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Abstract: Lekethromycin (LKMS), a novel macrolide lactone, is still unclear regarding its absorption.
Thus, we conducted this study to investigate the characteristics of LKMS in rats. We chose the
ultrafiltration method to measure the plasma protein binding rate of LKMS. As a result, LKMS was
characterized by quick absorption, delayed elimination, and extensive distribution in rats following
intramuscular (im) and subcutaneous (sc) administration. Moreover, LKMS has a high protein
binding rate (78–91%) in rats at a concentration range of 10–800 ng/mL. LKMS bioavailability was
found to be approximately 84–139% and 52–77% after im and sc administration, respectively; however,
LKMS was found to have extremely poor bioavailability after oral administration (po) in rats. The
pharmacokinetic parameters cannot be considered linearly correlated with the administered dose.
Additionally, LKMS and its corresponding metabolites were shown to be metabolically stable in the
liver microsomes of rats, dogs, pigs, and humans. Notably, only one phase I metabolite was identified
during in vitro study, suggesting most of drug was not converted. Collectively, LKMS had quick
absorption but poor absorption after oral administration, extensive tissue distribution, metabolic
stability, and slow elimination in rats.

Keywords: LKMS; plasma protein binding rate; pharmacokinetics; in vitro; in rats

1. Introduction

Macrolides are a class of antibiotics which contain a 12–16 carbon-lactone ring in their
chemical structure [1], and are widely used against Gram-positive (G+) bacteria, and to a
lesser extent against Gram-negative (G-) bacteria, Chlamydia, Mycoplasma, and Legionella.
Due to the emergence and spread of multidrug-resistant bacteria, the development of new
drugs for use in animals and humans has become increasingly necessary. In this context,
pharmacokinetic studies are an important and indispensable step of drug development [2].

Lekethromycin (LKMS) is a semi-synthetic macrolide whose molecular structure is
similar to tulathromycin. Macrolides have high lipophilicity and are broadly dispersed
in the blood and in tissues [3], with slightly different pharmacokinetic properties based
on their chemical structure. Additionally, the efflux transporter protein P-glycoprotein
(P-gp) encoded by the adenosine triphosphate-binding cassette B1 (ABCB1) gene limits
macrolide absorption in the gut, whereas ABCB1 mediates macrolide excretion in the
bile [4,5]. Tulathromycin has been studied in a wide range of species, including cattle, pigs,
goats, and ponies, showing a long terminal half-life; it was demonstrated that tulathromycin
concentration peaked at approximately 1 h after subcutaneous administration in cattle
and after intramuscular administration in pigs [6–9] with, respectively, >90% and >80% of
bioavailability [10,11], >10 L/Kg of apparent volume of distribution, and 53–68% of plasma
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protein binding rate [11]. Moreover, tulathromycin was shown to be less metabolized
and activate similar metabolic pathways when administered to cattle, pigs, dogs, and rats.
Tulathromycin concentration in lung tissue was higher than that in plasma [12], indicating
that a single-dose delivery is possible [13]. In addition, the prototype was found among
major excreted tulathromycin metabolites (>90%) [14]. Tulathromycin is primarily excreted
in the bile and urine [11], with slow excretion rates in cattle and pigs [15]. Tulathromycin is
metabolized differently in cattle and pigs (i.e., by N-demethylation, N-oxidation and the
combinations of other metabolic pathways based on oxidation and demethylation) [14].
However, it was virtually completely excreted when in the prototype form, and most of the
drug was cleared. The European Medicine Agency reported that 30–50% of tulathromycin
in the prototype form was excreted in swine feces, with only approximately 1% excreted in
the urine after oral administration (2.5 mg/kg) [14].

LKMS, a tulathromycin-derivative and novel macrolide produced independently by
our group, had an activity equivalent to that of analogous commercial drugs, showing an
MIC50 within the range of 0.5–8 µg/mL for common G+ bacteria, and 1–8 µg/mL for G-

bacteria, respectively. The development of new drugs is urgent to contain the emergence
and spread of multidrug-resistant bacteria. The present study aimed to investigate the
pharmacokinetic profile of LKMS after po, im, and sc administration in rats. In addition,
LKMS metabolism was studied in rat liver microsomes to understand the in vitro pathway.
The studies are necessary to more accurately establish its safety and efficacy in rats, if
applicable, on its tissue kinetics to understand the absorption and transportation.

2. Results
2.1. Analytical Method

To determine the rate of LKMS plasma protein binding in rat plasma, an ultrafiltration
approach was utilized in this paper. The present investigation evaluated the accuracy and
precision of LKMS in the upper layer of filter cup after centrifugation. As shown in Table 1,
its recovery ranged from 94.60% to 112.55% for intra-day and from 94.17% to 111.09% for
inter-day, with intra- and inter-batch precision values less than 7.74%.

Table 1. Intra-day (n = 16) and inter-day (n = 18) precision and accuracy of lekethromycin (LKMS) in
solution at various concentrations (mean ± standard deviation).

LKMS Concentration
(ng/mL)

Intra-Day (n = 6) Inter-Day (n = 18)
Accuracy (%) Precision (%) Accuracy (%) Precision (%)

10 94.60 ± 1.02 7.47 94.17 ± 1.06 5.46
200 112.55 ± 1.05 4.75 111.09 ± 2.06 3.29
800 95.52 ± 1.01 4.32 93.93 ± 1.05 3.36

Our lab has developed and validated a reliable and sensitive method to determine LKMS
plasma concentration in rats [16], and the method was thoroughly verified for specificity,
linearity, accuracy, precision, matrix effect, extraction recovery, dilution integrity, and storage
stability, which was still employed to examine the LKMS concentration in this work.

2.2. Plasma Protein Binding Rate of LKMS

In this study, the LKMS plasma protein binding rate in rats was measured via ultra-
filtration method at concentrations of 10, 200, 800 ng/mL. In order to achieve a suitable
ultrafiltration performance for the assessment of plasma binding rate, the effects of incuba-
tion time and stability were investigated. The results are summarized in Tables 2 and 3,
suggesting LKMS was stable in rat plasma after 2 h incubation at 37 ◦C. Meanwhile, at
various incubation time intervals, the concentration of LKMS in the upper layer of the filter
cup after centrifugation did not demonstrate a significant variation. The rate of LKMS
plasma protein binding ranged from 78% to 91% (Table 4). Compared with a concentra-
tion of 10 ng/kg, the binding rate of LKMS (91 ± 4%) was significantly lower than the
concentration of 800 mg/kg (78 ± 9%).
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Table 2. Lekethromycin (LKMS) concentration at different incubation periods at 37 ◦C in rat plasma
(n = 5).

LKMS Solution
Concentration (ng/mL)

LKMS Concentration (ng/mL) (n = 5) Relative Standard
Deviation (%)0 h 0.5 h 1 h 2 h

10 8.44 ± 0.04 8.76 ± 0.05 9.44 ± 0.3 9.66 ± 0.5 6.02
200 196.21 ± 9.15 195.81 ± 8.21 197.69 ± 7.64 198.59 ± 16.39 1.57
800 714.92 ± 40.17 800.23 ± 45.24 802.56 ± 50.17 805.61 ± 62.17 6.78

Table 3. Lekethromycin (LKMS) concentration in concentrated solution at different incubation periods
(n = 5).

LKMS Solution
Concentration (ng/mL)

LKMS Concentration (ng/mL) (n = 5) Relative Standard
Deviation (%)0.5 h 1 h 2 h

10 17.70 ± 0.78 17.70 ± 0.61 15.75 ± 1.30 7.90
200 373.51 ± 44.70 372.59 ± 9.45 357.75 ± 10.64 7.80
800 871.00 ± 66.13 913.00 ± 23.04 941.11 ± 40.59 6.99

Table 4. Plasma protein binding rate for LKMS in rats.

LKMS Concentration (ng/mL) Protein Binding Rates (%)

10 91 ± 4
200 87 ± 6
800 78 ± 9

2.3. LKMS Pharmacokinetics Study

The PK parameters and drug-time curves of the LKMS in rat plasma were obtained
using Phoenix WinNonlin 8.4 software (Table 5, Figure 1). After 3 h following po administra-
tion, LKMS concentrations in plasma were below LOQ, and the data were not meaningful.
Meanwhile, the concentrtions in plasma were also below the LOQ after 12 h of im admini-
tration at a dose of 2.5 mg/kg. However, considering those data and software rules, we
estimated po PK parameters by using LOQ instead of the data that cannot be quantified.

Table 5. Pharmacokinetic parameters of lekethromycin (LKMS) after intravenous (5 mg/kg), intra-
muscular (2.5, 5, and 10 mg/kg) and subcutaneous (2.5, 5, and 10 mg/kg) administration in rats.

PK Parameters iv (5 mg/kg) im sc

2.5 mg/kg 5 mg/kg 10 mg/kg 2.5 mg/kg 5 mg/kg 10 mg/kg

T1/2λZ (h) 32.33 ± 14.63 48.37 ± 2.76b 57.54 ± 10.07a 56.76 ± 11.83a 136.70 ± 15.23b 131.93 ± 14.44b 64.02 ± 12.68a
Tmax - 1.80 ± 0.45a 2.00 ± 0.00a 2.20 ± 0.45a 2.20 ± 0.45b 2.00 ± 0.55b 3.00 ± 0.00a

Cmax (µg/mL) 5.73 ± 1.39 0.74 ± 0.19b 0.83 ± 0.11b 4.30 ± 1.11a 0.48 ± 0.04b 0.91 ± 0.13a 1.03 ± 0.18a
AUClast (h·µg/mL) 8.91 ± 2.31 3.99 ± 0.17c 7.53 ± 1.56b 24.89 ± 5.00a 3.47 ± 0.27c 6.61 ± 1.11b 9.33 ± 1.48a

AUCINF_obs
(h·µg/mL) 9.13 ± 2.37 4.74 ± 1.17b 8.44 ± 1.64b 26.81 ± 5.43a 4.52 ± 0.29c 7.93 ± 1.25b 9.99 ± 1.61a

Vz_obs (L/kg) 25.56 ± 7.93 - - - - - -
Vz_F_obs (L/kg) - 32.56 ± 14.37b 49.60 ± 7.37a 43.82 ± 18.81a 94.25 ± 16.89a 83.92 ± 7.31b 99.26 ± 12.07a

Vss (L/kg) 11.60 ± 0.57 - - - - - -
Cl_obs (L/h/kg) 0.58 ± 0.17 - - - - - -

Cl_F_obs (L/h/kg) - 0.55 ± 0.13a 0.61 ± 0.11a 0.39 ± 0.09b 0.52 ± 0.08b 0.64 ± 0.09b 1.11 ± 0.25a
MRTlast (h) 17.38 ± 7.71 21.46 ± 9.40b 43.38 ± 10.50a 27.67 ± 7.77b 28.19 ± 1.89a 31.09 ± 8.20a 38.07 ± 3.52a

F (%) - 89 84 139 77 74 52

T1/2λz, elimination half-life; Tmax, time to reach peak plasma concentration; Cmax, plasma peak concentration;
AUClast, area under the concentration–time curve from 0 to the last time point; AUCINF_obs, area under the
concentration–time curve from 0 to infinity. VZ_obs, apparent volume of distribution (for intravascular); VZ_F_obs,
apparent volume of distribution (for extravascular); Vss, steady state volume of distribution (for intravascular);
Cl_obs, apparent body clearance (for intravascular); Cl_F_obs, apparent body clearance (for extravascular); MRTlast,
mean residence time. F, absolute bioavailability. Values were considered significantly different if the p-value
was <0.05. The different symbols such as “a, b, c” mean significantly different statistically between different
administration does.
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Figure 1. Plasma pharmacokinetic curves of lekethromycin (LKMS) in rats after administration
via different routes, regimens, and doses: (A) Pharmacokinetic profile in rats after intravenous
administration of a single dose at 5 mg/kg; (B) Pharmacokinetic profiles in rats after intramuscular
administration at 2.5 mg/kg, 5 mg/kg and 10 mg/kg; (C) Pharmacokinetic profiles in rats after
subcutaneous administration at 2.5 mg/kg, 5 mg/kg and 10 mg/kg; (D) Pharmacokinetic profiles in
rats after oral administration at 2.5 mg/kg, 5 mg/kg and 10 mg/kg.

The half-life time (T1/2) of LKMS after im and sc administration were estimated to
range from 48.37 h to 57.54 h and from 64.02 to 136.70 h at three doses of 2.5, 5, and
10 mg/kg, respectively, which indicated that the LKMS elimination rate was low in rats.
The time to reach peak plasma concentration (Tmax) was estimated to be 1.8–2.2 h and
2.2–3.0 h after im and sc administration, respectively, which suggested that LKMS was
rapidly absorbed in rats. Furthermore, there appeared to be no significant difference
between the im and sc routes. The mean residence time (MRT) of LKMS after im and sc ad-
ministration was 21.46–43.38 h and 28.19–38.07 h, respectively. However, the MRT (43.38 h)
at dose of 5 mg/kg was significant different compared with the dose of 2.5 mg/kg (21.46 h)
and 10 mg/kg (27.67 h) after im. Additionally, the results also showed significant individual
differences. The mean calculated body clearance (Cl) was slow (0.58 ± 0.17 L/kg/h), and
the steady state volume of distribution (Vss) was 11.60 ± 0.57 L/kg in rats after iv adminis-
tration. A high absolute im bioavailability was detected in rats with an estimated value
ranging from 84% to 139%. The bioavailability ranged from 52% to 74% after sc administra-
tion, indicating lower absorption properties compared with im route. The bioavailability
revealed the good absorptive capability of LKMS in rats. The po adminitration showed
extremly poor absorption, wherein the LKMS concentration was below LOQ within 3 h.
Due to the small amout of data in this study, the PK profile following po (2.5 mg/kg) and
sc administration were shown by 3 h and 24 h, respectively. The apparent distribution
volume values (Vd) of 32.56–49.60 L/kg for im admnistration and 94.25–99.26 L/kg for sc
administration, indicating an apparent distribution in rats via im and sc adminisatrtion.
Accordingly, the area under the concentration–time curve (AUClast) revealed statically
significant changes according to the administration route, with an order of iv > im > sc at
dose of 5 mg/kg. Moreover, the confidence interval method was used to evaluate the linear
pharmacokinetics in the study, as showed in Table 6. Due to the minor overlap between the
confidence interval and judgment interval, those results demonstrated that the AUClast and
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Cmax cannot be considered linearly correlated with the administered dose. In short, LKMS
was rapidly absorbed, slowly eliminated, widely distributed after sc and im administration,
and showed a non-linear pharmacokinetic profile in rats. Notably, the data regarding
oral administration was below the LOQ within 3 h. As a result, the bioavailability of po
administration was extremely low. Similarly, non-linear pharmacokinetics were observed
in po administration.

Table 6. Confidence interval criteria for the evaluation of linear pharmacokinetics for lekethromycin
(LKMS) after intramuscular and subcutaneous administration.

Linear
Pharmacokinetics

Criteria

Intramuscular Administration Subcutaneous Administrations

Cmax AUClast Cmax AUClast

Linear regression
formula

y = 1.303x +
6.9704

y = 1.2833x +
5.646

y = 0.6031x +
7.7227 y = 7.46x + 0.72

Confidence interval [0.81, 1.80] [0.69, 1.68] [0.11, 1.10] [0.05, 1.04]
Judgement interval [0.84, 1.16] [0.74, 1.26] [0.84, 1.16] [0.74, 1.26]

Cmax, plasma peak concentration, µg/mL; AUClast, area under the concentration–time curve from zero to the last
time point, h·µg/mL.

2.4. LKMS In Vitro Metabolism

Subsequently, the metabolic stability of LKMS was assessed in this study. In vitro
metabolism of LKMS was not affected by incubation time, liver microsome protein con-
centration, and substrate concentration. As shown in Figure 2, the half-life of LKMS was
greater than 50 min when incubated with different species of liver microsome.
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High-resolution mass spectrometry (HRMS) has been widely used for the identifi-
cation of metabolites in vitro and in vivo [17,18]. Considering the parent drug and its
metabolites, full scans and all ion fragmentation acquisitions were conducted using an
UHPLC system coupled with an Orbitrap high-resolution mass analyzer to obtain full MS
spectra and ddMS2 data [19,20]. The metabolism of LKMS was analyzed using Compound
DiscovererTM software with a Fragment Ion Search (fishing) toll in a single workflow.
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Only one phase I metabolite of M1 was found in liver microsome of different species
in this study. No metabolites were associated to phase II biotransformation. The chro-
matograms of LKMS and its associated metabolites are shown in Figure 3, and mass spectra
are shown in Figure 4. The in vitro metabolic pathway of LKMS in the liver microsome
system is depicted in Figure 4.
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(M1, phase I metabolite).

Considering M0, the primary ions (m/z 804.5602) with the chemical formula C41H77N3O12
resulted in the following fragment ions: m/z 577.4082, m/z 420.2969, m/z 228.1603, m/z 158.1181,
and m/z 116.1077, with a retention time of 5.98 min. Collectively, the chromatograms agreed
with the secondary ion mass spectra of the parent drug.

Considering M1, the retention time of primary ions (m/z 776.52545) was 5.51 min, and
the chemical formula was C39H73N3O12, with the following fragment ions: m/z 577.4045,
m/z 158.1175, m/z 116.1072, and m/z 200.1284. Inferred from fragment ions m/z 577.4045,
158.1175, and 116.1072, it could be inferred that the lactone ring and the aminoglycan
fraction did not change. However, m/z 200.1284, with a 28-Da difference compared to the
fragment ion m/z 228.1603, was found. Thus, as shown in Figure 5, M1 was considered
the clathrate structure of LKMS which underwent decyclopropylation, N-methylation, and
hydroxylation of the oxygen-containing five-carbon lactone ring.
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3. Discussion

To the best of our knowledge, this study is the first to describe the pharmacokinetics
of LKMS in rats. The present investigation was carried out to obtain the pharmacokinetics
of LKMS when administered po, im, and sc in rats in light of the earlier work in our lab
that this medicine is safe and efficient.

Plasma protein binding is of vital importance in the pharmacokinetics and phar-
macodynamic of drugs [17]. Many methods in vitro have been developed for assessing
drug-protein binding, including equilibrium dialysis, ultrafiltration, and ultracentrifuga-
tion [18]. The plasma protein binding rate was determined via an ultrafiltration method
rate since it is less time consuming and easy to handle despite its non-specific binding
problem [19,20], and it was found to be ranged 78–91%. A high plasma protein binding
rate typically indicates that there is less medicine in free state in the plasma and that a
drug–drug interaction should be taken into account when co-administrating [21]. Unbound
drugs in plasma can easily reach the target organ compared with the bunded fraction.
Similar to other macrolides, the plasma protein binding rate in rat plasma decreased with
increasing LKMS concentration, indicating that LKMS would mostly bind to α-acidic gly-
coprotein rather than albumin. However, there is a shortage in the present study since we
examined the LKMS concentration in concentrated phase rather than ultrafiltrate.

In the current study, the dose of LKMS varied by extravascular routes. Additionally,
a study on iv pharmacokinetics was conducted previously to determine the parameters,
including Vss, Cl, and bioavailability. The Vss of LKMS was 11.60 ± 0.57 L/kg, and it is
possible that the lower volume of distribution was due to the relatively high plasma protein
binding rate in rats, reaching Cmax at 1.80–2.20 h and 2.00–3.00 h, respectively. T1/2 of
LKMS ranged from 2d to 6d in this study, which is comparable to the pharmacokinetic
character of tulathromycin (T1/2 of 4–6 d) [7–9]. A long LKMS residence time in plasma
(>17 h) was observed, indicating an extended action period. Furthermore, LKMS displays a
significant difference in mean values of bioavailability. When given via the im and sc routes,
respectively, the bioavailability of LKMS was 52–77% and 84–139%, which was comparable
to that of tulathromycin. However, when LKMS was administered orally, a significantly
lower bioavailability was observed. When given as a single gavage, tulathromycin was
found to have an equally poor bioavailability [15]. However, it is also important to consider
the differences in chemical structure between LKMS and tulathromycin. In addition, it was
found that LKMS plasma concentrations were below LOQ after 3 h po administration in
rats. As a result, the po bioavailability of LKMS was almost negligible. This phenomenon
previously appeared in a pharmacokinetic study of tulathromycin [22]. Due to its poor
permeability and the fact that it is the substrate of efflux pumps P-gp and MRP2, which have
been examined in the Caco-2 cell model, there may be a feasible explanation for the limited
oral bioavailability of LKMS (unpublished data). Im and sc administration can prevent
medication metabolism in the digestive system when compared to po administration. Given
that LKMS is unstable in solutions with a pH lower than 2, its stability in the digestive
system must be taken into account. It is unlikely that po administration was chosen in
contrast to the im and sc administration. Moreover, this study demonstrated that the
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AUClast and Cmax cannot be considered as linearly correlated with the administered dose
since there is a minimal overlap between the confidence interval and judgment interval.

The results of the metabolite studies suggested most of the parent LKMS was not
biotransformed in rats. It is assumed that LKMS is mainly eliminated unchanged. Similarly,
Pfizer reported that tulthromycin is not converted and is excreted by biliary and renal
excretion [11]. Phase I metabolism is the conversion of lipophilic compounds into highly
polar derivatives that are rapidly excreted through a specific metabolic enzyme system.
As demonstrated by our results, LKMS has a moderately lipophilic LogD7.4 of 2.27. It
is not easily metabolized and may result in low binding to metabolic enzymes [23]. It is
noteworthy that no metabolite connected to phase II biotransformation was found during
in vitro study. Similar to tulathromycin, tulathromycin was metabolized at a lower level
and was primarily eliminated in pigs [14]. Low clearance of LKMS in rats is consistent
with LKMS being insignificantly degraded and behaving with high metabolic stability [16].
It was therefore hypothesized that LKMS does not interact with metabolic enzymes and
undergoes extensive metabolism.

In conclusion, LKMS was demonstrated to have a high protein binding rate (78–91%),
and pharmacokinetic results indicated that LKMS had fast absorption, slow elimination,
and wide distribution after im, sc, and po administration in rats. The bioavailability of
im and sc was higher than 84% and 52%, respectively, whereas the absorption of po ad-
ministration is insufficient. In vitro, LKMS and its metabolites had high metabolic stability
in different species of liver microsomes. Additionally, this investigation only identified
one phase I metabolite, suggesting most of the parent LKMS was not biotransformed in
rats. Further studies are necessary to determine LKMS safety and efficacy, as well as tissue
kinetics to fully understand its absorption and transport in rats.

4. Materials and Methods
4.1. Chemicals and Reagents

LKMS standard (batch no. D20170101, purity ≥ 97%) was obtained from Henan Pulike
Biological Engineering Co., Ltd. (Luoyang, Henan, China). Gamithromycin was purchased
from Sigma–Aldrich (St. Louis, MO, USA). LC-MS grade methanol (MeOH), acetonitrile
(ACN) and formic acid (FA) were supplied by Fisher Scientific (Pittsburgh, PA, USA).
Ultrapure water was obtained from a Millipore Milli-Q purification system (Bedford, MA,
USA). NADPH and UDPGA were purchased from Sigma–Aldrich. Liver microsomes were
purchased from RILD Co., Ltd. (Shanghai, China). PBS tablets were purchased from Fisher
Scientific (Pittsburgh, PA, USA). Amicon® Ultra 0.5 mL Centrifugal Filters were purchased
from Sigma–Aldrich.

4.2. Determination of LKMS Plasma Concentration

Briefly, 10 µL of LKMS standard and 10 µL of internal standard were transferred to
180 µL of plasma, followed by vortexing for 10 s. Subsequently, 600 µL of acetonitrile was
added to precipitated protein, followed by centrifugation at 14,000 rpm for 20 min at 4 ◦C.
The supernatant was subsequently evaporated at room temperature using nitrogen purge.
The sample was reconstituted using 400 µL of injection solution (ACN: 1% FA·H2O = 1:9)
and transferred to injection vials for UPLC-MS/MS detection.

4.3. Determination of LKMS Plasma Protein Binding Rate

An ultrafiltration method was chosen to determine the plasma protein binding rate
of LKMS using Amicon® Ultra-0.5 Centrifugal Filters (10 kDa cutoff). To obtain plasma
containing LKMS at different final concentrations (10, 200, and 800 ng/mL), 2 µL of LKMS
work solution (with acetonitrile at approximately 1% of the total volume) was added to
200 µL of original rat plasma. The plasma was incubated at 37 ◦C for 30 min to reach an
equilibrium of drug prior to use in the plasma protein binding assay. Then, stability of
LKMS throughout different incubation periods was assessed.



Antibiotics 2022, 11, 1241 9 of 11

Ultrafiltration tubes were pre-wet in PBS buffer (pH 7.4) for 5 min, then agitated to dry,
and the concentrate collection cup was weighed to determine the tube’s initial weight (m1).
Then, 200 µL of LKMS-containing plasma was placed in ultrafiltration tubes for 20 min,
followed by centrifugation for 5 min at 12,000 rpm. The concentrate inner tube was inserted
in reverse into the pre-weighed concentrate collection tube, centrifuged for 2 min at 12,000
rpm, and the concentrate collection tube was weighed a second time (m2). Protein leakage
was determined using 10% perchloric acid solution, and total plasma concentration (C1)
and concentrate concentration (C2) were calculated. The plasma protein binding rate was
estimated according to the formula below:

PPB = [C2 × (m2 − m1)]/(0.2 × C1) (1)

4.4. Animal Study Design

In total, 60 Sprague Dawley rats (male/female) were submitted to fasting for 12 h
prior to the start of the experiment and were given free access to water. Rats were weighed
prior to LKMS administration to determine the dose. Based on the study design shown in
Table 7, rats were given the exact doses of LKMS. Blood samples (0.3–0.4 mL) were collected
at 0 h (pre-administration phase) and 5 (min), 0.25, 0.5, 1, 2, 3, 6, 8, 10, 12, 24, 48, 72, 96, 120,
144, 192, 240 h after administration. Animal experiments were approved by the Review
Committee of Animal Care and Use of China Agricultural University (14408-19-R-026).
Blood samples were centrifuged at 4000 rpm for 10 min and stored in a freezer at −20 ◦C
until further analysis.

Table 7. Pharmacokinetic dose regimen of lekethromycin (LKMS) in rats.

Group Animal Number Code Administration Route Dose of LKMS
(mg/kg)

1 1–6 Intravenous 5

2 7–12 2.5
3 13–18 Intramuscular 5
4 19–24 10

5 25–30 2.5
6 31–36 Subcutaneous 5
7 37–42 10

8 43–48 2.5
9 49–54 Oral 5
10 55–60 10

4.5. In Vitro Metabolism

The total incubation system (500 µL) consisted of PBS buffer (100 mM, pH 7.4), liver
microsomes (2 mg/mL), LKMS (10 µg/mL) and NADPH or UDPGA (2 mM). After pre-
heating for 5 min at 37 ◦C, the reaction started by the addition of freshly produced NADPH
or UDPGA. After incubation for 1 h at 37 ◦C, the reaction was terminated by the addition
of an equal volume of ice-cold acetonitrile containing an internal standard, followed by
vortexing and shaking for 1 min, and then by centrifugation at 14,000 rpm for 20 min. Then,
the supernatant was transferred to injection vials for further analysis.

Tandem mass spectrometry was performed with a Q-Exactive Orbitrap MS (Thermo
Fisher, Waltham, MA, USA) in the positive ion mode via fullmass-ddms2, employing a
heated electrospray ionization source for the ionization of target compounds. MS/MS
parameters employed were the following: spray voltage, 3.50 kV; sheath gas flow rate,
40 mL/min; auxiliary gas flow rate, 10 mL/min; capillary temperature, 320 ◦C; auxiliary
gas heater temperature, 350 ◦C; scan modes, full mass-ddms2 with NCE (15, 30, and 45 eV).
Xcalibur 4.1 software (Thermo Fisher Scientific, Waltham, MA, USA) was used to collect
MS/MS data. Compound DiscoverTM software was used to assess raw MS data files.
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4.6. Statistical Analysis Method

The lekethromycin plasma concentration versus time data for each rat was subject to
noncompartmental analysis using Phoenix WinNonlin 8.4 software. The difference between
groups were compared using SPSS software. Values were considered significantly different
if the p-value was <0.05.

The confidence interval method was used to assess linear pharmacokinetics [24–26].
The regression equation can be expressed as follows:

ln(y) = α + β × ln(Dose) (2)

The following equation can be used to calculate the judgement interval:

1 +
ln(θL)

ln(r)
< β < 1 +

ln(θH)

ln(r)
(3)

The equation for confidence interval calculated can be expressed as follows:

Sy·x =

√
∑(y − y)∑(y − y)2

n − 2
(4)

Sb =
Sy·x

∑(x − x)2 (5)

b − tα(v)Sb ≤ β ≤ b − tα(v)Sb (6)

The codes used in the text have the following meanings: H is the highest administrated
dose and L is the lowest administrated dose, hence r = H/L. θH: upper confidence interval;
θL: lower confidence interval. The pharmacokinetic parameters can be considered as
linearly correlated with the administered dose when the (1 − α) percentage confidence
interval of the slope β falls exactly in the judgment interval.
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