as standard-of-care. Furthermore,
the requisite imaging data is acquired at community-based radiology centers
(i.e., not research-oriented academic medical centers) using widely available
hardware [20] . By developing our approach in such facilities—where the
majority (85%, [26] ) of oncology patients receive their care—we dramatically
increase the population these technologies may serve in the future. 

Data and methods 

Patient population 

Quantitative MRI data was acquired in a cohort of 21 patients diagnosed
with intermediate to high grade invasive breast cancers, who were eligible for
NAT as a component of their clinical care. The patient data was collected in
an institutional review board-approved and HIPAA-compliant study where
patients provided informed consent to participate in a longitudinal MRI
study throughout the course of their standard-of-care NAT. All participants
received their care and imaging in community care settings (i.e., not
academic, research-oriented medical centers). Table 1 summarizes the key
clinical features of the patient population. 

For the majority of the patients, NAT consisted of 2 regimens; for
example, patient 1 received doxorubicin and cyclophosphamide (regimen
1), followed by paclitaxel (regimen 2). MRI data were acquired at 4 times
throughout NAT: (1) prior to therapy, (2) after 1 cycle of the first therapeutic
regimen, (3) at the completion of the first therapeutic regimen, and (4) after
1 cycle of the second therapeutic regimen. For this study, we utilize the first
3 data sets summarizing the first regimen. NAT regimens include cycles of
doxorubicin and cyclophosphamide approximately every 2 weeks for 4 cycles,
aclitaxel (with or without carboplatin and/or targeted therapies) weekly for
 weeks for 4 cycles (12 total doses), and docetaxel (with carboplatin and
argeted therapies) every 3 weeks for 6 cycles. There were some variations
n regimens indicated by the treating physician, as is commonly done in the
tandard-of-care setting (variations reported in Table 1 ). Note that 14 patients
eceived only cytotoxic therapies for their first NAT regimen, which we
efer to as the “chemo” group; while 7 patients received additional therapies
targeted or immunotherapies), which we refer to as the “chemo + ” group. 

RI data acquisition 

MRI was performed at 2 community imaging facilities. The MRI
echnologists at each site were directly involved and responsible for
ositioning the patients and deploying the research imaging protocols. 
hus, the image acquisition protocol is designed for practical use for

outine imaging using widely available hardware and expertise. Note that
he repeatability and reproducibility of quantitative MRI at these centers was
reviously established [27 , 28] . 

Five MRI data types were acquired at each scan session: (1) a precontrast
 1 map, (2) a precontrast, B 1 field map to correct for radiofrequency (RF)

nhomogeneity [27 , 29] , (3) DW-MRI data, (4) high-temporal resolution,
 1 -weighted DCE-MRI data before, during, and after the injection of
 gadolinium-based contrast agent (Gadovist, Bayer, Ontario, Canada, or 
ultihance, Bracco Diagnostics, New Jersey, USA), and (5) a high-resolution,
 1 -weighted anatomical scan (post contrast). The Supplemental Materials 
rovide a detailed summary of the acquisition parameters for each of these
easurements. 

ata analysis 

We briefly summarize our data-processing methods (see Supplemental 
aterials for details). The first step consists of intrascan registration of

he MRI data within each scan session to correct for motion via rigid
egistration. Tumor regions of interest (ROIs) are then identified based
n postcontrast scans, and then estimations of tissue properties related to
erfusion-permeability of the vasculature are quantified by analyzing the 
CE-MRI data with the standard Kety-Tofts model [30] . The DW-MRI

ata is analyzed to return maps of the apparent diffusion coefficient ( ADC ) of
ater. The third step is the interscan registration that aligns the images and

alculated maps across all of the patient’s imaging sessions into a common
omain. The final step calculates the specific quantities to be used within the
athematical model. These quantities include approximating the number 

f tumor cells from the voxel-based ADC values [24 , 31 , 32] and segmenting
he fibroglandular and adipose tissues (based on enhancement in the DCE-

RI data). To approximate the drug distribution in each voxel of tissue, a
ormalized map of the blood volume is calculated and then scaled by the
eak concentration of drug (as estimated from the Kety-Tofts model [25] ;
ee Supplemental Materials) to define the initial drug distribution throughout
he domain at the time of each dose of therapy. 

The volume and longest axis of the tumors from each patient’s scans
re automatically calculated on the interscan registered images, and the
esponse evaluation criteria in solid tumors (RECIST; [33] ) is used to assign
he response of each patient. We note that we implement this process of
mage segmentation and longest diameter calculation to make the RECIST
valuation as rigorous as possible so as not to place it at a systematic
isadvantage for the comparisons to the mathematical modeling. We note
hat when computing the longest axis of a tumor, we only consider the central,
ulk tumor and disregard smaller, disconnected sections. Using the RECIST
valuation, responders were patients with a complete or partial response (CR
nd PR, respectively), and nonresponders were patients with stable disease or
rogressive disease (SD and PD, respectively) comparing tumor burdens in
cans 1 and 3. 
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Table 1 

Clinicopathologic characteristics of the patient cohort. 

Patient Age BMI Ethnicity Tumor Type Receptor 

Status 

(ER , PR , HER2) 

Therapy 

From Scan 1 

to 3 

RECIST by 

Scan 2 

RECIST by 

Scan 3 

1 74 18.18 Hispanic IDC ( −, −, −) DC − −
2 25 22.46 Hispanic IDC ( −, −, −) DC SD SD 

3 42 24.80 Hispanic IDC ( + , −, −) DC SD SD 

4 47 24.80 Asian IDC ( + , −, −) DC SD CR 

5 54 24.36 Caucasian ILC ( + , + , −) DC PD SD 

6 59 28.30 Caucasian IDC ( −, −, −) PC + I SD SD 

7 63 18.95 Caucasian IDC ( + , + , −) DC − −
8 27 18.79 Caucasian IDC ( + , + , −) DC SD PR 

9 32 35.8 Asian IDC ( + , + , + ) DC 

∗ + T SD SD 

10 52 21.10 Caucasian IDC ( −, −, −) PC SD PR 

11 38 27.50 Caucasian IDC ( −, −, −) PC SD PR 

12 38 31.40 Caucasian IDC ( −, −, −) PC + I PR PD 

13 62 39.32 Caucasian IDC ( −, −, −) DC SD SD 

14 38 36.18 African 

American 

IDC ( + , + , + ) DC 

∗ + T PR PR 

15 42 29.95 Caucasian IDC ( + , + , −) DC SD SD 

16 53 33.94 Caucasian IDC ( + , + , −) DC SD −
17 58 31.60 Caucasian IDC ( −, −, −) PC + I PR PR 

18 48 16.90 Caucasian IDC ( + , + , −) DC SD PR 

19 54 26.62 Caucasian IDC ( + , + , −) DC SD SD 

20 41 24.21 Hispanic IDC ( + , + , + ) DC PD PR 

21 26 29.26 Hispanic IDC ( −, + , + ) DC SD SD 

Bolded labels denote changes in the RECIST category from the scan 1 to scan 2 evaluation to the scan 1 to scan 3 evaluation. Patients 6, 9, and 14 did 

not receive a second regimen; therefore, for patients 6 and 9, scans 2–4 were acquired after the first through third cycles, respectively, and for patient 

14, scan 2 was acquired after the first cycle, scan 3 after the fourth, and scan 4 after the fifth. Three patients (6, 12, and 17) received either the active 

pembrolizumab drug or the placebo in addition to chemotherapy (NCT03036488). Bolded patients are chemo subgroup patients used for the in silico 

therapy regimen study. 

BMI = body mass index; CR = complete response; DC = doxorubicin and cyclophosphamide; DC 

∗ = docetaxel and carboplatin; ER = estrogen receptor; 

HER2 = human epidermal growth factor receptor 2; + I = immunotherapy regimen (pembrolizumab or placebo); IDC = invasive ductal carcinoma; 

ILC = invasive lobular carcinoma; P = paclitaxel; PC = paclitaxel and carboplatin; PD = progressive disease; PR = progesterone receptor; PR = partial 

response (RECIST); + T = targeted therapies trastuzumab and pertuzumab; SD = stable disease. 
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Mathematical model 

We have previously developed a 3D mathematical model that includes the
mechanical coupling of tissue properties to tumor growth and the delivery of
therapy [25] . This model was designed to be initialized with patient-specific,
quantitative, MRI data to predict therapy response. The current work extends
this approach to account for multiple chemotherapy regimens. The governing
equation for the spatiotemporal evolution of tumor cells ( N TC ) is: 

∂ N T C ( ̄x , t ) 
∂t 

= 

dif fusion 
︷ ︸︸ ︷ 

∇ · (D( ̄x , t ) ∇ N T C ( ̄x , t )) + 

growth 
︷ ︸︸ ︷ 

k( ̄x )(1 −N T C ( ̄x , t ) /θ ) N T C ( ̄x , t ) 

−
therapy 

︷ ︸︸ ︷ 

C d rug ( ̄x , t ) N T C ( ̄x , t ) (1)

where the first term on the right-hand side describes tumor cell movement
(diffusion, D ), the second term describes the logistic growth of the cells with
carrying capacity θ and proliferation rate k per voxel, and the third term
describes the effect of chemotherapy where C drug ( ̄x , t) is the concentration
of the drugs in the tissue (please see the Supplemental Materials for
additional modeling details). The first term on the right-hand side of
Eq. (1) , representing the random diffusion (movement) of the tumor cells
( D ( ̄x , t) ), is mechanically linked to the breast tissue’s material properties
via the von Mises stress. Additionally, we enforce equilibrium between the
tumor and its environment dependent upon changes in tumor cell number
[9 , 21–23 , 34–38] . Therefore, the diffusion term encompasses tumor changes
(growth or response to therapy) that can cause deformations in the
urrounding healthy tissues (fibroglandular and adipose tissues), potentially 
ncreasing stress and therefore reducing the outward expansion of the tumor. 
he carrying capacity is defined as the maximum number of tumors cells that

an physically fit within a voxel, while the proliferation rate is calibrated per
oxel for each individual patient. 

The therapy term describes the spatiotemporal distribution of each drug 
n the tissue and its effect on the cells of each voxel. Here we expand the model
from [25] ) to acknowledge their differing efficacies and decay rates using the
ollowing equation: 

C d rug ( ̄x , t ) = 

chemotherapy 1 
︷ ︸︸ ︷ 

α1 C d ru g 1 ( ̄x , t 
∗) exp (−β1 t ) + 

chemotherapy 2 
︷ ︸︸ ︷ 

α2 C d ru g 2 ( ̄x , t 
∗) exp (−β2 t ) 

(2) 

here αi is the efficacy of each drug, C dru g i ( ̄x , t 
∗) is the initial concentration 

f each drug for each dose with t ∗ being time relative to the patient scan
ata (described in more detail below), and the exponential decay terms 
 exp(−βi t) ) represent the eventual washout of the drug over time after each
ose. The αi and βi parameters are calibrated for each patient and each drug, 
here the βi calibration is restricted using bounds defined from ranges in the 

iterature for the terminal elimination half-lives of each drug [39–44] . The 
nitial concentration of drug, C dru g i ( ̄x , t 

∗) , is approximated using the DCE- 
RI data as described above in Section 2.3 (see Supplemental materials). This 

oncentration is dependent on the time t ∗, indicating that for the calibration 
f the model the drug distribution map may be derived from scan 1, but
n updated drug distribution map from scan 2 is provided to the model to
redict the tumor at the time of scan 3. Thus, the concentration of drug in
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Figure 1. Graphical depiction of the integration of breast MRI data with the mathematical model for predicting tumor response and simulating alternative 
treatment regimens. The data from MRI scans obtained before and after one cycle of the first NAT regimen, are used to generate spatially resolved maps of 
tumor cell number and drug delivery (panels a and b, respectively). The model parameters are then calibrated using this early NAT imaging data (panel c), and 
the model is run forward to the time of the patient’s third scan (panel d). The model’s predictions of total cellularity, total volume, and longest axis measures are 
then directly compared to each patient’s actual tumor outcome as determined by their scan 3 data. The model’s predictions were also compared to the RECIST 

designations to determine accuracy in the context of clinical measures. Using the patient-specific model parameters (panel c), alternative therapy regimens 
adjusting the frequency and dosage of treatments (“Tx i ”, panel e) are evaluated using the model’s predictions from scan 2 to 3 for each of these regimens to 
determine an optimal treatment schedule for each patient (panel f ). 
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the tumor tissue is spatially nonuniform and temporally varying based on the
individual patient’s response to therapy and NAT schedule. 

Model parametrization and evaluation of predictive ability 

Our approach uses the first 2 MRI data sets for each patient to calibrate
the mathematical model and the third MRI data set to evaluate the ability of
the mathematical model to predict tumor response to therapy. Specifically,
we use the cellularity maps of each tumor from before and after the first
cycle of NAT (scans 1 and 2, respectively) to calibrate model parameters
( D 0, α, and β parameters are global; k is spatially determined). Using these
calibrated, patient-specific parameters, the model is reinitialized with the
tumor cellularity, tissue, and drug distribution maps from scan 2 and run
forward to the time of scan 3 to predict tumor response. See Figure 1 for a
graphical depiction of this strategy and the Supplemental materials for details
on the numerical implementation. 

The predictive ability of the model is evaluated by comparing 3 measures
quantifying tumor response: total tumor cellularity, tumor volume, and
longest axis of the tumor. Using these measures, 3 evaluations are made
o assess the model’s predictive ability. First, the error between the model’s
redictions and the patient’s actual tumor values (as determined from
heir corresponding third scan) are calculated for the 3 measures, as is
he significance of the model’s predictive accuracy. Second, total cellularity,
olume, and longest axis are evaluated across the cohort to determine the
evel of agreement between the model’s predictions and the measured values
rom the data as a group. Third, the predicted percent change in the 3 tumor
easures from scan 1 to scan 3 are compared between the 2 RECIST defined

esponder groups. 

imulating modified therapeutic regimens for the individual patient 

Alternative regimens are proposed for the group of patients for which the
odel’s predictions have the greatest correlation with observation (chemo 

roup). The alternative regimens proposed use the same total dose that each
ndividual patient received during their NAT regimen from scan 2 to scan
, but the alternative regimens vary in the individual doses and frequency
etween their second and third scans. More specifically, we simulate the effects
f alternative regimens that consist of doses that were one-half, one-third,
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Figure 2. Example results for the predicted response to NAT regimens for 1 patient (patient 4) whose standard-of-care regimen consisted of combination 
doxorubicin and cyclophosphamide every 3 weeks for 12 weeks (4 total cycles). The figure depicts anatomical images of a central slice of the breast overlaid 
with the total tumor cellularity in color. While there is not an exact match between the patient’s actual scan 3 data (panel a) and the prediction for the standard 
regimen (i.e., the standard-of-care regimen the patient actually received, panel b), the percent differences between the predicted and measured tumor response 
for the standard-of-care regimen are 1%, 16%, and 1% for total cellularity, volume, and longest axis. The total cellularity predicted for 2 alternative regimens 
are also depicted: 1/3 of a dose every week (panel c), and 1/21 of a dose administered daily (panel d). (Note: each alternative regimen had the same total drug 
over the treatment period as the standard-of-care regimen). Across all the regimens, the model predicted the greatest tumor cell reduction when the daily dose 
regimen was implemented. Compared to the standard-of-care regimen, the model predicted that the daily dose regimen would result in an additional 45% 

reduction in total tumor cellularity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Absolute percent errors of model predictions for scan 3 compared 

to actual measures derived from each patient’s MR images. Note 1 

patient had no detectable tumor in their scan 3 (N = 17, patient 4 had 

0 tumor measured by the time of scan 3). 

Total cellularity Total volume Longest axis 

Median 28 29 14 

Quartile range [8, 95] [13, 97] [2, 24] 
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or one-fourth of the dose the patients were administered but given 2 ×, 3
×, or 4 ×, respectively, as frequently as what the patients received. We also
investigated a daily dose fraction. For example, if a patient who received their
chemotherapies every 2 weeks, the alternative regimens will be a one-half dose
every week, a one-third dose every 4 to 5 days, a one-fourth dose every 3 to
4 days, and a one-fourteenth dose every day. 

We run the model forward from scan 2 to the time of scan 3 with
each patient’s previously calibrated parameters and the alternative regimens
implemented to evaluate the differences in tumor response across all regimens
(see Figure 1 ). The model simulation serves as an in silico twin [45] for
each patient to determine therapy response for an alternate regimen. This
allows us to identify individualized, alternative therapeutic regimens that we
hypothesize can lead to greater tumor control when compared to the “one-
size-fits-all” approach that is the current standard. 

Statistical analysis 

To summarize the model’s predictive performance, the absolute percent
differences between the measured tumor response from the third scan data
and the corresponding predicted values from the model are calculated for
each patient (median and quartile ranges reported). We test the accuracy of
the patient-specific predictions for total cellularity, volume, and longest axis
by generating a Monte Carlo estimated P value [46] (please see Supplemental
materials) to determine the significance of 10%, 15%, or 20% absolute
differences between model predictions and measured outcomes (The 10%–
20% range corresponds to measurement precision [27 , 28] .). Due to the
modest sample size, it is challenging to accurately evaluate the normality
of the data. Thus, we calculate Kendall correlation coefficients (KCC) to
determine agreement between the model-predicted tumor response and the
observed values at the time of scan 3 across the cohort. However, to enable
omparison to previous [25] and future efforts with larger data sets, we 
lso report the concordance and Pearson correlation coefficients (CCC and 
CC, respectively). The 2-sided Wilcoxon rank sum test is used to determine 
ignificant differences in the medians of the percent change from scan 1 to
can 3 between the responder versus nonresponder groups with P < 0.05 
onsidered significant. 

To determine which therapeutic regimen yields the greatest tumor 
ontrol for each patient, we calculate the percent change from initiation 
f the alternate regimen (scan 2) to the predicted tumor at the time
f scan 3. Comparing these percent changes across regimens for each 
atient, we determine the “optimal” regimen based on the greatest tumor 
eduction/control. We then calculate the difference between the percent 
hanges of the standard regimen and the optimal regimen to determine 
he additional percent tumor reduction potentially achieved if the alternate 
egimen had been administered. Median and quartile ranges are reported 
or these values. Using the paired, 2-sided Wilcoxon signed rank test, we 
etermine if there is a significant difference between the tumor control 
chieved by the group of standard regimens compared to the group of 
lternative regimens by comparing the percent reduction from scan 2 to scan 



Neoplasia Vol. 22, No. xxx 2020 Evaluating patient-specific neoadjuvant regimens for breast cancer A.M. Jarrett et al. 825 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ta
b

le
 
3
 

M
e
a
s
u

re
d
 
a
n

d
 
m

o
d

e
l 

p
re

d
ic

te
d
 
p

e
rc

e
n

t 
c
h

a
n

g
e
s
 
fr

o
m

 
b

a
s
e
li
n

e
 
(s

c
a

n
 
1
) 

to
 
th

e
 
c
o

m
p

le
ti

o
n
 
o

f 
th

e
 
fi

rs
t 

N
A

T
 
re

g
im

e
n
 
(s

c
a

n
 
3
) 

fo
r 

re
s
p

o
n

d
e
r 

a
n

d
 
n

o
n

re
s
p

o
n

d
e
r 

g
ro

u
p

s
 
(N

 
= 

8
 
a
n

d
 

N
 
= 

1
0
, 
re

s
p

e
c
ti

v
e
ly

).
 

To
ta

l 
C

e
ll
u

la
ri

ty
 

To
ta

l 
V

o
lu

m
e
 

L
o

n
g

e
s
t 

A
x
is
 

R
e
s
p

o
n

d
e
rs

 
N

o
n

re
s
p

o
n

d
e
rs

 
R

e
s
p

o
n

d
e
rs

 
N

o
n

re
s
p

o
n

d
e
rs

 
R

e
s
p

o
n

d
e
rs

 
N

o
n

re
s
p

o
n

d
e
rs

 

M
e
a
s
u

re
d
 
ch

a
n

g
e
s
 

M
e
d

ia
n
 

−8
0
 

−5
0
 
( −

6
2
) 

−7
9
 

−6
0
 
( −

6
3
) 

−4
2
 

−1
2
 
( −

1
3
) 

Q
u

a
rt

il
e
 
ra

n
g

e
 

[ −
8
5
 
( −

8
8
),
 
−5

6
 
( −

6
3
)]
 

[ −
7
1
 
( −

7
5
),
 
−1

1
 
( −

1
3
)]
 

[ −
8
6
 
( −

9
0
),
 
−6

3
 
( −

6
8
)]
 

[ −
6
9
 
( −

7
4
),
 
−2

2
 
( −

1
8
)]
 

[ −
6
0
 
( −

6
4
),
 
−3

7
 
( −

3
6
)]
 

[ −
2
2
 
( −

2
3
),
 
−2

 
( −

5
)]
 

P
re

d
ic

te
d
 
ch

a
n

g
e
s
 

M
e
d

ia
n
 

−6
9
 

2
2
 
( −

5
) 

−6
5
 

−3
5
 
( −

2
9
) 

−3
0
 
( −

2
4
) 

−1
0
 
( −

6
) 

Q
u

a
rt

il
e
 
ra

n
g

e
 

[ −
8
1
 
( −

8
2
),
 
−5

5
] 

[ −
7
0
 
( −

6
3
),
 
5
 
(1

0
)]
 

[ −
8
1
 
( −

8
0
),
 
−4

9
 
( −

5
0
)]
 

[ −
6
6
 
( −

6
1
),
 
−2

0
] 

[ −
5
3
 
( −

3
7
),
 
−1

7
 
( −

1
5
)]
 

[ −
1
5
 
( −

11
),
 
1
] 

N
o

te
 
th

a
t 

a
 
p

o
s
it

iv
e
 
p

e
rc

e
n

t 
ch

a
n

g
e
 
in

d
ic

a
te

s
 
tu

m
o

r 
re

g
ro

w
th

 
fr

o
m

 
th

e
 
b

a
s
e

li
n

e
. 

W
e
 
h

a
v

e
 
n

o
te

d
 
in
 
p

a
re

n
th

e
s
e

s
 
a

n
y
 
d

if
fe

ri
n

g
 
v

a
lu

e
s
 
fo

r 
th

e
 
ch

e
m

o
 
s
u

b
g

ro
u

p
 
(N

 
= 

6
 
a

n
d
 
N
 
= 

7
 
fo

r 
re

s
p

o
n

d
e
rs

 

a
n

d
 
n

o
n

re
s
p

o
n

d
e
rs

, 
re

s
p

e
c
ti

v
e

ly
. 
3 as well as the total tumor burden predicted at the time of scan 3 between
the 2 groups. 

Results 

Three patients are excluded from the analysis. For patient 1, the tumor was
invading the chest wall, which violates our assumption of a no-flux boundary
condition employed in the numerical implementation (see Supplemental
materials). For patient 7, a silicon breast implant caused significant artifacts
in the DW-MRI data. For patient 16, the third scan was not collected due
to patient scheduling conflicts. Excluding these 3 data sets reduces the total
analyzed cohort to N = 18 and the chemo subgroup to N = 13. 

Figure 2 presents a comparison of the predicted and experimentally
measured cellularity maps for a representative patient when the calibrated
model is run forward to the time of scan 3 utilizing scan 1 and 2 information.
The number of tumor cells predicted by the model are overlaid (in color) on
a grayscale anatomical image of the breast. While areas of higher and lower
cellularity may not directly match between the prediction and observation,
the model is able to capture the general shape of an individual tumor, and
there are small errors between the predicted and measured values for the
patient’s scan (listed in the figure caption). Table 2 summarizes the results
for the absolute percent error in all 3 tumor measures (i.e., total cellularity,
total volume, and longest axis) compared to the measured values from
each patient’s third scan. Figure 3 depicts distributions of the Monte Carlo
generated sample averages for determining the significance of the model’s
prediction accuracy for 10%, 15%, and 20% absolute difference between
model predictions and measured outcomes. For the cohort (N = 18), the
model’s prediction for longest axis is significant for all 3 thresholds ( P <

0.05). The total cellularity and volume measures trend toward significance
for the 10% and 15% thresholds (i.e., P < 0.1), and achieve P values < 0.05
for the 20% threshold. 

Figure 4 presents scatter plots comparing the predicted tumor response
to the actual tumor response. Across all 3 measures, the model’s predictions
strongly correlate with actual tumor response; in particular, we find for
cellularity CCC/PCC = 0.91/0.92, for volume CCC/PCC = 0.90/0.90, and
for the longest axis CCC/PCC = 0.86/0.88 across the whole cohort ( P <

0.01). Considering the KCC measure, the predictions are correlated with
actual tumor response for these tumor measures: KCC = 0.59, 0.65, 0.76
for total cellularity, total volume, and longest axis, respectively ( P < 0.01).
Note that for all 3 tumor measures, there is greater correlation for the chemo
subgroup compared to the chemo + . In particular, the chemo subgroup has
greater CCs values than the cohort as a whole where for cellularity we find
CCC/PCC = 0.92/0.94, for volume CCC/PCC = 0.90/0.91, and for the
longest axis CCC/PCC = 0.92/0.96 ( P < 0.01). For the KCC measures,
the predictions are strongly correlated with actual tumor response for these
tumor measures: KCC = 0.72, 0.77, 0.85 for total cellularity, total volume,
and longest axis, respectively ( P < 0.01). 

The model’s predictions are also compared against the tumor response
status determined by RECIST at the end of the NAT regimen. Applying
RECIST to each tumor from scan 1 to scan 3 results in 8 patients labeled as
responders and 10 patients as nonresponders (see Table 1 ). See Supplemental
Table S.4 for the measured percent changes in longest axis for each of the
patients (as well as percent change for total cellularity and volume) from
scan 1 to scans 2 and 3. Evaluating the observed percent changes from scan
1 to scan 3, percent change in each of the 3 tumor measures results in
significantly different medians between responder and nonresponder groups
in total cellularity ( P < 0.05), total volume ( P < 0.04), and longest axis ( P
< 0.001). In comparison, the model predicts a significant median percent
change between responders and nonresponders for the longest axis ( P <

0.002), while for total cellularity and total volume, P = 0.08. See Table 3
for median and quartile ranges for measured and predicted percent change
in all 3 measures. Note that comparing responder and nonresponder values
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Figure 3. Distributions of sample averages between predicted and measured outcomes (i.e., total cellularity, volume, and longest axis) generated with a Monte 
Carlo resampling (N = 500 for each distribution) across the patient cohort. (See Supplemental Material for details on the construction of these plots.) Each 
panel depicts the distribution of the randomly sampled differences between each predicted and measured outcome. The red vertical lines indicate the mean 
difference for the cohort. (Note that the red lines do not represent mean of the sampled distributions and, therefore, are not in the center of the distributions.) 
For example, panel a presents the sample mean differences between the predicted and measured total cellularity assuming a 10% absolute difference between 
predicted and measured total cellularity. Panels b and c display similar data for volume and longest dimension, respectively. Panels d–f correspond to panels 
a–c, but assuming a 15% absolute difference between predicted and measured total cellularity, volume, and longest axis, respectively. Panels g-i also correspond 
to panels a–c but assume a 20% absolute difference between predicted and measured total cellularity, volume, and longest axis, respectively. 
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for the chemo subgroup (N = 6 and N = 7, respectively), the model predicts
significantly different median changes for all 3 tumor measures ( P < 0.04
for total cellularity and volume, P < 0.01 for longest axis). Model predicted
percent changes for this subgroup are also noted in Table 3 . 

As the model’s predictions show the greatest correlation with the chemo
subgroup, an in silico study of alternative regimens is performed for this
patient subset (see Table 1 , N = 13)—we return to this important choice in
the Discussion. Using each patient’s parameters calibrated from scans 1 and
2, the model is simulated from scan 2 to the time of scan 3 to determine
if greater or lesser control/reduction in the tumor burden can be achieved
with the proposed hypothetical alternative therapy schedules (i.e., one-half,
one-third, one-fourth and a daily dose fraction, given 2 ×, 3 ×, 4 × as
frequently as the standard dose, and daily, respectively). For the 2 measures
pertaining to the size of the tumor (volume and longest axis), comparing
their percent change from scan 2 to scan 3 for the standard regimen to
that of the alternative regimens tested results in a median difference of
8% for the total volume, and < 1% for the longest axis. However, the
differences between the standard and the alternative regimens that achieved
the greatest reduction in total cellularity per individual patient range from
% to 46% with a median difference of 17% (quartile range [6%, 35%]).
he positive differences represent the additional percent reduction/control 

hat could have been achieved if the patient received the alternative regimen. 
he 0% instance is the 1 patient where the standard regimen was optimal

mongst all those tested; however, all other patients had additional percent 
eductions in total cellularity when comparing between the standard and 
est alternative regimens. Figure 5 summarizes the predicted percent change 
rom initiation of the alternate regimen (scan 2) to the completion of the
herapy (scan 3), as well as a heat map illustrating the differences in the
lternative regimens compared to the standard-of-care regimen each patient 
eceived. When compared to the standard regimens, the model predicted 
ptimal regimens yield a significantly greater reduction in the total tumor cell 
umber from scan 2 to scan 3 ( P < 0.001), as well as for the total number of
umor cells predicted at the time of scan 3 ( P < 0.001). Notice that no single
egimen is the most effective across all patients; the daily dosing regimens 
as best for 4 patients, while the quarter, third, half, and standard regimens
ere best for 2, 2, 4, and 1 patient, respectively. Figure 2 presents examples
f the resulting changes in total cellularity for 2 alternative regimens for 
 patient. 
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Figure 4. Scatter plots comparing the model predictions to the actual measurements of scan 3 for each patient (N = 18) along with the corresponding KCCs 
per group (see CCCs and PCCs in the text). The dashed line indicates the 45 o line of unity. Note that for all 3 tumor response measures, there is greater 
correlation for the chemo subgroup compared to the chemo + (i.e., patients that received chemotherapy plus targeted therapy or immunotherapy). Panel (a) 
depicts the comparison between the predicted total cell number to the measured total cell number as estimated from the DW-MRI data. Panel (b) depicts the 
comparison between the predicted total tumor volume to the measured tumor volume as determined by the total number of voxels in the tumor ROI. Panel 
(c) depicts the comparison of the predicted longest axis of the tumors to the actual measured longest axes as determined from the tumor ROI of scan 3. Note 
that using the log scale for panels (a) and (b), 1 patient is not shown where zero tumor was measured at the time of scan 3 (chemo subgroup, patient 4), but 
corresponding KCC values include this data. 
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Discussion 

A mathematical model accounting for patient-specific proliferation and
diffusion of tumor cells, mechanical properties of breast tissue, and treatment
regimens was individually calibrated with quantitative MRI data acquired in
the community-based care setting. After the patient-specific calibration, the
model was run forward in time to predict tumor response at the completion of
the first therapeutic regimen. Analyzing various absolute differences between
model predictions and measured outcomes established significance of the
model’s prediction accuracy ( Figure 3 ). The model predictions are also found
to be significantly correlated to the actual tumor outcome for the cohort for
3 different measures of tumor response (total cellularity, volume, and longest
axis; Figure 4 ); in particular, the CCC values for the whole cohort are ≥ 0.86
when comparing all 3 tumor measurements. Further, the model predictions
are significantly different for the change in the longest axis when compared
between the RECIST defined responder and nonresponder groups ( Table 3 ).
It is important to note that RECIST is only an evaluation of response and
is not intended to be employed for predicting response; in fact, the RECIST
designation (i.e., CR, PR, SD, PD) from scan 1 and 2 changes for 8 out of
he 18 patients when compared to the RECIST designation from scan 1 and
. However, recall that the mathematical model only required the data from
cans 1 and 2 (after just 1 cycle of therapy), to make predictions of response
bserved at the conclusion of the first regimen of NAT. 

The results indicate that the model is superior at predicting tumor
esponse for regimens consisting of only chemotherapy. For the chemotherapy
nly subgroup, the mathematical model’s predictions had greater correlation 
ith the measured tumor response of each patient compared to the

hemo + subgroup, and the model had significantly different predictions
etween responder and nonresponder patients for all 3 tumor measures.
urrently, this model does not explicitly consider the effect of targeted

nd/or immunotherapies but only implicitly through the calibration of 
arameters (such as the proliferation map). Therefore, the chemo subgroup
as selected for the in silico alternative regimen investigation. Future
odeling efforts must account for the effects of targeted therapies to increase

he generalizability of the methodology to all breast cancer subtypes. 
Using the parameters derived from each individual patient of the

hemo subgroup, several alternative treatment regimens were assessed where 
he frequency and dosage of drug differed (but the total amount of
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Figure 5. Comparison of the percent change in total tumor cellularity from scan 2 to the time of scan 3 achieved by the standard regimen, a one-half 
dose double frequency regimen, a one-third dose triple frequency regimen, a one-quarter dose quadruple frequency regimen, and an equivalent daily dose 
when administered daily to each patient (panel a). Across patients, differences in the percent change between the standard therapeutic regimen and the model- 
identified, most effective regimen have a maximum difference of 46%, a minimum difference of 0%, and a median difference of 17% (panel b). Note: a positive 
difference indicates a potential additional percent reduction in the total tumor cellularity achieved by the alternative regimen compared to the standard dose 
the patient received. The group of standard regimens was found to be statistically inferior to the group of optimal regimens selected for each patient for tumor 
control/reduction ( P < 0.001 for percent change from scan 2 to 3 and for the predicted cell number at the time of scan 3). The most effective regimens by 
number of patients: standard N = 1, one-half N = 4, one-third N = 2, one-quarter N = 2, daily N = 4. 
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drug remained consistent) from the standard-of-care regimen each patient
received. Therefore, the mathematical model served as an in silico twin for
each patient, and an in silico clinical trial was performed with 4 branches—
each branch testing an alternative schedule for the total standard-of-care
dose and time course. The overall tumor control achieved by the group of
standard regimens was found to be statistically inferior to the group of optimal
regimens selected for each patient. Notably, no single regimen was optimal
for all patients; this result underscores that the success of any particular
treatment approach depends on all tumor characteristics of the individual
patient and the importance of identifying patient-specific treatment protocols
to maximize response. The only way to systematically exploit this realization
for individually optimizing response is through patient-specific mathematical
modeling. Furthermore, we note that the alternative regimens investigated
here are a small subset of all the possible alternative regimens that could be
mathematically explored to identify patient-specific therapeutic regimens that
maximize efficacy. 

Experimentally, a limitation of the present study is the modest cohort size
(N = 18 total, N = 13 for the chemo subgroup), which consists of several
different ethnicities, receptor status, body-mass-indices, and ages. This is
exactly the type of population that is encountered in community-based care
settings—from which our data was acquired; if any method of evaluating
and/or predicting response to therapy in cancer is going to have widespread
utility, this is the type of the patient population with which we must learn
to work. Furthermore, the aim of this work was to provide initial motivation
for using biophysical, mathematical methods for optimizing therapies on a
patient specific basis—for which the cohort is sufficient. All of the above
analyses presented indicated that the mathematical model’s predictions are
both significantly correlated with and predictive of actual response for this
cohort. It is also important to note that the results of this study would be
extraordinarily difficult to achieve using the methods of artificial intelligence,
which typically require vast training databases to identify patterns that emerge
at the population (rather than the individual) level [47] . 

A second experimental limitation is the small number of data points
(i.e., scan times) employed in the model calibrations and this can limit the
predictive ability of the approach. In particular, if the tumor changes between
he calibration scans are minimal compared to the overall change observed at 
he conclusion of therapy, the model’s ability to capture the overall dynamics 
ay be compromised. Additional data acquired prior to and throughout 

herapy would enable the model calibration scheme to more accurately 
etermine patient-specific parameter values. However, acquiring data from 

ore scan sessions is frequently not practical due to the additional burden 
n the patients (and associated expenses). Additionally, there are limitations 
n estimating cellularity with the ADC (as we have previously discussed; see, 
.g., [25 , 35 , 38] ), and future efforts are needed to more precisely estimate cell
umber and eliminate some of the ambiguity in the standard interpretation 
f the ADC . 

From a modeling perspective, a limitation of this current study is that 
he mathematical model does not yet account for an evolving vasculature 
nd alternative drug mechanisms. Without an evolving vasculature, the drug 
elivery map has limited change in time, and this almost certainly affects 
ur predictive ability. We note that the model predictions of total volume 
nd longest axis of the tumors for the alternative regimens compared to the
tandard-of-care did not result in large differences. This may very well be due
in part) to the nonevolving vasculature in the model. While the model is
einitialized with each patient’s data at the time of scan 2 (thereby updating
he tissue map and drug dose map), the drug dose map does not evolve
orward in time. Ongoing efforts are attempting to address this issue in the
ore well-controlled, preclinical setting [38 , 48] . A second limitation of the
odel is the characterization of the drugs themselves, as we do not explicitly

ccount for differences in the mechanisms of each drug (only their overall 
fficacy and decay), do not account for drug synergy, and assume that all
ancer cells will respond in the same manner. As more alternative regimens 
nd combinations of drugs are considered for the optimization of therapy 
n an individual patient basis, additional differences between these drugs 
and other therapeutics) need to be captured by the mathematical model. 
his will necessitate additional data types to properly calibrate the additional 
arameters required for such an extension. 

The ability to predict which breast cancer patient will respond to NAT 

ill have a fundamental and lasting impact on healthcare, but it is not
he final goal. The ultimate goal is to optimize therapy given the unique
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characteristics of each individual patient. In the present work, we show
that precise combination of advanced image analysis and rigorous—but
practical—mathematical modeling can make predictions of response for the
individual patient. Once there is a mathematical model that can accurately
recapitulate the spatiotemporal development of a tumor, the next step is to
use the model to select and optimize therapy for each individual patient.
This would be accomplished by initializing the validated model with patient-
specific characteristics, varying, in silico , a range of treatment plans, and then
selecting via established methods (such as, optimal control theory [49] ) the
approach that achieves the greatest tumor control for the longest period of
time. Such an achievement would represent a watershed moment in our fight
against this disease. 

Conclusion 

The results of this study demonstrate that a biology-based, mathematical
model can be predictive of tumor response using data obtained from the
earliest time points—and from the individual patient—during neoadjuvant
regimens. The in silico results illustrate how therapeutic regimens can
be tailored, and even optimized, for each patient using a mathematical
model and simulation studies. These results represent an initial effort
toward personalizing patient regimens through quantitative imaging and
mathematical modeling. 
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