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Abstract: Azole resistance poses a problem for the management of patients with invasive aspergillosis.
Former species are in fact groups of closely related species (or complexes); cryptic species frequently
show high antifungal resistance. The European Committee on Antimicrobial Susceptibility Testing
(EUCAST) Definitive Document (E.Def) 9.3.2 includes guidelines for antifungal susceptibility testing on
Aspergillus spp. and clinical breakpoints for amphotericin B, itraconazole, voriconazole, posaconazole,
and isavuconazole against A. flavus, A. fumigatus, A. nidulans, A. niger, and A. terreus. New clinical
breakpoints were released in February 2020 and one of the most relevant modifications was the
definition of the new “susceptible, increased exposure” (formerly “intermediate”) category. Another
relevant change was the adoption of the concept of area of technical uncertainty (ATU) that refers to
problematic areas which involve uncertainty of susceptibility categorisation (e.g., when minimum
inhibitory concentrations (MICs) for susceptible and resistant organisms overlap). To accommodate
both the new “susceptible, increased exposure” category and the concept of ATU, MICs of azoles and
amphotericin B that fall in the former “intermediate” category have been automatically categorized
as either R (amphotericin B) or ATU (triazoles). Finally, EUCAST-AFST (Antifungal Susceptibility
Testing) decided to adopt new breakpoints for less common species provided that the epidemiological
cut-off value (ECOFF) is below or comparable to the breakpoint for the type species (A. fumigatus).
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1. Introduction

Aspergillus spp. cause a variety of fungal-related conditions grouped under the term aspergillosis,
including allergic manifestations, progressive chronic syndromes such as chronic pulmonary
aspergillosis, and the threatening acute invasive infection [1]. Aspergillus-related diseases mostly affect
different sites of the respiratory tract system, with the bulk of cases involving the lungs. Invasive
pulmonary aspergillosis may affect patients with a plethora of underlying health conditions, such as
hematologic diseases, chronic lung diseases, patients receiving corticosteroids or monoclonal antibodies,
and nowadays patients with post-viral infections such as influenza and COVID-19 [2–6].

Azoles are the drugs of choice for the treatment and prevention of Aspergillus infections and
are the only available anti-Aspergillus oral drugs to date [7,8]. Azoles have different indications for
the management of patients with aspergillosis. The European Society of Clinical Microbiology and
Infectious Diseases (ESCMID) guidelines recommend itraconazole for patients with allergic or chronic
pulmonary aspergillosis. Voriconazole and isavuconazole are indicated as the first-line treatment
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of pulmonary invasive infections. Posaconazole is recommended for antifungal prophylaxis during
prolonged neutropenia or as salvage therapy in patients who are intolerant or do not respond to
other drugs. Finally, liposomal amphotericin B is recommended in settings in which azoles are
contraindicated because of resistance or intolerance [7].

In a scenario of an increasing number of underlying conditions, the diagnosis and management of
aspergillosis has become a challenge. Antifungal susceptibility testing may help guide proper
treatment in infected patients. The present manuscript gives an overview of the necessity of
performing antifungal susceptibility testing on Aspergillus spp. isolates from patients with suspicion
of invasive aspergillosis, summarizes available European Committee on Antimicrobial Susceptibility
Testing (EUCAST) methodology for that purpose, and includes the latest modifications on azole and
amphotericin B EUCAST clinical breakpoints against Aspergillus spp. released in February 2020.

2. Epidemiology and Patterns of Antifungal Susceptibility of Species Causing Aspergillosis

A. fumigatus is the most clinically relevant species causing aspergillosis, followed by A. flavus,
A. terreus, A. niger, and other Aspergillus spp. [9]. Former Aspergillus species are in fact groups of
related species that make up 27 complexes or sections [10]. For example, the A. fumigatus complex
(or Fumigati section) includes the dominant A. fumigatus sensu stricto species and a number of
difficult-to-distinguish species, the so-called cryptic species, that account for 10–15% of isolates within
the complex (Figure 1) [11,12].
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At the time of writing of this manuscript, the A. fumigatus complex included 56 different species [10],
A. fumigatus sensu stricto, A. lentulus, A. fumigatiaffinis, and N. udagawae being those most commonly
found in clinical samples [13]. Identification of isolates of the A. fumigatus complex at species level is
clinically relevant not only to obtain an insight into the epidemiology, but also because cryptic species
commonly show intrinsic resistance to azoles and amphotericin B [14,15]. Years ago, A. fumigatus sensu
stricto isolates were fully susceptible to azoles, but have been increasingly acquiring azole resistance
worldwide after the extensive use of environmental azole fungicides [12,16–18].

Other species complexes are intrinsically resistant to polyenes (A. terreus, A. nidulans, and A. flavus)
or to azoles (A. ustus) [15].
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3. Clinical Impact of Azole Resistance in the Management of Patients with Invasive Aspergillosis

Primary azole resistance in A. fumigatus sensu stricto has commonly been reported in the
Netherlands and other Northern Europe countries for the last 15 years. Unfortunately, azole resistance
has rippled to many other countries that have ended up being affected to a variable extent [19].
Secondary azole-resistant isolates have been reported in the UK, probably as a consequence of
prolonged azole treatment in patients with chronic forms of invasive aspergillosis [20]. A large
multicentre study conducted in Spain in 2019 proved that 7.4% of isolates were azole resistant,
a higher-than-expected figure in that country [13]. Azole resistance in A. fumigatus sensu stricto lies on
the presence of point mutations in the cyp51A gene; different mutations associate to specific phenotypic
resistance to one or more azoles [21,22]. TR34-L98H substitutions commonly confer pan-azole resistance;
TR46-Y121F-T289A usually associate to voriconazole resistance; TR53 are rare and result in a phenotype
of resistance to itraconazole and voriconazole; finally, a miscellanea of single-point mutations associate
to different azole resistance phenotypes [22,23].

Azole resistance in Aspergillus spp. isolates remains a clinical problem given the relevant role of
triazoles in the management of aspergillosis [7,8,24]. Higher mortality rates have been reported in
patients infected by azole-resistant A. fumigatus sensu stricto isolates—31% higher day-42 mortality—in
comparison to azole-susceptible cases [19,25,26]. Mortality of patients infected with azole resistant
isolates is similar to that found decades ago when patients received conventional amphotericin B [18].
In consequence, countries severely affected by the presence of azole-resistant A. fumigatus sensu stricto
isolates in the environment (>10%) have chosen to prescribe the initially used liposomal amphotericin
B or a combination of voriconazole and echinocandins to treat patients, at least until antifungal
susceptibility testing results are available [27].

Thus, to improve patient care, tackling azole resistance detection is of paramount importance.
The ESCMID 2018 guidelines support identification at a complex level for all clinically significant
Aspergillus spp. isolates [BIII], and antifungal susceptibility testing of isolates for both clinical
management of patients and epidemiological purposes [AII] [7].

4. The EUCAST Subcommittee on Antifungal Susceptibility Testing—Methods for the Detection
of Azole Resistance in Aspergillus spp. Isolates

The Clinical and Laboratory Standards Institute (CLSI) and the EUCAST have proposed
conventional methods for the study of azole and amphotericin B susceptibility of Aspergillus spp.
isolates. The EUCAST Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST) developed
and validated breakpoints and methods for susceptibility testing of yeasts, moulds, and dermatophytes.
Among other differences between method in CLSI and EUCAST, the procedures of the latter are freely
available online [28]. To date, CLSI does not offer clinical breakpoints against Aspergillus spp.

Before conducting antifungal susceptibility testing, isolates must be correctly identified using
reliable procedures (MALDI, molecular identification, etc.), at least at complex level. Two methods for
testing antifungal susceptibility on Aspergillus spp. isolates are available [28]. The EUCAST Definitive
Document (E.Def) 10.1 method allows screening for the presence of azole resistance in A. fumigatus
based on the ability of the isolates to grow on azole-containing agar plates [29]. The procedure was
developed for routine use in the clinical mycology laboratory, so that most susceptible isolates are
reported as such when no growth is observed on azole-containing agar plates; isolates able to grow
on azole-containing plates, and therefore suspicious of being azole resistant, must be confirmed by
microdilution methods. The E.Def 9.3.2 method allows the determination of the minimum inhibitory
concentration (MIC) of antifungals against Aspergillus spp. [30]. Validation of results obtained by
either method requires the use of quality control isolates—according to instructions given in the
abovementioned documents—whose growth should be inhibited by antifungal MICs within acceptable
MICs ranges provided in the v.5 document [31].

As per the E.Def 9.3.2 method, the MIC endpoint for azoles and amphotericin B is the concentration
of drug yielding no growth visible to the eye. The procedure recommends ignoring single colonies
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on the surface of the antifungal-containing wells and “skipped-wells” (growth is seen in alternative
wells). However, visual inspection may be challenging and the presence of tiny colonies may
raise doubts about MIC interpretation. A recent study compared azole and amphotericin B MICs
against A. fumigatus complex isolates obtained visually and spectrophotometrically (to overcome
subjectivity) [32], showing high agreement between both methods, including for A. fumigatus
sensu stricto isolates harbouring the dominant cyp51A gene mutation. The authors concluded that
spectrophotometric MIC reading is a useful alternative to visual inspection and may become an option
for determining MIC endpoints of azoles and amphotericin B in the near future.

MICs obtained with the E.Def 9.3.2 procedure should be interpreted using clinical
breakpoints/epidemiological cut-off values (ECOFFs), which allows classifying isolates as either
susceptible/wild-type or resistant/non-wild-type. Species-specific breakpoints apply to all species
within a complex (for example A. fumigatus sensu stricto and A. lentulus). EUCAST-AFST regularly
reviews antifungal clinical breakpoints against Aspergillus spp. To date, EUCAST-AFST has developed
clinical breakpoints for amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole
against A. flavus, A. fumigatus, A. nidulans, A. niger, and A. terreus [33].

5. Changes in EUCAST Antifungal Clinical Breakpoints against Aspergillus spp. (2020 Update)

Clinical breakpoints were revised and released in February 2020. A recent comprehensive
review reports all changes in clinical breakpoints against Aspergillus and Candida as per the EUCAST
methodology [33]. The current manuscript exclusively reviews those for Aspergillus spp. The new
version format of the clinical breakpoint table in plural was harmonized with the table for antibiotics.
One of the most relevant modifications was the definition of the new “I” category, changed from
“Intermediate” to “Susceptible, Increased exposure”. The former “Intermediate” category was
employed for two reasons: to alert the need of using high antifungal doses to attain enough drug
concentrations at the site of infection, and as a buffer zone to prevent small, uncontrolled technical
factors that may lead to misclassifications and major discrepancies in interpretation [33]. A test-to-test
variation of ± 1 two-fold dilution in the MIC setting is acceptable. To differentiate both scenarios,
EUCAST revised the definition of the “Intermediate” category and modified it to “Susceptible, Increased
exposure” in cases with high likelihood of clinical success, because exposure to the agent is increased
by adjusting the dosing regimen or its concentration at the site of infection [33]. It is noteworthy that
the letter “I” was kept, but does not stand for “Intermediate” anymore.

Another relevant modification in the EUCAST breakpoints was the adoption of the concept of area
of technical uncertainty (ATU). There are problematic areas that involve uncertainty of susceptibility
categorisation that the laboratory should be aware of. EUCAST has identified these and named them
ATU (for example when the MICs against susceptible and resistant organisms overlap). The ATU does
not refer to unreliable testing procedures and it is assumed that the MIC value obtained is correct.
MICs falling in ATU are warnings and should encourage laboratory staff to do “something else” before
reporting the MICs as susceptible or resistant, and should only be reported as such to clinicians under
special circumstances. ATU was not adopted for the case of amphotericin B. For azoles and Aspergillus,
MICs falling in ATU should be automatically reported as resistant (itraconazole and voriconazole) or
should be deciphered (posaconazole and isavuconazole) based on the susceptibility to other azoles.
Instructions to interpret and report MICs in ATU for azoles are given below.

The new EUCAST categories are as follows: S (Susceptible) when there is high likelihood of
clinical success using standard doses of the drug; I (Susceptible, Increased exposure) when there
is high likelihood of clinical success when exposure to the agent is increased either by adjusting
the dosing regimen or by physiological concentration at the site of infection; R (Resistant) when
there is high likelihood of clinical failure even when there is increased exposure; and ATU (Area of
Technical Uncertainty) to warn laboratory staff of possible difficulties regarding the interpretation of
the obtained value. To accommodate the new “I” category and the new concept of ATU, breakpoints
for amphotericin B, isavuconazole, voriconazole, and posaconazole against Aspergillus spp. have been
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revisited. For antifungal agents, the new “I” category is only applicable in situations where higher
doses of the antifungal drug are needed; however, to date, the EUCAST-AFST has not adopted that
category for amphotericin B or triazoles. Consequently, MICs falling in the former “Intermediate”
category have been automatically categorized as either R (amphotericin B) or ATU (triazoles).

Finally, EUCAST-AFST decided to adopt new breakpoints for less common species when the
ECOFF for the species-drug combination in question is below or equal to the breakpoint for the
representative type species (A. fumigatus for moulds). Therefore, new breakpoints for isavuconazole,
voriconazole, and posaconazole against A. flavus, A. nidulans, A. terreus, respectively, have been
set. All the corresponding rational documents have been modified to include the abovementioned
breakpoint changes and the new “I” category and ATU definitions.

The new clinical breakpoints and ECOFFs for amphotericin B against Aspergillus spp. are shown
in Table 1. Clinical breakpoints have been lowered one-fold dilution against A. fumigatus and A. niger.
Given the high MICs of amphotericin B against A. flavus, A. nidulans, and A. terreus, EUCAST-AFST
consider these three species as not good targets for that drug, and no breakpoints are available (Figure 2).

New clinical breakpoints and ECOFFs for itraconazole and posaconazole against Aspergillus spp.
are shown in Table 2. Isolates with itraconazole MICs falling in ATU (2 mg/L) should be reported as R
with the following comment: “In some clinical situations (non-invasive infection forms), itraconazole
can be used provided sufficient exposure is ensured”. On the other hand, isolates with posaconazole
MICs falling in ATU (0.25 mg/L) should be interpreted either as S, provided that the isolates are also
S to itraconazole, and accompanied by the following comment: “Posaconazole MIC is 0.25 mg/L,
thus, one dilution above the S breakpoint due to overlapping between wild-type and non-wild-type
populations” or as R, provided that the isolates are also R to itraconazole and refer to reference laboratory
for CYP51A gene sequencing and confirmation of MICs. This was decided because posaconazole
resistance in the absence of itraconazole resistance is rare [33].

Table 1. ECOFFs and clinical breakpoints for amphotericin B against Aspergillus spp. according to the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint table v 10.0, 2020 [33].

Amphotericin B (mg/L)

WT (ECOFF) ≤ S ≤ R >

A. flavus 4 - -
A. fumigatus 1 1 1
A. nidulans 4 - -
A. niger 0.5 1 1
A. terreus 8 - -

ECOFF, epidemiological cut-off value; WT, wild-type; S, susceptible; R, resistant; ATU, area of technical uncertainty;
-, not good targets for amphotericin B.
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Figure 2. Minimum inhibitory concentration (MIC) distributions of amphotericin B against
(a) A. fumigatus, (b) A. flavus, (c) A. nidulans, and (d) A. terreus. Columns depicted in red and
black represent MICs in the area of resistance and susceptibility for A. fumigatus isolates, respectively.
Data extracted from the amphotericin B rational document v2.0 (https://www.eucast.org/astoffungi/
rationale_documents_for_antifungals/, accessed on the 4 December 2020).

Table 2. ECOFFs and clinical breakpoints for itraconazole and posaconazole against Aspergillus spp.
according to the EUCAST breakpoint table v 10.0, 2020 [33].

Itraconazole (mg/L) Posaconazole (mg/L)

WT (ECOFF) ≤ S ≤ R > ATU WT (ECOFF) ≤ S ≤ R > ATU

A. flavus 1 1 1 2 0.5 ND ND ND
A. fumigatus 1 1 1 2 0.25 0.125 0.25 0.25
A. nidulans 1 1 1 2 0.5 ND ND ND
A. niger 4 ND ND ND 0.5 ND ND ND
A. terreus 0.5 1 1 2 0.25 0.125 0.25 0.25

ECOFF, epidemiological cut-off value; WT, wild-type; S, susceptible; R, resistant; ATU, area of technical uncertainty;
ND, not defined.

The new clinical breakpoints and ECOFFs for voriconazole and isavuconazole against
Aspergillus spp. are shown in Table 3. Isolates with voriconazole MICs falling in ATU (2 mg/L)
should be reported as R with the following comment: “In some clinical situations (non-invasive
infections forms) voriconazole can be used provided sufficient exposure is ensured”. In contrast,
isolates with isavuconazole MICs falling in ATU (2 mg/L) should be interpreted either as S, provided
that the isolates are voriconazole wild-type (A. flavus: voriconazole MIC ≤ 2 mg/L; A. fumigatus:
voriconazole MIC ≤1 mg/L), accompanied by the following comment: “The MIC of 2 mg/L is one
dilution above the S breakpoint but within the wild-type isavuconazole MIC range due to a stringent
susceptibility breakpoint. Please refer to rationale documents for more information”; or as R, provided
that the isolates are voriconazole non wild-type and refer to reference laboratory for CYP51A gene
sequencing and confirmation of MICs. Likewise, isavuconazole resistance in the absence of voriconazole
resistance is extremely rare [33].

A recent report of azole resistance in A. fumigatus conducted in Spain involved a large
number of isolates including some bearing mutations, with most isolates harbouring the TR34-L98H
substitutions [13]. Resistance rate was calculated using the recently updated clinical breakpoints.
The new itraconazole breakpoints clearly separated the mutants from wild-type isolates, as isolates with
the TR34-L98H substitutions had MICs ≥ 16 mg/L. Likewise, all TR34-L98H isolates fell in the category
of voriconazole R, although the MIC range was wider for this drug, spanning from 2 mg/L to ≥ 16 mg/L.
In contrast, ATU in posaconazole (0.25 mg/L) and isavuconazole (2 mg/L) resulted in the confluence of
both TR34-L98H isolates (all correctly classified as R) and S isolates [13]. These observations prove the
accuracy of the new updated EUCAST breakpoints to separate mutants from wild-type isolates and
the ATU as an area of overlap between S and R isolates.

https://www.eucast.org/astoffungi/rationale_documents_for_antifungals/
https://www.eucast.org/astoffungi/rationale_documents_for_antifungals/
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Former S breakpoints of isavuconazole (S breakpoint = 1 mg/L and ECOFF = 2 mg/L) and
posaconazole (S breakpoint = 0.125 mg/L and ECOFF = 0.25 mg/L) divided the wild-type population
because the MIC distribution for wild-type and non-wild-type isolates overlap (Figures 3 and 4).

Table 3. ECOFFs and clinical breakpoints for voriconazole and isavuconazole against Aspergillus spp.
according to the EUCAST breakpoint table v 10.0, 2020 [33].

Voriconazole (mg/L) Isavuconazole (mg/L)

WT (ECOFF) ≤ S ≤ R > ATU WT (ECOFF) ≤ S ≤ R > ATU

A. flavus 2 ND ND ND 2 1 2 2
A. fumigatus 1 1 1 2 2 1 2 2
A. nidulans 1 1 1 2 0.25 0.25 0.25 ND
A. niger 2 ND ND ND 4 ND ND ND
A. terreus 2 ND ND ND 1 1 2 ND

ECOFF, epidemiological cut-off value; WT, wild-type; S, susceptible; R, resistant; ATU, area of technical uncertainty;
ND, not defined.

1 
 

 Figure 3. MIC distribution of isavuconazole against A. fumigatus complex. Columns depicted in
green represent phenotypically isavuconazole wild-type isolates; columns depicted in red represent
phenotypically isavuconazole non-wild-type isolates. Horizontal bars indicate clinical breakpoints for
the S (green) and R (red) categories; new (2020) and former (2018) breakpoints are shown. The new area
of technical uncertainty (ATU) is represented as a light orange shaded column (2 mg/L). Data extracted
from the isavuconazole vs. Aspergillus rational document v2.0 (https://www.eucast.org/astoffungi/
rationale_documents_for_antifungals/ accessed on the 4 December 2020).

A stringent breakpoint leads to a number of misclassifications of wild-type isolates as
non-susceptible. As an example, a previous study reported 12 isolates with an isavuconazole
MIC of 2 mg/L, cyp51A gene wild-type sequence, and most of them (9/12 isolates) with a voriconazole
MIC ≤ 1 mg/L [34]. However, all isolates had to be classified as resistant as per the former 2018
breakpoints. With the updated 2020 breakpoints, only three out of the 12 isolates are currently
voriconazole and isavuconazole resistant, whereas the other nine isolates are fully azole susceptible.
Similar observations have been reported elsewhere [35].
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Figure 4. MIC distribution for posaconazole against A. fumigatus complex. Columns depicted in
green represent phenotypically posaconazole wild-type isolates; columns depicted in red represent
phenotypically posaconazole non-wild-type isolates. Horizontal bars indicate clinical breakpoints
for the S (green) and R (red) categories, as well as the former “I” (orange) category; new (2020) and
former (2018) breakpoints are shown. The new area of technical uncertainty (ATU) is represented by a
light orange shaded column (0.25 mg/L). Data extracted from the posaconazole vs. Aspergillus rational
document v2.0 (https://www.eucast.org/astoffungi/rationale_documents_for_antifungals/ accessed on
the 4 December 2020).

6. Conclusions

Because of the complexity of patients affected by aspergillosis and the growth in the rate of azole
resistance, antifungal susceptibility testing is essential nowadays. EUCAST-AFST have developed
procedures for testing antifungal susceptibility in Aspergillus spp. and regularly review antifungal
clinical breakpoints, the latest update dated February 2020. One of the most relevant modifications
was the switch of the former “Intermediate” definition to the new “Susceptible, Increased exposure”
category. The letter “I” has been kept in the new category, although it does not stand for “Intermediate”
anymore. Another relevant modification is the inclusion of the concept of area of technical uncertainty
(ATU). MICs falling in ATU are warnings and should prompt laboratory staff to do “something else”
before reporting the MIC as susceptible or resistant. To accommodate the new “I” category and the
new concept of ATU, breakpoints for amphotericin B, isavuconazole, voriconazole, and posaconazole
against Aspergillus spp. have been revisited. To date, EUCAST-AFST has not adopted the new “I”
category for amphotericin B or triazoles. Consequently, MICs falling in the former “Intermediate”
category have been automatically categorized as either R (amphotericin B) or ATU (triazoles). Finally,
EUCAST-AFST decided to adopt new breakpoints for less common species when the ECOFF for the
species-drug combination is below or comparable to the breakpoint for the type the representative
type species (A. fumigatus for moulds). Therefore, new breakpoints for isavuconazole, voriconazole,
and posaconazole against A. flavus, A. nidulans, and A. terreus, respectively, have been set.
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