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The tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis in malignant cells,
while leaving other cells mostly unharmed. However, several carcinomas remain resistant to TRAIL. To
investigate the resistance mechanisms in TRAIL-stimulated human fibrosarcoma (HT1080) cells, we
developed a computational model to analyze the temporal activation profiles of cell survival (IkB, JNK, p38)
and apoptotic (caspase-8 and -3) molecules in wildtype and several (FADD, RIP1, TRAF2 and caspase-8)
knock-down conditions. Based on perturbation-response approach utilizing the law of information
(signaling flux) conservation, we derived response rules for population-level average cell response. From this
approach, i) a FADD-independent pathway to activate p38 and JNK, ii) a crosstalk between RIP1 and p38,
and iii) a crosstalk between p62 and JNK are predicted. Notably, subsequent simulations suggest that
targeting a novel molecule at p62/sequestosome-1 junction will optimize apoptosis through signaling flux
redistribution. This study offers a valuable prospective to sensitive TRAIL-based therapy.

T
he search to induce apoptosis, or programmed cell death, in cancer cells has led to the emergence of a
new and fast growing field termed cancer immunology1, also referred to as tumor immunology2. Here, the
interactions between the immune system with malignant cancers have shown the suppression of disease

progression. Among the many immune factors found within the tumor microenvironment, the tumor necrosis
factor (TNF) family members are noted for their ability to induce cellular apoptosis3. In particular, the TNF-
related apoptosis ligand (TRAIL), also known as Apo-2 ligand and TNFSF10, has received primal attention due
to its ability to recognize and induce apoptosis of tumors and metastases while leaving normal cells mostly
unaffected4.

The endogenous TRAIL is prevalently found in several types of immune cells (e.g. macrophages, natural killer
cells, T-cells) and its expression can be elevated in these cells by infected agents, such as, through the Toll-like
receptor and the interferon gamma signaling pathways5. TRAIL is known to bind with TRAIL-R1 (or death
receptor (DR) 4), TRAIL-R2 (or DR5), TRAIL-R3 (or decoy receptor (DcR) 1), TRAIL-R4 (or DcR2) and
osteoprotegerin. Notably, TRAIL-R1 and -R2 possess intracellular death domains and, subsequently, have the
ability to mediate TRAIL-induced apoptosis. The remaining receptors are decoys that compete for TRAIL,
thereby, possibly negatively regulate the effects of TRAIL-R1 and -R2 signaling6.

The immune defense role of TRAIL was shown to kill pathogen-infected or malignant cells7. Notably, increased
expressions of TRAIL-R1 and -R2 have been found on several kinds of tumor cells’ extracellular membrane with
corresponding increases in apoptosis compared with normal cells. The deficiency of TRAIL-R1 and -R2 has also
led to malignancy8. Further investigations using TRAIL-induced apoptosis for effective control of cancer pro-
liferation have yielded successes at preclinical settings for certain cancer cells. In majority of cases, such as
melanoma and neuroblastoma, however, TRAIL stimulation has little or no effect9.

The non-sensitivity of TRAIL-stimulated cancers occurs due to several factors including: very low expression
levels of TRAIL-R1 and -R2s, increased levels of DcR1, DcR2, elevated levels of negative regulators of
apoptosis9 such as cFLIP, etc. On top of these, the upregulation of cell survival and proliferation pathways,
through mitogen-activated protein kinases (MAPK) and nuclear factor-kB (NF-kB) activations, are crucial for
the resistance10.

More recently, to overcome resistance, TRAIL has been used in conjunction with other treatment strategies.
Several studies have made combination therapies with proteasome inhibitors, histone deacetylase inhibitors,
ionizing radiation etc., for enhancing apoptosis11,12. Also, specific intracellular targets, such as tyrosine kinase
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inhibitors and IkBa suppressors, have been used to show reduced
survival of cancer13,14. These works have focused on a single mode of
action by either targeting survival or apoptotic pathways. However,
as cancers are known to show high activities of both survival and
apoptotic pathways15, it remains unclear whether the suppression of
survival or the enhancement of apoptosis, independently, will yield
optimal results. It is perhaps so that the clinical results so far have
only shown partial response in majority of cases and ask for a deeper
understanding of the synergistic effect of combinatorial treatments16.
Thus, clear mechanistic insights into the conflicting roles of the cell
survival and apoptotic pathways triggered by TRAIL are required.
For example, when are cell survival and apoptotic pathways acti-
vated? Do they regulate each other? Are they induced at different
time points? Finding answers to these questions can provide an
improved strategy to treat cancers using TRAIL.

So, in spite of numerous studies targeting TRAIL resistance, we are
still far from successfully understanding and controlling the mechan-
isms for the resistance. Another possible reason may lie in the way
intracellular data are generated, analyzed and interpreted. For
example, many studies use single time point readout of survival or
apoptotic molecules to compare treated with untreated cancer cells.
Although such data provide qualitative snapshot information of can-
cer cells response to the treatments, they may not necessarily show
the overall effectiveness in time. For example, in lipopolysaccharide-
stimulated macrophages, we observed that molecules that are upre-
gulated (based on mRNA expressions) at early time points can
become downregulated at later time points17. Thus, it is important
to rigorously analyze the temporal data generated by TRAIL-stimu-
lated experiments using multidisciplinary approaches.

Here, to shed light into the resistance mechanisms and to identify
an effective intracellular target for TRAIL-resistant human fibrosar-
coma (HT1080), we investigated, using a computational model, the
activation dynamics of several cell survival (IkB, JNK, p38) and
apoptotic (caspase-8, -3) signaling molecules. The model, based on
perturbation-response approach, does not require the full knowledge
of all signaling species and their reaction kinetics. Rather, it uses
linear response rules, derived from the fundamental law of informa-
tion (signaling flux) conservation, to elucidate novel features of
population-level average cell signaling pathways and has been suc-
cessfully used in Toll-like receptors (TLRs) signaling studies18–21.
Using the approach of comparing experimental data with model
simulations, firstly we uncover novel pathway features for TRAIL
signaling in HT1080 cells. Secondly, we evaluate the net effect of
cancer cell survival and apoptosis under various intracellular muta-
tions by developing a theoretical cell survival metric (CSM). Using the
computational model together with CSM, our approach predicts an
optimal target for overcoming TRAIL resistance.

Results
Dynamic computational model for TRAIL-stimulated HT1080
cells. A previous experimental work on HT1080 cells has shown that
TRAIL stimulation not only activate the apoptotic pathways (cas-
pases), but also display cell survival activities, through NF-kB and
MAPKs, resulting in the overt resistance to death22. However,
the systemic understanding of the counterbalancing survival and
death mechanisms still remains unclear23. For developing effective
strategies to control TRAIL resistant cancer cells, a mechanistic
understanding of the temporal activations of the cell survival and
apoptosis pathways is required.

To investigate the dynamical activations of cell survival (NF-kB,
MAPKs) and apoptosis (caspases) in TRAIL-resistant HT1080 cells,
we developed a computational model of TRAIL signaling (see text
below). The original model was developed using the widely accepted
TRAIL signaling topology: upon ligation of TRAIL, TRAIL-R1
(DR4) and TRAIL-R2 (DR5) form receptor clusters facilitated by
O-glycosylation and/or palmitoylation. This allows the intracellular

death domain of TRAIL-R1 and -R2 to recruit FADD, caspase-8 and
cFLIP, collectively called the primary death-inducing signaling
complex (DISC). Still attached to the membrane, the DISC becomes
enriched in lipid rafts, subsequently allowing caspase-8 to interact
with CUL3/RbxI-based E3 ligase complex. Polyubiquitylation of cas-
pase-8 occurs and the ubiquitin-binding protein p62/sequestosome-
1 binds with caspase-8 to detach it from the DISC. Consequently,
caspase-8 interacts with RIP1, TRAF2 and IKK-c to form secondary
DISC, which activates downstream NF-kB, MAPKs, and caspase-3, a
member of the cysteinyl-aspartate-specific proteases, through the
extrinsic pathways23–25 (Figure 1A). The static TRAIL topology was
converted into a dynamic computational model (see ‘‘Perturbation-
Response approach’’), where each species is connected to another by
first-order response equations and the parameters were chosen from
temporal experimental data (see ‘‘TRAIL Modeling Strategy’’ and
Figure 1B).

In recent years, there have been calls for understanding biology
including spatial and stochastic processes26. This is especially
observed for single cell analysis where the heterogeneity of each
molecular component can result in distinct response profiles
between cells27. However, at population level, many of the differences
in single cell response profiles can be averaged out to reveal deter-
ministic patterns for the entire population. For example, the well-
coordinated response of cell populations, such as differentiation or
growth, demonstrates that the single cell noise or heterogeneity effect
could cancel out when ensembles of cells are formed to generate
a stable and robust response. Here, the data that is used to develop
the TRAIL model represents population level average response
(Figure 1B).

Perturbation-Response approach. At cell population level, mac-
roscopic descriptions of complex reaction mechanisms connect a
series of reacting species into well-defined ‘‘average’’ pathways.
The connectivity of the reaction species, in general, can be anti-
cipated to be governed by non-linear expressions as biology is a
complex system. Given a fixed perturbation to one of the species in
the connected system will result in propagation of response waves
through the connectivity.

In general, for system with n species, the reaction mechanisms are:
LXi

Lt
~Fi X1,X2,::,Xnð Þ, i~1,::,n ð1Þ

where the corresponding vector form of Eq. 1 is
LX

Lt
~F Xð Þ, F is a

vector of the unknown non-linear function which includes diffusion
and reaction terms, and X 5 (X1, X2, .., Xn) is the species response
profiles28,29. For a fixed perturbation, the resultant changes in species
profiles can be written by X 5 X0 1 dX, where X0 is the reference
steady-state vector and dX is the relative response from steady-states
(dXt50 5 0).

When the actual reaction mechanisms are unknown or difficult to
solve analytically, Eq. 1 can be expanded into Taylor series:

LX

Lt
~

LF Xð Þ
LX

����
X~X0

dXz
LF 2 Xð Þ

LX 2

����
X~X0

dX 2z::: ð2Þ

where F(X0) 5 0 at the steady-state X0 . Eq. 2 shows the presence of
first and higher-order terms to the response wave propagation
through the connected species. In such a discretized manner, we
can investigate which of the individual terms become dominant to
a given perturbation. This approach is unlike the conventional ‘‘bot-
tom-up’’ strategy of defining each reaction equation through the
stoichiometry of reactions, isolated kinetics and in vitro defined
parameters.

In our previous works on TLR signaling18,19,21, the use of first-order
response equations was sufficient to reveal experimentally verifiable
novel signaling features for the macrophage population response. In
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Eq. 2, this occurs for small or pulse perturbation around steady-
state, when the higher-order terms become negligible, that is,
LdX

Lt
?

ddX

dt
<

dF Xð Þ
dX

����
X~X0

dX . That is, from our ‘‘top-down’’

approach, we found that the first-order term is the most dominant in
population-level TLR signaling. Such macroscopic first-order terms
are not necessarily restricted to reaction terms only, they can also
represent the averaging effect of spatial information such as diffusion
and transport mechanisms. For example, we showed that the endo-
cytosis of TLR4 involving diffusion and transport30, can be approxi-
mated by several first-order terms18.

The amount of fixed perturbation chosen for the model depends
on the experimentally stimulated concentration, while the parameter
values, or the elements of the Jacobian or linear stability matrix

J~
dF Xð Þ

dX

����
X~X0

, are chosen by fitting dX with corresponding experi-

mental profiles along the activation topology. Thus, each species in
our model can represent a signaling molecule, different modified
state of a molecule (e.g. ubiquitinated state) or a signaling event such
as diffusion, endocytosis, etc. That is, each species in our signaling
network does not necessarily represent a specific molecular species.
For illustration, in a pathway q1Rq2Rq3Rq4Rq5, q1 to q5 can
each be a different protein or the same protein at different stages
in signaling, for example, (q1) being internalized (q2), transported to

a different organelle (q3), ubiquitinated (q4) and become part of a
protein complex (q5).

Thus, unlike typical signaling models, which often use kinetic
equations to model the dynamics, our perturbation-response
approach considers the network as a sequence of events rather than
just molecules. As signaling networks are largely not fully under-
stood, this difference is crucial as it prevents rigidly fixing the
network topology, and allows it to be modified according to experi-
mental data so as to prevent overfitting problems and to identify
novel features of signaling networks. In addition, as signaling process
involve large number (thousands) of intracellular molecular activa-
tions31, it is currently not plausible to model the dynamics of all
possible reactions with the generally limited data. To overcome such
difficulties, our approach permits the lumping of several molecules
into a species and the averaging nature of the response equations
does not require detailed kinetics. In this way, our model does not
become a comprehensive representation of entire signaling process,
however, it allows the identification of overtly missing key features.

Therefore, for TRAIL signaling, it would not be appropriate to
develop a hard-wired model based on wildtype data alone. For
example, our previous works on TLR signaling have demonstrated
that an initial model developed using up-to-date literature topology
and fitted with wildtype data would not be sufficient to simulate
other mutant conditions, e.g. in MyD88 or TRAF6 knock-outs18,19,21.

Figure 1 | TRAIL signaling pathway and experimental activation profiles of signaling molecules. (A) Schematic topology of TRAIL signaling pathway.

See maintext for details. (B) Experimental activation profiles of p38, IkB, JNK, caspase-8 and -3 in wildtype, RIP1 KD*, FADD KD*, caspase-8 KD*,

and TRAF2 KD in arbitrary units (a.u.) at t 5 0, 10, 30, 60** and 120 min after TRAIL stimulation of HT1080 cells. The original source was obtained from

Figure 3A of ref. 22 and was processed through imageJ (see Methods). *data is unavailable for caspase-8 and -3, ** available only for caspase-8 and -3.

Note: interpolated dotted lines between experimental data points are inserted as a guide, they might not represent the actual temporal dynamics.

www.nature.com/scientificreports
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To overcome this fundamental issue, we create an initial model
developed using wildtype data, and test it with other available experi-
mental conditions. By reducing wildtype parameter space and allow-
ing the topology to carefully evolve using response rules (see below),
from the law of information conservation and first-order response,
we are able to successful produce a model that simulates multiple
experimental conditions.

TRAIL modeling strategy. To develop and analyze the TRAIL model,
we created a computational modeling framework (Figure 2). An
initial model is constructed using the known TRAIL topology and
the parameters of the first-order response equations are chosen, with
the aid of a genetic algorithm32, to fit the semi-quantitative data of
each tested molecule’s activation profile (e.g. p38, JNK, etc.) in wild-
type (Methods). Once the simulation for all tested molecules fit
reasonably well in wildtype, we next test their validity in other
mutant conditions (RIP1 KD, FADD KD, etc.). If the simulations
are not satisfactory in any experimental condition (based on the area
between the experimental profiles and simulations curves, see

Methods), we modify the current TRAIL topology according to the
response rules. For example, in wildtype, if a time delay is observed in
the experimental activation onset compared with simulation, then
according to response rule 1 (see below and Figure 3), additional
intermediary first-order terms are added to provide delay. The pro-
cess of modifying TRAIL topology and parameter values for each
molecule and in each condition is done iteratively until all tested
molecules are able to successfully reproduce experimental data in
all tested conditions (Figure 2).

Overall, we utilized 5 experimental conditions (wildtype, RIP1
KD, FADD KD, caspase-8 KD and TRAF2 KD) to generate a single
robust model that simulates 5 molecules (IkB, JNK, p38, caspase-8
and -3) over 5 measured time points (0, 10, 30, 60 and 120 min) for
TRAIL-stimulated HT1080 cells (Figure 1B). This is in contrast to
most computational studies, which only use wildtype data to develop
signaling models. Notably, as a result of our approach, we are able to
modify the initial literature model to a final one (consisting of 32
species with 39 reactions) indicating several novel features for TRAIL
signaling (Table 1).

Figure 2 | Computational modeling framework for TRAIL signaling. Parameters of the initial model based on the original topology (1) are determined

by overall fitting of experimental data using a genetic algorithm (GA, see Methods) for all molecules (i51,2,..n) and at all conditions (k50,1,…m), here

n55 and m54. (2). If the overall error E5max(ei,k) between experimental and simulation profiles is higher than the set tolerance (3) (see Eq. 5) in

Methods), the model is not acceptable. As the next step, the n molecules’ activation profiles are ranked from the one showing highest (i51) to the lowest

(i5n) error (4) for individual molecule’s (5) best fitting in wildtype (6) and m other experimental conditions (69). If the simulation of the ith molecule fit

reasonably in the kth condition (individual error ei,k # 0.15) (7), we check the next condition (k11), else we modify the current topology according to

response rules (8) (see Figure 3) and restart the procedure from wildtype condition again (6). If all m conditions fit for the ith molecule (9–10) without any

changes applied to the topology, we proceed to the next molecule (i11) (11). If any change is necessary to the topology, the parameters have to be refitted

for all molecules from the first molecule (i51). The whole procedure is repeated until the resultant model fit all experimental profiles of the n molecules

within the error tolerance (12).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 1 : 144 | DOI: 10.1038/srep00144 4



Response rules. Here we introduce a more formal way to modify the
initial signaling topology to infer novel network features by deriving
10 main response rules from the law of signaling flux conservation
and first-order average response to pulse perturbation (Figure 3A–
C). Analyzing time to activation: Rule 1, Time delay: by comparing
the time to reach peak activation, any time delay in target signaling
molecule’s activation represents ‘missing’ cellular features such as
directed transport machinery, protein complex formation, and novel
molecular interactions. Rule 2, Rapid flux: when the activation of a
downstream molecule is noticeably quicker than the experimental
activation, a novel rapid bypass pathway is inferred. Analyzing peak
activation levels: Rule 3, Missing flux: when the removal of a mole-
cule along a pathway does not completely abolish its downstream
intermediates, the presence of a novel bypass is indicated. Rule 4,
Signaling Flux Redistribution (SFR): At pathway junctions, the
removal of a molecule enhances the entire alternative pathways.
Rule 5, Lack of SFR: At pathway junctions, the removal of a molecule
does not enhance the alternative pathway, suggesting novel i) inter-
mediate(s) between the removed molecule and the pathway junction
or ii) pathway link between the removed molecule and the alternative
pathway. Rule 6, Dominant and Recessive flux: quantifies each path-
way branch by comparing activation levels between wildtype and
mutants data. Analyzing activation patterns: Rule 7, Reversible flux:
when a response profile show limiting decay that cannot be modeled
by first-order decay, the presence of reversible step is expected to
produce limiting decay33. Rule 8, Superposing flux: when a response
profile show multiple peaks, the superposition principle indicates the
presence of novel i) bypass pathway from the same source or ii)
alternative pathway with delayed response. Rule 9, Continuous flux:
when a response profile shows a continuous increase of activation
not following pulse perturbation response, this indicates additional
continuous flux from feedback mechanisms such as posttranslational
effect or secondary signaling34. Rule 10, Oscillations: When oscillat-
ory response is observed, i) continuous feedback loop35 is suggested
for regular dynamics and ii) non-linear effects such as chaotic bio-
chemical dynamics36 are inferred for irregular dynamics.

Simulations of initial TRAIL signaling model. First, we performed
parameter fitting of the initial model (Figure 4A) with the wildtype
data (Figure 1B). Several parameter sets were examined so that the
simulations could match the experimental profiles. The IkB, JNK,
caspase-8 and -3 simulations were able to successfully fit with experi-
mental profiles, however for p38, experiment shows rapid activation
compared with the model simulation (Figure 4B, wildtype).

Next, we compared the model simulations for other mutant con-
ditions (RIP1 KD, FADD KD, caspase-8 KD and TRAF2 KD) and
notice that although IkB, caspases-8 and -3 simulations recapitulate
experiments in all conditions, the simulations of p38 and JNK
activations are not satisfactory (Figure 4B). RIP1 KD shows
impaired activation of p38 compared to wildtype, however, in silico
RIP1 KD simulation shows similar levels to wildtype at 120 min
(Figure 1B and 4B, RIP 1KD). Furthermore, the simulation produces

Figure 3 | Response rules to modify signaling topologies when the first
molecule is perturbed. (A) Analyzing time to activation: Rule 1, Time delay

and Rule 2, Rapid bypass, (B) Analyzing peak activation levels: Rule 3, Missing

flux, Rule 4, Signaling Flux Redistribution (SFR), Rule 5, Lack of SFR and Rule

6, Dominant and Recessive flux, (C) Analyzing activation patterns: Rule 7,

Reversible flux, Rule 8, Superposing flux, Rule 9, Continuous flux, and Rule 10,

Oscillations. See maintext for descriptions. Note that rules 1–6 are developed

from first-order response and the law of signaling flux conservation in pulse

perturbation. Rules 7–10 are introduced to interpret any non-linear

response or those that do not obey the law of conservation. These rules are

not exhaustive and can possibly be further categorized if detailed

experimental data for each molecule is available. The rules serve as guide to

modify the overt topology highlighting the key missing features only.

www.nature.com/scientificreports
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delayed p38 activation, similarly to wildtype simulation, in contrast
to experiment.

For FADD, caspase-8 and TRAF2 KDs, in contrast to experi-
mental profiles (Figure 1B), the simulations failed to show any p38
or JNK activations (Figure 4B). Collectively, the TRAIL model
developed using the current topology reasonably simulates IkB, cas-
pase-8 and -3 temporal activation profiles in all KD conditions,
however, it fails to capture the dynamics of p38 and JNK.

Revealing novel features of TRAIL signaling using response rules.
To overcome the shortfall of our model simulations using the current
TRAIL topology, we utilized the response rules, so as to modify the
network to investigate whether the model simulations could be
improved, especially for p38 and JNK profiles.

Analyzing p38 dynamics. In wildtype and RIP1 KD, we notice p38 is
experimentally activated within 10 min after TRAIL stimulation,
whereas, in model simulations it takes at least 20 min (Figure 4B
and 5A, M0). According to response rule 2, this can be achieved
through introducing a novel rapid bypass pathway to activate p38
more directly and specifically, perhaps not involving the primary or
secondary DISC as these may take longer activation times. Adding
the novel bypass from TRAIL-R1 to MKK3/6 produced a good match

between simulations not only for wildtype data, but also for FADD
and caspase-8 KDs (Figure 5B, M1). Note that the novel bypass is
not sensitive whether the origin starts from TRAIL-R1 or the recep-
tor process terms. However, adding a bypass downstream, from
FADD onwards, incurs noticeable delay in p38 activation (data not
shown). Hence, we call this novel bypass as FADD-independent
pathway.

For RIP1 KD, although the delay activation is succumbed, the late
phase peak activation (at 120 min) is enhanced in simulations and
for TRAF2 KD, the p38 activation is still under predicted at 120 min
(Figure 5B). Response rules 5i and 5ii suggest that RIP1 activates
p38 so that its removal will negatively affect p38 activation. The
inclusion of this feature alone was sufficient to reasonably match
experimental and simulation results for both RIP1 KD and TRAF2
KD (Figure 5C, M2).

Analyzing JNK dynamics. Using the updated model, we next inves-
tigated JNK dynamics. This time, the JNK simulation for wildtype
and RIP1 KD is quicker than experimental profiles (Figure 5D, M2).
Hence, according to response rule 1, we added additional novel inter-
mediates (proteins, complex formation, etc.) specifically to JNK. This
improved the JNK simulations, however, for FADD and caspase-8
KDs, the JNK dynamics are still absent (Figure 5E, M3). Utilizing

Table 1 | The finalized TRAIL model reactions and parameters. Note that to simulate each KD condition, we imposed null parameter value(s)
for all reaction(s) involving the KD molecule.

Reaction/process k (1/s) Remarks

1 Apo2/TRAIL R TRAIL receptor 8.13E-3 Binding of TRAIL ligand to receptor
2 TRAIL receptor R Receptor process 1 8.17E-3 O-glycosylation, internalization of receptors, formation of

lipid rafts, etc.3 Receptor process 1 R Receptor process 2 7.89E-3
4 Receptor process 1 R Y 1.04E-3 Activation of novel molecule Y
5 Y R MKK3/6 4.31E-1 Rapid activation of MKK3/6 via Y
6 Receptor process 2 R FADD 1.08E-3 FADD binds to TRAIL receptors
7 FADD R pro-caspase-8 1.06E-3 pro-caspase-8 binds to FADD
8 pro-caspase-8 R CUL3 1,99E-3 Activation of CUL3
9 pro-caspase-8 R c-FLIP 1.00E-3* Activation of cFLIP (*arbitrary value)
10 CUL3 R Ubiquitination of caspase-8 1.00E-2 Ubiquitination of caspase-8
11 Ubiquitination of caspase-8 R p62 9.92E-1 Activation of p62/sequestosome
12 Ubiquitination of caspase-8 R TRAF2 8.67E-2 Activation of TRAF2 by pro-caspase-8
13 p62 R Z 3.09E-1 Activation of novel molecule Z by p62
14 p62 R RIP1 6.77E-2 Activation of RIP1 by p62
15 p62 R caspase-8 (active form) 2.72E-2 Activation of caspase-8 (cleaved)
16 caspase-8 (active form) R tBid 1.13E-5 Activation of tBid by caspase-8
17 caspase-8 (active form) R caspase-3 1.48E-6 Activation of caspase-3 (extrinsic pathway)
18 tBid R mitochondria 5.09E-2 Apoptotic intrinsic pathway via tBid
19 mitochondria R Cytochrome C 2.64E-1 Activation of Cytochrome C
20 mitochondria R Smac 2.79E-1 Activation of Smac
21 Cytochrome C R caspase-3 2.81E-1 Activation of caspase-3 via apoptosome
22 Smac R caspase-3 1.68E-1 Smac-dependent activation of caspase-3
23 caspase-3 R Apoptosis process 8.85E-3 caspase-3 depletion term
24 RIP1 R IKK 4.00E-4 Activation of IKK by RIP1
25 RIP1 R MKK3/6 5.04E-1 Activation of MKK3/6 by RIP1 (novel)
26 IKK R IkB 3.45E-1 Activation of IkB by IKK
27 IkB R NF-kB 8.99E-4 Activation of NF-kB by IkB
28 NF-kB R Survival process 1.00E-1* NF-kB depletion term (*arbitrary value)
29 TRAF2 R MKK3/6 7.24E-5 Activation of MKK3/6 by TRAF2
30 TRAF2 R MKK4/7 2.63E-6 Activation of JNK pathway by TRAF2
31 MKK3/6 R p38 2.37E-4 Activation of p38 by MKK3/6
32 p38 R Survival process 1.31E-5 p38 depletion term
33 Y R Z 3.07E-1

Intermediates for delayed JNK activation
34 Z R X1 8.76E-4
35 X1 R X2 3.18E-3
36 X2 R X3 7.48E-3
37 X3 R MKK4/7 2.21E-3 Activation of JNK through bypass
38 MKK4/7 R JNK 1.81E-4 Activation of JNK by MKK4/7
39 JNK R Survival process 2.36E-4 JNK depletion term

Highlighted rows indicate novel features of the TRAIL signaling pathway.

www.nature.com/scientificreports
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response rule 3, we added a link from the FADD-independent path-
way for p38 to also activate JNK. Thus, we introduced a novel mole-
cule Y to branch from TRAIL-R1 to p38 and JNK and specifically
inserted the additional novel intermediates between Y and JNK via
MKK4/6.

This procedure significantly improved the JNK simulations in
wildtype, RIP1 KD, FADD KD and caspase-8 KD, but not in
TRAF2 KD (Figure 5F, M4). To achieve specific activation of JNK
in TRAF2 KD, we require a bypass from p62 to novel molecule Z (one
of the novel intermediate predicted above) on the FADD-independ-
ent pathway to activate JNK (response rules 3 and 4). Overall these
modifications, based on the response rules, to the initial model
remarkably recapitulate IkB, p38, JNK, caspase-8 and -3 activations
in all tested experimental conditions (wildtype, RIP1 KD, FADD KD,
caspase-8 KD, and TRAF2 KD) with a good degree of consistency
(Figure 1B, 5G and 6A, M5).

Next, adopting response rule 6, we evaluated the relative signifi-
cance of each novel network features. Based on the model simulation
levels, the FADD-independent pathway contributes about 17% and
43% of total JNK and p38 activations, respectively, the RIP1 to p38
crosstalk provides about 45% flux for p38 activation. The bypass
from p62 to molecule Z provides about 82% flux to JNK, whereas
TRAF2 provides about 1% flux to JNK, and the TRAF2 to MKK3/6
axis provide about 12% flux to p38. Thus, RIP1 is key for p38 and Z is
crucial for JNK activation.

In summary, we propose: i) a FADD-independent pathway to
activate p38 and JNK, bypassing the primary and secondary DISC
and through novel molecules Y and Z, ii) a crosstalk between RIP1
and p38 via MKK3/6, iii) a crosstalk between p62 and JNK via mole-
cule Z, and iv) intermediary step(s) or molecule(s) upstream of JNK
(Figure 6B).

Identifying in silico targets for enhancing cell death in HT1080
cells. To identify a promising target for overcoming TRAIL resist-
ance in HT1080 cell populations, we used the updated TRAIL signal-
ing model, which simulates multiple experimental conditions. We
next wondered the roles of the novel molecules Y and Z in the
survival and apoptosis activities, and were interested to check
whether any of them could potentially be a crucial target for enhan-
cing cell death.

To investigate this, we examined the population level survival
ratios (SRs) for wildtype, FADD KD, TRAF2 KD and RIP1 KDs,
which are known to be about 59, 76, 28 and 18%, respectively for
TRAIL-stimulated HT1080 cells (see Figure 3C of ref. 22). Since our
model simulates signaling molecules’ dynamics and does not directly
predict SR, to evaluate the SRs for Y and Z KDs, we developed a link
between SR and the survival and apoptotic molecules’ temporal
activation profiles (see Methods).

As area under each apoptosis and survival molecule’s activation
profile with time indicates an intensity measure of its respective
process, we used this to estimate a link with the SR. In order to
perform this, we introduce a novel theoretical metric, CSM, which
compares the area under curves of survival (IkB, JNK, p38) and
apoptotic (caspase-8 and -3) molecules and links it to SR (see
Methods). The CSM evaluates the net effect of survival and apoptosis
activations. A positive CSM indicates net survival mode and a nega-
tive CSM indicates net apoptosis mode.

We next performed in silico KDs of Y and Z molecules, simulated
IkB, JNK, p38, caspase-8 and -3 and evaluated their resultant CSMs
and SRs (Figure 7A–C). Notably, we observe among all investigated
KDs, the X KD results in the most negative CSM and the least SR
(with only about 5% surviving cells compared with 18% and 36% for
RIP1 and Y KDs, respectively, Figure 7B–C). This is because, through

Figure 4 | Simulation of initial TRAIL signaling model. (A) Static topology of the TRAIL signaling pathway used in developing our computational

model. Note that we lump the similar effects of DR4/5 as TRAILR1/2, and ignore the response of DcR1/R2/OPG. Also, note that we include molecular

conditions such as receptor clustering as additional first-order terms. (B) Comparison of simulations (solid lines) with experimental data (dotted lines) in

wildtype, RIP1 KD, FADD KD, caspase-8 KD* and TRAF2 KD in arbitrary units (a.u.). The error ei,kbetween simulations and experimental data for the ith

molecule in the kth condition is calculated based on the area between experimental and simulation curves (see Eq. 5 in Methods). *caspase-8 KD also refers

to pro-caspase-8 KD.
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SFR (response rule 4), the Z KD enhances the caspases activations
more than the survival molecules (Figure 7A). Thus, Z KD shows the
most desirable outcome of maximizing cell death in all tested con-
ditions, making it clearly the best target candidate for TRAIL-
resistant HT1080 cells.

To verify our overall result, we performed our own experiments on
wildtype TRAIL-stimulated HT1080 cells. Although we are unable to
perform experiments on the still uncharacterized Z KD cells, we
wanted to check the result of wildtype cells to TRAIL stimulation.
Notably, we successfully reproduced approximately 60% SR for
1000 ng/mL of TRAIL stimulation (compare Figure 1A of ref. 22
with Figure 7D). The validation of wildtype data demonstrates that

our average response model can be legitimately used to identify an
appropriate candidate, through computational simulations, for
enhancing TRAIL-based strategy.

Discussion
Over the last decade, there has been great interest leading to numer-
ous studies focusing on the usage of TRAIL, due to its ability to
trigger the apoptotic pathways, as a strategy to fight the progression
of cancer. Although successful in certain cancer types, TRAIL has not
become a general candidate as many types of cancers are able to
evade TRAIL’s apoptotic property. Although recent works have shed
light into the resistance mechanisms in TRAIL-based therapies37,

Figure 5 | Revealing novel features of TRAIL signaling using modeling strategy and response rules. Model simulations compared with experiments. For

p38, (A) M0, the initial model, (B) M1 with the addition of a rapid bypass, and (C) M2 with the addition of a missing link between RIP1 and p38 pathway.

For JNK (D) M2, (E) M3 with intermediates to introduce delay in activation, (F) M4 with a missing link for the activation of JNK in FADD and caspase-8

KDs, and (G) M5 a missing link between p62 and JNK pathway to show enhancement through SFR in TRAF2 KD.
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nevertheless, the understanding of counteracting cell survival and
apoptotic pathways and finding ways to sensitize TRAIL-based strat-
egy remain poor.

Drugs that upregulate TRAIL receptors (e.g proteasome inhibi-
tors) in resistant cancers may not be effective as they are likely to
enhance both cell survival and apoptotic pathways with the net effect
not necessarily enhanced cell death. Further studies on using com-
binatorial treatment of TRAIL with downstream targets that selec-
tively suppress cell survival, such as NF-kB and MAP kinases
inhibitors, or enhancing apoptosis by suppressing the suppressors
of caspases have recently been investigated12. The reduced cell sur-
vival activity or increased apoptosis produced, generally, an increase
in the net effect of cell death, providing good prospective for increas-
ing the efficacy of TRAIL-based strategies. However, these strategies
have focused on suppressing either the cell survival or apoptosis
activity, independently. It remains unclear which strategy among
these is optimal for the various TRAIL-resistant cancer types and,
hence, we require a strategy that considers dual mode of suppressing
the survival and enhancing the apoptosis pathway simultaneously.

Here, we report a systemic strategy that considers both the cell
survival and apoptotic dynamics to provide a more mechanistic way
to target TRAIL resistance. Our dynamic computational approach,
successful to model TLR19 and TNF34 pathways, is used to examine
the signaling mechanisms of NF-kB, MAP kinases and caspases
activations in TRAIL-stimulated HT1080 cells. Starting from a
literature curated generalized TRAIL signaling topology, firstly,
using response rules we infer novel features, namely i) a FADD-
independent pathway(s) to activate p38 and JNK, bypassing the
primary and secondary DISCs and through novel molecules Y and
Z, ii) a crosstalk between RIP1 and p38 via MKK3/6, iii) a crosstalk
between p62 and the JNK pathway, and iv) intermediary step(s) or
molecule(s) upstream of JNK (Figure 6B). These inclusions are
necessary for the computational model to successfully recapitulate

experimental outcome in all investigated conditions (wildtype, RIP1
KD, FADD KD, caspase-8 KD, and TRAF2 KD).

Secondly, to determine the best strategy to induce apoptosis in
TRAIL-resistant HT1080 cells, we investigated the net effect of
NF-kB, MAP kinases and caspases activations by evaluating their cell
survival metric, CSM, and making a link to the survival ratios (SRs) for
various KD conditions. Overall, our simulations suggest that the
optimal target is the novel molecule Z, whereby its removal is predicted
to produce about 95% HT1080 cell population death (Figure 7C).

Recent studies have indicated the roles of PI3K, Akt and MADD
for TRAIL resistance38,39. We believe that these may belong to the
novel FADD-independent pathways, and one of these could well
represent the molecule Y. On the other hand, the novel molecule
Z, which is activated by p62 to specifically activate JNK in our model,
acts like a connector between the primary and secondary DISC.
Performing a search of the protein-protein interaction database40

for p62 interacting partners, we obtain protein kinase C (PKC) family
members as likely candidates. Further literature search supports
PKC-f41 as a possible candidate.

It is important to note that although our average response model
may not pinpoint a specific molecular target exactly, nevertheless, it
will be worthwhile to investigate molecules that interact with p62 for
the search for optimal target for effective cell death in TRAIL-resist-
ant HT1080 cells. Taken as a whole, the approach presented here
provides a promising contribution towards systemically analyzing
the dynamics of cell survival and apoptotic pathways, for the
sensitization strategy for TRAIL-based cancer therapy.

In this paper, we show that novel features of the TRAIL signaling
can be revealed through the law of conservation and first order
response equations. From this result, we theoretically demonstrate
that targeting a molecule at the survival and apoptosis pathway
junction can provide an optimal solution to treat TRAIL-resistance.
It suppresses JNK and, at the same time, enhances caspases activities.

Figure 6 | Simulations of the proposed TRAIL signaling topology. (A) Comparison of M5 simulations (solid lines) with experimental data (black

points) in wildtype, RIP1 KD, FADD KD, caspase-8 KD and TRAF2 KD. (B) Static topology of the proposed model for TRAIL signaling pathway.

Modifications are indicated by blue arrows.
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This result can be viewed surprising as the vast diversity of
molecular constituents42, issues of heterogeneity43, spatio-temporal
effects44 such as diffusion and crowding within cells, are likely to
make the TRAIL signaling response non-linear and difficult to con-
ceptualize computationally. In contrary, our data suggests that cells,
as a population, are able to discard individual differences to achieve a
global average response that follows simple rules20. This is clearly the
underlying success that our final first-order response model is able to
simulate multiple experimental conditions.

Although we do recognize that biological complexity such as
heterogeneity and fluctuations or noises observed at single cell
resolution45 are important, at the same time we do need to accept
that biology, like any other complex system, possesses both micro-
scopic (single cell) and macroscopic (population average cell)
dynamics20. Thus, it is necessary to treat the two dynamics distinct

and investigate their individual merits. For example, stochastic fluc-
tuations are necessary to induce probabilistic differentiation from
genetically identical cells, allowing multi-cellular organisms to
switch fates and states to yield diversity, such as for development
or stress, which, otherwise, may be impossible from a purely deter-
ministic system46,47. On the other hand, the well-coordinated
response of cell populations, such as differentiation or growth,
demonstrates that the single cell noise could cancel out when ensem-
bles of cells are formed to generate a stable and robust response. For
instance, the observation of guided average behavior in the syn-
chronization of neuronal signaling48, persistence mechanisms of bac-
teria49 and collective decisions in ants50 are all noteworthy.

In the future, as single cell techniques continue to make impressive
progress51, it will be interesting to compare the single cell dynamics of
HT1080 cells in wildtype and PKC-f mutants with the population

Figure 7 | Identifying key target for sensitizing TRAIL resistance. (A) Simulation profiles of p38, JNK, IkB, caspase-8 and -3 in Y and Z KDs. (B) Cell

survival metric (CSM) for all KDs. (C) Survival ratio, SR, (experimental versus evaluated, from t 5 0 to 120 min) in all conditions. Evaluated data is

obtained using experimental data of RIP1 and FADD KDs (see Methods). (D) Wildtype HT1080 and HT29 (control) cells shows 60% and 95% survival,

respectively, for 1000 ng/mL of TRAIL stimulation.
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response presented here. Also, it will be crucial to investigate how the
heterogeneous single cells responses43 in TRAIL signaling could be
guided to provide a possible 100% cell death, at least in a dish. In this
light, large-scale tumor sequencing data52 and the study of single cell
noise53 will be critical to enhance our modeling aspects further to
generate and investigate single cell response models.

Methods
Experimental data of cell survival and apoptosis molecules. We utilized time-
course experimental data22 of IkB, JNK, p38, caspase-8 and -3 in wildtype, RIP1 KD,
FADD KD, caspase-8 KD, and TRAF2 KD of HT1080 cells with 1000 ng/ml of
TRAIL stimulation. The activation levels of IkB, JNK, p38, caspase-8 and -3
(Figure 1B) were quantified from the western blots data using ImageJ
(http://rsbweb.nih.gov/ij/) and the normalized experimental value of the ith molecule
in the kth condition (wildtype (WT), RIP1 KD, FADD KD, TRAF2 KD) at time t is
evaluated as:

EX̂Pi,k(t)~
EXPi,k(texp){EXPi,k(0)

max(EXPi,WT (texp){EXPi,WT (0))
, texp~ 0,10,30,60,120f g ð3Þ

where EXPi,k(texp) is the raw experimental value obtained from quantification, and
max EXPi,WT texp

� �� �
indicates the maximum value obtained in wildtype condition.

Values lower than 0.05 are likely to possess significant signal-to-noise ratio and,
therefore, noted as zero. Simulations values of the ith molecule in the kth condition are
also normalized to wildtype data such as:

SÎMi,k(t)~
SIMi,k(t)

max(SIMi,WT (texp))
, texp~ 0,10,30,60,120f g ð4Þ

Note texp560 min is available only for caspase-8 and -3.

Parameter fitting and fitness of simulations. The fitting of the reactions parameters
of a given topology is obtained by minimizing the error between experimental and
simulation profiles of all investigated molecules. We used a genetic algorithm where
the fitness function f is given by:

f ~
X

i

X
k

ei,k,ei,k~

Ð tmax

0 SÎMi,k{EX̂Pi,k
� �

dtÐ tmax

0 EX̂Pi,kdt
ð5Þ

and ei,k is the error between the experimental and simulation curves of the ith molecule
in the kth condition represented by normalized area between the experimental and
simulation curves and tmax~120 min. The algorithm evolves the parameter sets from
one generation to the next by the operations of selection, crossover and mutations32.
The model is considered acceptable when the tolerance is set for max(ei,k)ƒ0:15. To
avoid local minima, the algorithm is performed multiple times in multiple conditions.

Flow cytometry analysis. HT1080 cells were cultured in 12 well plates (60000 cells/
well) and incubated for 24 hours. HT29 cells (negative control) were incubated in the
same manner. Cells were transferred to a culture medium containing TRAIL/Apo2L
(0 and 1000 ng/mL) and incubated for 18 hours, then washed using Phosphate
buffered saline (PBS) solution, detached from the plate using Trypsin-EDTA and
centrifuged. Cell pellets were re-suspended in 200mL 1x Binding buffer, 5mL
AnnexinV-FITC and 10mL Propidium Iodide, and incubated at room temperature,
protected from light for 15 min. Cell suspension was pipetted into Poly Round Tubes
through cell-strainer cap, then fluorescence intensity was measured using an EPICS
XL flow cytometer. TRAIL stimulation did not induce apoptosis of HT29 cells
(negative control). On the other hand, 40% of HT1080 cells underwent apoptosis after
18 hours upon TRAIL stimulation (1000 ng/ml) (Figure 7D).

Cell Survival Metric (CSM) and Survival Ratio (SR). Evaluating the level of each
survival and apoptotic molecule, independently, may not truly reflect the optimal
conditions for determining cell death. For example, by just analyzing the levels of
caspase-3 without considering IkB does not indicate the survival potential of cells.
Hence, we develop a simple metric that quantifies each investigated molecule’s
activity and evaluates their net effect: the CSM measures the relative difference in the
area under curve (AUC) for the relative apoptotic and survival activities with time for
the kth condition, i.e.

CSMk~aAUCSurvival
k {bAUCApoptosis

k ð6Þ

where the summation of AUCs for the survival (Eq. 7) and apoptotic (Eq. 8) molecules
are averaged:

AUCSurvival
k ~

1
3

AUCIkB,kzAUCp38,kzAUCJNK,k
� �

ð7Þ

AUCApoptosis
k ~

1
2

AUCcaspase{8,kzAUCcaspase{3,k
� �

ð8Þ

a and b are weight constants determined from the experimental data (see below).
Thus, positive and negative CSMk denotes net survival and death, respectively, for the
kth condition.

The relative difference in the AUC for the ith molecule’s activity compared to
wildtype condition is noted:

AUCi,k~

Ð tmax

0 SÎMi,kdt{
Ð tmax

0 SÎMi,WT dtÐ tmax

0 SÎMi,WT dt

i[ IkB,p38,JNK,caspase � 8,caspase� 3f g
ð9Þ

where SÎMi,k is the normalized simulation values for the ith molecule in the kth

condition and tmax~120 min. Note that we used the AUCs of our final model
simulations which fit well with all experimental conditions.

Next, we make a link between the CSM and SR. We note that CSMWT~0 (from
Eq. 6–8) and that the SR for each kth condition is obtained from experimental data22:

SRexperimental
WT

SRexperimental
FADD KD

SRexperimental
RIP1 KD

SRexperimental
TRAF2 KD

0
BBBBB@

1
CCCCCA

~

0:59

0:76

0:18

0:28

0
BBB@

1
CCCA ð10Þ

Thus, we make an exponential relationship:

SRk~l eCSMk ð11Þ

where for wildtype, eCSMWT ~1, and l indicates the basal net survival with

l~SRexperimental
WT ~0:59. Putting Eq. 11 into equation Eq. 6 and solving them simul-

taneously produces 3 possible solutions for a and b (since we have 2 parameters for 3

equations). For example, solving a and b using i) SRexperimental
FADD KD and SRexperimental

RIP KD , we
obtain evaluated (predicted) SR for TRAF2 KD, X KD and Y KD (Figure 7C). We

performed a and b using ii) SRexperimental
FADD KD and SRexperimental

TRAF2KD and iii) SRexperimental
RIPKD and

SRexperimental
TRAF2KD to predict SR for other conditions (Figure S1). Notably, among the 3

solutions, the most conservative survival ratios for the best candidate Z KD is,
SRevaluated

Z KD %0:05.

TRAIL model limitations. Like any other modeling approach, there are certain
limitations. Firstly, the perturbation-response approach discussed does not com-
prehensively represent the details of each signaling reaction’s kinetics. Secondly, the
small perturbation assumption leading to the first-order mass-action equations
represents an average cell response and this cannot be used to study single cell
stochastic behavior or oscillatory dynamics. Thirdly, the model predictions will show
relative, and not absolute, activation levels. However, the approach is not restricted to
the TRAIL pathways and can be applied to model any pathways that experimentally
display formation and depletion waves, e.g. the TLRs20, TNF34 and EGF receptor
signaling54.
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