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Abstract

Background: Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while
maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of
hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways.
Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the
effective management and further optimization of clinical pathways.

Method: Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical
Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA
introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours
of a clinical pathway by extracting information from public clinical databases and other related documents using
CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time
can be quantitatively analysed.

Results: A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of
ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus
the number of patients being served is maintained with less cost; 2) the patient passage time is estimated,
providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input
patients are found, helping hospitals to decide whether they can serve more patients with the existing resource
allocation.

Conclusions: ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of
components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper
understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby
assisting hospitals to effectively manage time and resources in clinical pathway.

Introduction
Today, hospitals are asked to serve more and more
patients while maintaining the quality of healthcare with
limited medical staff and equipment. This situation
causes many serious problems, including overcrowded
emergency departments, delayed treatment of urgent

patients, long waiting time and decreasing satisfaction of
both doctors and patients [1]. Within such a context, it
becomes essential to apply information and communica-
tions technology (ICT) to achieve more efficient hospital
management. Health informatics (also named clinical
informatics) applies ICT to healthcare and biomedicine
for promoting public health, facilitating hospital man-
agement and reducing healthcare cost [2]. Among its
various branches, clinical pathway, emerging in the
1980s [3], is a popular tool to outline the sequence and

* Correspondence: y.guo@ic.ac.uk
† Contributed equally
1Department of Computing, Imperial College London, London, SW7 2AZ, UK
Full list of author information is available at the end of the article

Yang et al. BMC Bioinformatics 2011, 13(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/13/S14/S4

© 2012 Yang etal.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:y.guo@ic.ac.uk
http://creativecommons.org/licenses/by/2.0


timing of actions necessary to a desired outcome with
optimal efficiency [4]. The sequence of clinical actions
performed by a multidisciplinary team moves a patient
with a specific diagnosis progressively through a clinical
experience to a desired healthcare effect [4,5].
Clinical pathway focuses on improving the efficiency

of the healthcare process for patients, especially those
with acute diseases. A number of factors affect clinical
pathways, including changing amount of incoming
patients, uncertain diagnosis duration and other unpre-
dictable events. To date, the lack of formal modelling
methods in existing techniques [6-13] means the
description of clinical pathway is rather vague which
results that the complex behaviours involved in clinical
pathway cannot be adequately understood by hospital
managers. For such an issue, a mathematical model is
required to accurately describe these behaviours of a
clinical pathway. A novel platform for more efficient
clinical pathway management, therefore, is proposed in
this paper. The paper features four key elements:

1. A clinical pathway management platform, Imperial
Clinical Pathway Analyser (ICPA), is introduced for
quantitatively analysing clinical pathway. This plat-
form can construct models of clinical pathway using
existing clinical data and conducts performance ana-
lysis based on these models. The analysis results can
benefit hospitals by providing crucial information for
clinical pathway management.
2. Developed from performance evaluation process
algebra (PEPA) [14], a stochastic model clinical path-
way PEPA (CPP) is introduced to accurately describe
different aspects of a clinical pathway, including its
state transitions and treatment activities as well as
their associated resources and constraints.
3. Using CPP, performance analysis of a clinical
pathway can be conducted. The analysis results pro-
vide a variety of useful information in the clinical
pathway. Firstly, resource utilisation can help hospi-
tals to optimise resource allocation. Secondly, the
passage time under different patient inputs shows
patients’ expected residing time in hospitals. Thirdly,
the maximum number of input patients reveals the
capacity of hospitals.
4. A stroke clinical pathway obtained from Charing
Cross Hospital of Imperial College London is demon-
strated. We choose this example for medical and eco-
nomic reasons. Firstly, stroke is a typical acute
disease and the third most common cause of death
worldwide. Hence any delay in treatment may result
in severe disability [15,16]. Secondly, according to a
recent National Audit Office report, 4-6% of the total
NHS expenditure in the UK is spent on stroke treat-
ment. It is predicted that the better management of

stroke care can bring £20 m in annual savings, 550
fewer deaths and 1700 fewer cases of disability in the
UK [17,18].

Motivation
The stroke clinical pathway investigated in this paper is
for illustrative purposes. Stroke is a complex disease
requiring a systematic integration of services, e.g. pri-
mary care, ambulance services, acute treatment and
rehabilitation, post-acute rehabilitation, and often long-
term health and care support in the community. Due to
its complexity and requirement of various services, the
stroke clinical pathway presents a significant challenge
to existing generally fragmented health and social care
services. Moving from the current fragmented approach
to an integrated stroke system is a complex task. As
simulation models are useful during the planning stage
of complex service re-configuration, modelling methods
are in demand to simulate and optimize the stroke clini-
cal pathway. Figure 1 displays the abstraction of a gen-
eral stroke clinical pathway, obtained from Charing
Cross hospital of Imperial College London. A new 999
call from a patient or other hospitals initiates an
instance of this pathway. The information flow is sum-
marized as follows:

1. First, an ambulance scheduled by London Ambu-
lance Service (LAS) picks up the patient, where a
Fitness and Anthropometric Scoring Template
(FAST) test is carried out.
2. The patient is sent to the accident and emergency
(A&E) resuscitation department and referred to the
stroke team, if the FAST test shows s/he potentially
has a stroke. Otherwise s/he is sent to the normal
emergency department.
3. Next, if the patient is further diagnosed to have a
stroke, s/he is sent to the CT department; otherwise
s/he is transferred to the normal A&E department.
4. If a CT scan shows the patient does not have a
stroke, s/he will be switched to the non-stroke treat-
ment department. If the patient has a haemorrhagic
stroke, s/he is transferred to the Hyper-Acute Stroke
Unit (HASU). If the patient has an ischemic stroke,
clinicians need to further determine whether the
patient needs thrombolysis therapy.
5. Afterwards, the patient is sent to the HASU to be
cared by occupational therapists for two or three
days.
6. Finally, the patient is discharged from hospital,
and the community therapy team takes over.

As every patient has his/her own journey, modulated
by clinical issues and availability of resources, the clini-
cal pathway in Figure 1 is a model of a highly dynamic

Yang et al. BMC Bioinformatics 2011, 13(Suppl 14):S4
http://www.biomedcentral.com/1471-2105/13/S14/S4

Page 2 of 17



system. To model such a system, two challenges need to
be addressed:

1. There are many uncertainties in the clinical path-
way, so that a model may need to simulate pathways
in a stochastic manner. For example, the stroke clin-
ical pathway in Figure 1 has a changing number of

incoming patients, and the time spent in each
department for different patients may vary signifi-
cantly. Patients with different diagnoses will be
transferred to different departments, taking different
routes through the pathway. Therefore a modelling
method, which can cope with these complexities, is
required.

Figure 1 An example of the stroke clinical pathway.
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2. Performance analysis for different scenarios
should be supported. For example, patients would be
interested in the expected time they would spend in
hospital, while hospitals need to estimate the maxi-
mum number of patients they can treat every day
and manage the clinical pathway in a cost-effective
way. Thus a clinical pathway management platform,
which can explicitly evaluate the clinical pathway
performance, such as passage time and throughput,
would be of interest.

Related work
The general impact of information technology on the clin-
ical pathway like the influence of IT support on the satis-
faction of both patients and medical staff is studied [8-10].
The clinical pathway can be implemented manually on
paper [11] or electronically [12]. With a good understand-
ing of the clinical pathway, a set of evidence-based recom-
mendations forming guidelines for clinical practice can be
developed to both formalize and optimize the care process
[13]. Thus IT techniques embedded into clinical pathways
can efficiently decrease undesired practice variability and
improve clinician performance.
Some researchers further propose methods of model-

ling the clinical pathway. By using quantitative models,
the influence of individual resources on overall pathway
performance can be evaluated directly. However, little
work has been done in the area of modelling clinical
pathways with the aim of quantitatively improving sys-
tem performance. Although in [19], a pathway model to
facilitate the stroke care planning process is introduced,
without a mathematical representation, the model per-
formance cannot be shown explicitly. The work has
been done in [20] applies the workflow graph to model
the clinical pathway. Using this model, a similarity func-
tion is proposed to evaluate the temporal equivalence of
two clinical pathways in order to reduce a complex
pathway scenario into a simple one. In [21], ontology is
used to describe the clinical pathway. This model allows
the hierarchical representation of the clinical pathway,
e.g., a clinical pathway can be described as a combina-
tion of a high-level outcome flow and a detailed work-
flow with care time constraints. However, the work
done in [20] and [21] cannot build a model to explicitly
measure the performance of the clinical pathway, such
as throughput and passage time. Some researchers focus
on analysing time and resource information in clinical
pathway using stochastic Petri net. In [22], Rui et al.
introduce the Probabilistic Time Constraint WorkFlow
Nets (PTCWF-nets) to model a process. A static analysis
method is then proposed to analyse each activity’s prob-
ability of meeting its time constraints (e.g., deadline) in

a process before the process is actually executed. In
addition, they develop a dynamic method during the
execution of the process [23]. This method can update
remaining activities’ probabilities of successful execution
whenever some activities are completed and their actual
durations are known. Time schedulability is only one
aspect of performance analysis in clinical pathway and it
is closely related to another aspect: resource analysis. In
[24], they further apply PTCWF-nets to manage
resources. Their approach can schedule a clinical path-
way among multiple available resources and allocate
each activity to an optimal resource, i.e., the resource
that has the highest probability to finish the activity in
time. Authors in [25] also attempt to model clinical
pathway using Petri net. They introduce performance
trees to provide a standard unifying framework for
expressing performance measures and performance
requirements. Benefit from performance trees, the Petri
net model for clinical pathway can provide estimation of
steady state distribution and passage time.
Besides the work has been done to model the clinical

pathway using Petri net, process algebra is also intro-
duced to formally specify the interactions of different
entities in the clinical pathway [26]. Process algebra is a
mathematical framework used to describe a complex par-
allel system. In this framework, both the behaviour and
properties of the system are described in the form of
algebra, facilitating accurate definition and rigorous rea-
soning about the system in mathematics. PEPA is an
enhanced process algebra mainly used to describe and
analyse the performance of concurrent systems [14]. It
inherits most characteristics of process calculus while
incorporating features to specify a stochastic model,
which potentially behaves as a continuous time Markov
process. Comparing PEPA with other frequently used
modelling tools, a queuing network offers compositional-
ity but lacks formal definition, while a Petri net has for-
mal definition without good compositionality. Thus in
paper [27], PEPA is used to model the healthcare system.
Based on PEPA, the execution duration and throughput
of the clinical pathway can be evaluated. However, the
role of resources, which constrain the activities and
further limit pathway outcome, is not explicitly shown in
this model. Therefore, this paper proposes a general clin-
ical pathway model based on the CPP to analyse the per-
formance of system and optimize pathway output.
The remainder of this paper is organised as follows: the

Method Section introduces the architecture of ICPA,
defines the CPP model, and presents key theories in con-
ducting performance analysis on clinical pathway; the
Results Section reports our experimental tests of the CPP
model’s effectiveness; finally, the Conclusion Section
summarises our work.
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Method
A novel clinical pathway management platform, ICPA, is
proposed to effectively manage clinical data and provide
feedback to hospitals, aiming to improve healthcare sys-
tems by constructing models of clinical pathways. The
architecture of ICPA is shown in Figure 2. Hospitals,
treating various patients, take records of patients’ treat-
ment processes. The collected clinical data is stored in
clinical pathway databases. As the specific disease stu-
died in this paper is stroke, ICPA uses national stroke
related databases, such as the Stroke Improvement
National Audit Programme (SINAP) database [28], and
the database containing stroke clinical data in Charing
Cross hospital to parameterize the stroke clinical path-
way model. By constructing the stroke clinical pathway
model using our formal modelling method CPP, ICPA
can analyse the performance of the clinical pathway,
where throughput and passage time are estimated.
Using analysis results, hospitals can efficiently reconfi-
gure the clinical pathway. Hence, ICPA is a useful clini-
cal pathway platform for hospitals to understand
problems and find bottlenecks in the disease treatment
process.
The core element of ICPA is the CPP modelling

method. In ICPA the constructed model, whose model-
ling language should follow the rules of PEPA, is first
checked by the CPP Model Checker. By applying the
CPP modelling method, the clinical pathway can be

modelled in a stochastic manner where the time dura-
tion of each activity in the disease treatment process is a
variable. Furthermore, the CPP method supports multi-
ple parallel patients, enabling competition among
patients for the same treatment resources. As the under-
lying stochastic model of CPP is a continuous time Mar-
kov Chain, the steady state distribution and an
estimation of passage time can be produced. In the fol-
lowing subsections, technical details of the CPP model-
ling method will be discussed.

Definition of CPP
Inheriting and developed from PEPA, the basic elements
of CPP are state components, resource components and
activities. A state component represents the status of a
patient by showing in which department the patient is
being treated. A resource component is used to specify
the state of each resource, which can be either busy or
idle. The third component is the activity, which decides
transitions between different state components. As each
activity relies on one or more resources, the state transi-
tion can only take place when the associated resource
components are in their idle states. Therefore, the num-
ber of resources constrains the frequency of state transi-
tions and limits the system throughput. The model
defined by CPP which represents states and resources
separately is suitable for resource optimization and status
monitoring of patients. Definitions of CPP are as follows.

Figure 2 The architecture of ICPA platform.
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Definition 1. In CPP, the clinical pathway is repre-
sented by a five-tuple, < S, R, Act, C, FC >, where:

• S is a finite set of states s Î S, showing places that
patients are being treated;
• R is a finite set of resources, r Î R, required during
treatment;
• Act is a finite set of activities a Î Act; Each activ-
ity, a, is represented by a two-tuple (a, rate), where
a is the action type and rate is one over the mean
value of execution duration which is an exponentially
distributed random variable;
• C is a set of constraints c Î C;
• FC is a set of functions that determine action rate:
rate = f (cr1, cr2, . . . , crn) where f Î FC, cri Î C and
1 ≤ i ≤ n.

Definition 2. In CPP, the set S and R are basic com-
ponents. Given that these components can be commonly
denoted as P or Q, the syntax of the terms in CPP can
be defined as follows:

P def (α, rate).Q|P + Q|P ��
L Q (1)

• The sequential operator ‘.’ defines the order of P
and Q;
• The choice operator ‘+’ indicates competition
between P and Q;
• The cooperation operator��

L
determines the inter-

action between P and Q over the action set L.

For example, P
def
= (α, rate).Q means that the compo-

nent P becomes Q with the completion of the activity
(a, rate). The expression P + Q represents that the sys-
tem can behave either as P or Q. It enables all the activ-
ities of P and Q, and the first completed activity
determines how the system behaves. The cooperation
operator in the expression P ��

L Q forms the basis of
composition and can specify two components working
cooperatively with shared activities defined in L.

Three key parts of the CPP model
The CPP model consists of three key parts, namely state
definition, resource specification and system description,
which are used to show how the number of resources in
the healthcare system affects the total throughput and
the overall response-time for treatment.

1. State definition
The state definition part shows how patients pro-
ceed through healthcare system. It consists of
multiple state components representing places
that patients are being treated. Based on their

corresponding pathology states, patients with dif-
ferent diagnosis results are transferred to various
departments. Two related state components are
connected by sequential and choice operators.
The sequential operator shows the time sequence
of states, while the choice operator represents
competition between two states. Here is an
example of the state component definition:

Patientplace1
def
= (α, ρplace2 ∗ rateα).Patientplace2 + (α, ρplace3 ∗ rateα).Patientplace3 (2)

It shows that patient can move from the state
Patientplace1 to Patientplace2 or Patientplace3 with
probabilities of rplace2 and rplace3 after the com-
pletion of the activity whose action type is a.

2. Resource specification
The resource specification part defines all
resources including equipment and medical staff
required by state components. Transition
between different state components requires the
availability of corresponding resources. Assume
the resource Resourceplace1 needed by the state
component Patientplace1 is defined as

Resource idleplace1
def
= (β , rateβ).Resource−busyplace1

Resource busyplace1
def
= (α, rateα).Resource−idleplace1

(3)

where Resource_busyplace1 represents that the
resource is currently busy in completing the
activity whose action type is a, while Resource_i-
dleplace1 shows the resource is currently idle
waiting for the completion of activity whose
action type is b. The activities with action type
of b and a can occur in:

Patientplace0
def
= (β , rateβ).Patientplace1

Patientplace1
def
= (α, rateα).Patientplace2

(4)

where the state Patientplace0 is the previous state
of Patientplace1 and Patientplace2 is the next state
of Patientplace1. With completion of the activity
whose action type is b, patients can move from
Patientplace0 to Patientplace1. Meanwhile, the
resource required by Patientplace1 becomes busy
in treating the patient. After the treatment,
denoted as the activity with the action type of a,
the resource becomes idle again waiting to treat
another patient.

3. System description
The last part of the CPP model is the system
description part, describing the whole clinical
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pathway by using the cooperation operator to
denote interactions between components. Sup-
pose only one patient defined in Eqn.4 and one
resource component defined in Eqn.3 are
involved in the CPP model. The cooperation
between state component Patientplace0 and the
resource component Resource_idleplace1 can be
represented as

Patientplace0
��
β,α Resource idleplace1 (5)

where b and a are the action types on which two
components Patientplace0 and Resource_ idleplace1
synchronise. More specifically, the patient which
is currently in the initial state Patientpalce0 can
only be scheduled to the following states when
successive treatments are carried out.
As the healthcare system usually contains multi-
ple patients and multiple copies of resources, it
is necessary to represent parallel patients and
resources as follows:

Patientplace0[NumPatient]
def
= Patientplace0||...||Patientplace0︸ ︷︷ ︸

NumPatient

Resource−idleplace1[NumResource1]
def
= Resource idleplace1||...||Resource idleplace1︸ ︷︷ ︸

NumResource1

(6)

where || is the parallel combinator, equivalent to
��

∅ , showing that two components are in parallel.
Therefore, we can describe the system which
consists of multiple Patientplace0 and Resource_i-
dleplace1 in the form of

System def Patientplace0[NumPatient]
��
β,α Resource idleplace1[NumResource1] (7)

Although definitions in Eqn.3,4,7 can emphasize
the influence of resource on patient health care
process, it has a limitation. When all copies of
the resource are in their busy state Resource_bu-
syplace1, a new coming patient cannot be trans-
ferred from Patientplace0 to Patientplace1. The
patient will be stuck in the state Patientplace0
until at least one copy of resource become idle
enabling it transfer to Patientplace1 and then to
Patientplace2. In reality, even if all the copies of
resource are busy, we still want the new coming
patient to be able to move from Patientplace0 to
Patientplace1 and then stay in Patientplace1 waiting
for at least one copy of the resource becoming
idle. Therefore, we need to revise the resource
definition part by inserting an additional
resource as follows:

Wait room0 idle
def
= (β , rateβ).Wait room0 busy

Wait room0 busy
def
= (γ , rateγ ).Wait room0 idle

Resource idleplace1
def
= (γ , rateγ ).Resource busyplace1

Resource busyplace1
def
= (α, rateα).Resource idleplace1

(8)

Then the system description part is:

System def Patientplace0[NumPatient]
��

β Wait room0 idle[Numwait room0]

��
γ ,α Resource idleplace1[NumResource1]

(9)

The number of copies of the inserted resource
Wait_room0_idle should be sufficiently large to
guarantee that at least one copy is available at
any time, that is NumWait_room0 ≥ NumPatient.
Moreover, the action rate rateg must be large
enough to enable instant transition from Wait_-
room0_busy to Wait_room0_idle whenever at
least one copy of resource is in its idle state
Resource_idleplace1.
With definitions in Eqn.4,8,9, the CPP model for
a simple clinical pathway can be constructed. For
more complex clinical pathway, we can augment
this model to contain more state components
and more resources.

Key techniques of performance analysis using CPP
Rooted in a continuous time Markov process [14], CPP
model can be used to estimate the performance of clini-
cal pathway including throughput (the number of
patients that the healthcare system can serve every day)
and resource utilisation (the percentage of time that a
resource is in use).
The underlying stochastic process
The basic idea of a Markov process is that the distribu-
tion of time until the next state change is independent
of the time which has elapsed since the last state
change. Let the state transition rate between states Si
and Sj be

qSi,Sj =
∑

α∈Si α
→ Sj

rateα (10)

If there are no direct connections between these two
states, then the transition rate qSi,Sj = 0 . Let X(t) = Si
indicate that at time instance t, the system behaves as
Si. After a tiny amount of time δt, the probability that
the system is in state Sj is

Pr(X(t + δt) = Sj|X(t) = Si) = qSi,Sj ∗ δt + O(δt), i �= j (11)
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where O(δt) goes to zero faster than δt. Suppose that
the infinitesimal generator for the process Q is a square
matrix whose off-diagonal elements are qSi,Sj and diago-
nal elements are formed as the negative sum of the

non-diagonal elements of each row, qSi,Si = −
∑
j�=i

qSi,Sj .

The evolution of the continuous time Markov process is
represented by a first order differential equation [29]:

P′(t) = Q ∗ P(t) = P(t) ∗ Q, whereP(0) = I (12)

where P(t) is a square matrix with (i, j)th entry pi, j
standing for the probability Pr(X(t) = Sj|X(0) = Si). As
performance analysis is usually concerned with system
behaviour over a significant period of time, it is neces-
sary to study the steady state behaviour of the system.
If the steady state distribution exists, then the propor-
tion of time that the process spends in state Sj is repre-
sented as:

πj = lim
t→�

Pr(X(t) = Sj|X(0) = S0) (13)

Therefore, we can define:

∏
= lim

t→�
P (t) =

⎡
⎢⎢⎢⎣

π1 π2 · · · πN

π1 π2 · · · πN
...

...
...

π1 π2 · · · πN

⎤
⎥⎥⎥⎦ (14)

where N is the total number of states, subject to the
normalisation condition

∑
i

πi = 1 . Then Eqn.12
becomes:

�′ = � ∗ Q =

⎡
⎢⎢⎢⎣

π1 π2 · · · πN

π1 π2 · · · πN
...

...
...

π1 π2 · · · πN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

qS1,S1 qS1,S2 · · · qS1,SN

qS2,S1 qS2,S2 · · · qS2,SN

...
...

...
qSN ,S1 qSN ,S2 · · · qSN ,SN

⎤
⎥⎥⎥⎦ = 0

[
π1 π2 · · · πN

]
⎡
⎢⎢⎢⎣

qS1,Si

qS2,Si

...
qSN ,Si

⎤
⎥⎥⎥⎦ = 0 for i = 1, . . . , N

(15)

As qSi,Si = −∑
j�=i

qSi,Sj , then Equ.15 can be simplified to:

πi ∗
∑
j�=i

qSi,Sj

︸ ︷︷ ︸
flux out of state Si

=
∑
j�=i

πj ∗ qSj,Si

︸ ︷︷ ︸
flux into state Si

(16)

We can therefore use Eqn.10,16 to obtain steady state
distribution.
Here is a simple example to explain the above process.

Suppose the system behaviour can be modeled by a two
state Markov process whose state transition diagram is
shown in Figure 3. Then the generator matrix is as fol-
lows:

Q =
[−7 7

6 −6

]
(17)

We can therefore get steady state distribution from:

π1 ∗ 7 = π2 ∗ 6

π1 + π2 = 1
(18)

which is:

π = [π1, π2] = [0.46, 0.54] (19)

Calculating the resource utilisation and system throughput
The steady state distribution πi stands for the propor-
tion of time that the process spends in state Si. By find-
ing in which state Si the resource is busy, we can
calculate the resource utilisation. For example, if the
resource at placei is busy in state S1, S3 and S4, then its
utilisation can be obtained by π(Resource_busyplacei) =
π(1) + π(3) + π(4). If this resource has multiple copies,
we can calculate its average utilisation by

UtilisationResourceplacei = (
NumResourcei∑

j=1

π(Resource busyplacei)j)/NumResourceplacei (20)

where NumResourceplacei is the total number of Resource-

placei copies.
In the clinical pathway model, suppose that there is a

patient who completes the activity with the action type
l leaves the hospital. The throughput of pathway is esti-
mated by the expected number of completed activities
with action type l. Given the definition of resource
ResourceplaceN in the last place of the care process as
follows:

Resource−idleplaceN
def
= (σ , rateσ ).Resource−busyplaceN

Resource−busyplaceN
def
= (λ, rateλ).Resource−idleplaceN

(21)

where the completion of activity (l, ratel) enables the
resource to become idle. Then the throughput T can be
represented by:

T = rateλ ∗ UtilisationResource busyplaceN (22)

Figure 3 The state transition diagram of a two state Markov
process.
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showing that the system throughput is associated with
the utilisation of the resource whose state transition
depends on the type l activity.
Let us introduce the CPP model for a simple clinical

pathway (see Figure 4) to show how to analyze the
resource utilisation and throughput. Suppose the CPP
model is defined as follows:

% State Definition Part

Patientplace0
def

(β , 1).Patientplace1

Patientplace1
def

(α, 3).Patientplace0

% Resource Specification Part

Wait−room0−idle
def

(β , 1). Wait−room0−busy

Wait−room0−busy
def

(γ , 1000).Wait−room0−idle

Resource−idleplace1
def

(γ , 1000). Resource−busyplace1

Resource−busyplace1
def

(α, 3).Resource−idleplace1

% System Description Part

System
def

Patientplace0[2] ��
β Wait−room0−idle[2] ��

γ ,α Resource−idleplace1[1]

(23)

The equilibrium state can only be maintained if the
Markov process is irreducible that every state can be
reached from all other states. Therefore CPP constructs a
cyclic model in which the discharged patient will return
to its initial state Patientplace0. The state space of this
simple CPP model is shown in Figure 5, where each state
is represented by a five-tuple. For example, in state S5: (0,
1, i, b, i), the first element 0 represents the first patient is
in the place0; the second element 1 represents the second
patient is in the place1; the third element i represents the
first waiting room is idle; the fourth element b represents
the second waiting room is busy; and the last element i
represents the resource in the place1 is idle.
The generator matix Q has the following form:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0.5 0.5 0.5 0.5 0 0 0 0 0
0 −1001 0 0 0 1 1000 0 0 0
0 0 −1001 0 0 1 1000 0 0 0
0 0 0 −1001 0 1 0 1000 0 0
0 0 0 0 −1001 1 0 1000 0 0
0 0 0 0 0 −1000 0 0 500 500
0 0 0 0 0 0 −4 0 0.5 0.5
3 0 0 0 0 0 0 −4 0.5 0.5
0 0 1.5 0 1.5 0 0 0 −3 0
0 1.5 0 1.5 0 0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

from which we can get the steady state distribution:

[π1, π2, π3, π4, π5, π6, π7, π8, π9, π10]

= [0.5284, 3.523 ∗ 10−4, 3.523 ∗ 10−4, 3.523 ∗ 10−4, 3.523 ∗ 10−4, 1.409 ∗ 10−6, 0.1761, 0.1761, 0.05895, 0.05895] (25)

Therefore, we can obtain resource utilisation and
throughput:

UtilisationResourceplace1 = π(Resource−busyplace1) = π7 + π8 + π9 + π10 = 0.47

T = 3 ∗ UtilisationResourceplace1 = 1.41
(26)

We can use PEPA eclipse plugin [30] to simulate the
developed CPP model, from which resource utilization
and throughput can be directly obtained.
Critical assessments-state explosion problem
When there are many patients and multiple copies of
resources involved in the system description part, the
state explosion problem occurs. For instance, when
there are eight patients, eight waiting rooms and three
resources in Figure 4 clinical pathway, the number of
states increases from 10 to 75582. Then the dimension
of generator matrix Q becomes 75582 × 75582. Hence,
calculating steady state distribution by solving Eqn.16
turns out to be computational intensive and requires
large storage space. To address these problems, this
paper uses two methods which are state aggregation and
fluid analysis.
It has been pointed out in [31,32], by exploiting the

strong equivalence relations, we can generate the aggre-
gated CTMC where the number of states can be
reduced. Consider again the simple CPP model in
Eqn.23. As the states S2, S3, S4 and S5 shows that there
is one patient in place1, one patient in place0, one wait-
ing room is busy and the resource is idle, the aggregated
state S′

2 can be used to represent them without consid-
ering which patient is in place1 and which waiting room
is occupied:

S′
2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S2 = (Patientplace1||Patientplace0) ��
β (Wait−room0−busy||Wait−room0 − idle) ��

γ ,α Resource−idleplace1

S3 = (Patientplace1||Patientplace0) ��
β (Wait−room0−idle||Wait−room0 − busy) ��

γ ,α Resource−idleplace1

S4 = (Patientplace0||Patientplace1) ��
β (Wait−room0−busy||Wait−room0 − idle) ��

γ ,α Resource−idleplace1

S5 = (Patientplace0||Patientplace1) ��
β (Wait−room0 − idle||Wait−room0 − busy) ��

γ ,α Resource−idleplace1

(27)

Similarly, we use S
′
4 to represent S7 and S8, and S

′
5 to

represent S9 and S10:

S′
4 =

⎧⎨
⎩S7 = (Patientplace1||Patientplace0) ��

β (Wait room0 idle||Wait room0 idle) ��
γ ,α Resource busyplace1

S8 = (Patientplace0||Patientplace1) ��
β (Wait room0 idle||Wait room0 idle) ��

γ ,α Resource busyplace1

S′
5 =

⎧⎨
⎩ S9 = (Patientplace1||Patientplace1) ��

β (Wait room0 idle||Wait room0 busy) ��
γ ,α Resource busyplace1

S10 = (Patientplace1||Patientplace1) ��
β (Wait room0 idle||Wait room0 idle) ��

γ ,α Resource busyplace1

(28)

Therefore, the number of aggregated states is reduced
to 5. The state transition diagram is shown in Figure 6,
and the generator matrix Q’ is as follows:

Q′ =

⎡
⎢⎢⎢⎢⎣

−2 2 0 0 0
0 −1001 1 1000 0
0 0 −1000 1000 0
3 0 0 −4 1
0 3 0 0 −3

⎤
⎥⎥⎥⎥⎦ (29)

Figure 4 A simple clinical pathway. Patient in the place0 can be
transferred to place1 with the completion of b activity. When the
resource in the place1 is available, patient can be treated and
returns to place0 after a activity.
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We can get steady state distribution as:

π = [π1, π2, π3, π4, π5] = [0.5284, 0.001409, 1.409 ∗ 10−6, 0.3523, 0.1179] (30)

and further obtain resource utilisation and throughput:

UtilisationResourceplace1 = π(Resource busyplace1) = π4 + π5 = 0.47

T = 3 ∗ UtilisationResourceplace1 = 1.41
(31)

which are similar with Eqn.26.

Although the number of states can be reduced by
using the aggregation method (implemented in PEPA
eclipse plugin), when the amounts of patients and
resources become extremely large, the state aggrega-
tion method cannot solve the state explosion problem
well. Hence, fluid analysis of stochastic process model
is used in [27] to analyze systems of size 101000 states
and beyond. This approach approximates the state
space by using a set of ordinary differential equations
to describe the time evolution of state components.
Assume that, the mean number of component Pi at
time t is denoted as N (Pi(t)), then a differential equa-
tion can be used to represent the changes in N(Pi(t))
as:

N(Pi(t))′ = −
∑

j:Pi (α.,)
→

Pj

rate of α - action leaving Pi+
∑

j:Pj (β.,)
→

Pi

rate of β - action entering Pi (32)

A set of differential equations to present the CPP
model in Eqn.23 is as follows:

N(Patientplace0(t))′ = −1 ∗ min(N(Patientplace0(t)), N(Wait room0 idle(t)))

+ 3 ∗ N(Resource busyplace1(t))

N(Patientplace1(t))′ = 1 ∗ min(N(Patientplace0(t)), N(Wait room0 idle(t)))

− 3 ∗ N(Resource busyplace1(t))

N(Wait room0 idle(t)))′ = −1 ∗ min(N(Wait room0 idle(t)), N(Patientplace0(t)))

+ 1000 ∗ N(Resourceidle(t)), N(Wait room busy(t)))

N(Wait room0 busy(t)))′ = 1 ∗ min(N(Wait room0 idle(t)), N(Patientplace0(t)))

− 1000 ∗ N(Resourceidle(t)), N((Wait room0 busy(t)))

N(Resource idleplace1(t))′ = 3 ∗ N(Resource busyplace1(t))

− 1000 ∗ min(N(Resource idleplace1(t)), N(Wait room0 busy(t)))

N(Resource busyplace1(t))′ = −3 ∗ N(Resource busyplace1(t))

+ 1000 ∗ min(N(Resource idleplace1(t)), N(Wait room0 busy(t)))

(33)

Figure 6 The aggregated state transition diagram of a simple
CPP model.

Figure 5 The state transition diagram of a simple CPP model.
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where the initial conditions are:

N(Patientplace0(0)) = 2

N(Patientplace1(0)) = 0

N(Wait−room0−idle(0)) = 2

N(Wait−room0−busy(0)) = 0

N(Resource−idleplace1(0)) = 1

N(Resource−busyplace1(0)) = 0

(34)

By solving these equations, we can obtain the time
evolution of each component. The details of fluid analy-
sis can be found in [33]. By exploring the time evolution
of Pi, we can find the mean time that Pi reaches its
maximum. For example, Figure 7 shows N(Resource_bu-
syplace1(t)), whose maximum can be reached within two
days. With the introduction of fluid analysis, state explo-
sion problem can be addressed.
Calculating passage time
Based on fluid analysis, the mean passage time of a
patient to be discharged can be estimated by using a
stochastic probe [34]. For example, if we are interested
in the time by which a Patientplace0 component has
done its first a activity, we can attach a probe to
Patientplace0 to remember whether it has performed a
activity. The probe can be defined as follows:

NotFinished
def
= (α, 3).Finished

Finished
def
= (α, 3).Finished

(35)

We can replace the Patientplace0 component in the
system description part of the CPP model by the syn-
chronised component Patientplace0

��
α NotFinished.

The modified differential equations are:

N(Patientplace0
��

α NotFinished(t))′ = −1 ∗ min(N(Patientplace0
��

α NotFinished(t)), N(Wait room0 idle(t)))

N(Patientplace1
��

α NotFinished(t))′ = 1 ∗ min(N(Patientplace0
��

α NotFinished(t)), N(Wait−room0 idle(t)))

− 3 ∗ min(N(Patientplace1
��

α NotFinished(t)), N(Resource busyplace1(t))

N(Patientplace0
��

α Finished(t))′ = 3 ∗ min(N(Patientplace1
��

α NotFinished(t)), N(Resource busyplace1(t))

− 1 ∗ min(N (Patientplace0
��

α Finished(t)), N(Wait room0 idle(t)))

+ 3 ∗ min(N(Patientplace1
��

α Finished(t)), N(Resource busyplace1(t))

N(Patientplace1
��

α Finished(t))′ = 1 ∗ min(N(Patientplace0
��

α Finished(t)), N(Wait room0 idle(t)))

− 3 ∗ min(N(Patientplace1
��

α Finished(t)), N(Resource busyplace1(t))

N(Wait room0 idle(t)))′ = −1 ∗ min(N(Wait room0 idle(t))),

(N(Patientplace0
��

α NotFinished(t)) + N(Patientplace0
��

α Finished(t)))

+ 1000 ∗ N(Resourceidle(t)), N((Wait room0 busy(t)))

N(Wait−room0−busy(t)))′ = 1 ∗ min(N(Wait−room0 idle(t))),

(N(Patientplace0
��

α NotFinished(t)) + N(Patientplace0
��

α Finished(t)))

− 1000 ∗ N(Resourceidle(t)), N((Wait room0 busy(t)))

N(Resource idleplace1(t))′ = 3 ∗ N(Resource busyplace1(t))

− 1000 ∗ min(N(Resource idleplace1(t)), N(Wait room0 busy(t)))

N(Resource busyplace1(t))′ = −3 ∗ N(Resource busyplace1(t))

+ 1000 ∗ min(N(Resource−idleplace1(t)), N(Wait room0 busy(t)))

(36)

where the initial conditions are:

N(Patientplace0
��

α NotFinished(0)) = 2

N(Patientplace1
��

α NotFinished(0)) = 0

N(Patientplace0
��

α Finished(0)) = 0

N(Patientplace1
��

α Finished(0)) = 0

N(Wait room0 idle(0)) = 2

N(Wait room0 busy(0)) = 0

N(Resource idleplace1(0)) = 1

N(Resource busyplace1(0)) = 0

(37)

By summing the counts of all patient components of
the form • ��

α Finished, we can get an approximation
to the cumulative density function (CDF) for the time it

Figure 7 The numerical solution to the ODEs representing the mean number of Resource_busyplace1 over time.
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takes for an individual Patientplace0 component to per-
form its first a action (see Figure 8). In this paper, we
use a tool, Grouped PEPA Analyser, developed in [35] to
simulate the CPP model. This tool can estimate resource
utilisation and passage time based on fluid analysis.

Results
In this section, the CPP modelling method is applied
to model the stroke clinical pathway. It begins with the
parameter settings of experiment. Then detailed
description of the CPP model for stroke clinical path-
way is shown. By simulating the pathway using the
CPP modelling method, we can optimize the resource
allocation, estimate the passage time and find the max-
imum throughput with the current resource
distribution.

Experiment setup
In order to improve stroke service in London, the NHS
investigates seven HASUs opened in 2010 including the
one in Charing Cross Hospital. To ensure appropriate
and consistent measurements, the SINAP database is
used. Among the datasets published by NHS [36], the
HASU activity data which contains clinical information
for HASU in Charing Cross Hospital is shown in Table
1. It can be used to calculate transition probabilities in
Figure 1. For example, there are 116 stroke patients, 27
stroke mimic patients and 15 TIA patients. Then in Fig-
ure 1, the transition probability for the patient from
A&E to A&E referral is 27/(116+15+27) = 17%. Simi-
larly, the transition probability from CT scan to A&E
referral is 15/(116+27) = 10%.

To build the formal model of stroke clinical pathway,
parameters involved in pathway including execution
time of each care activity and the number of resources
available at each department should be estimated in
advance. Some of them can be directly obtained from
Table 1, where we can find the number of beds available
in HASU is 20 and the median length of stay in HASU
is 2 days. Moreover, NHS records the average time from
999 call to arrive hospital to be 62 minutes. As the
FAST test is carried out on ambulance, the mean time
of FAST test is therefore assumed to be 1 hour. Other
parameters such as the number of stroke teams in A&E
and CT scanners are not extracted directly from NHS
databases, and they are estimated by consulting related
documents and stroke experts. In this paper, we assume
that there are 3 stroke teams and 3 CT scanners in
Charing Cross Hospital. The number of ambulances is
set to be unlimited, ignoring the influence of the ambu-
lance in the model. Moreover, the mean lengths of stay
in A&E and CT scan departments are assumed to be
0.75 hour and 3 hours, respectively. All the parameters
and their value are summarized in Table 2.
This paper applies CPP to model the main stream of

the pathway where only the patients who can finally go
to the HASU are analyzed. Hence the pathway in Figure
1 is simplified as it is shown in Figure 9.

The CPP model of the stroke clinical pathway
The pathway model contains three parts, which are
state definition, resource specification and system
description. The CPP representation of these three
parts is as follows.

Figure 8 The CDF of the passage time of a patient performing the first a action.
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1. State definition

PatientHome
def
= (have stroke, rincome) .PatientLAS;

PatientLAS
def
= (do FAST, rdo FAST) .PatientA E Resus;

PatientA E Resus
def
= (asses and investigate, rassess and investigate).PatientCT scan;

PatientCT scan
def
= (scan, rscan) .Normal treat;

PatientNormal treat
def
= (treat HASU, rtreat HASU) .PatientHome;

(38)

2. Resource specification

Stroke team idle
def
= (do FAST, rdo FAST).Stroke team busy;

Stroke team busy
def
= (assess and investigate, rassess and investigate). Stroke team idle;

Wait room1 idle
def
= (assess and investigate, rassess and investigate).Wait room1 busy;

Wait room1 busy
def
= (wait scan, rwait for calling).Wait room1 idle;

Scan idle
def
= (wait scan, rwait for calling). Scan busy;

Scan busy
def
= (scan, rscan) .Scan idle;

Wait−room2−idle
def
= (scan, rscan) .Wait−room2−busy;

Wait−room2−busy
def
= (wait bed, rwait for calling) .Wait−room2−idle;

Bed idle
def
= (wait bed, rwait for calling). Bed busy;

Bed busy
def
= (treat HASU, rtreat HASU). Bed idle;

(39)

3. System description The third part is the system
description as follows:

System
def

PatientHome[Numpatient]
��

do FAST,assess and investigate Stroke team idle[Numstroke team]

��
assess and investigate Wait room1 idle[Numwaiting room] ��

wait scan,scan Scan−idle[NumScanner]

��
scan Wait room2 idle[Numwaiting room]

��
wait bed,treat HASU Bed−idle[Numbed]

(40)

In order to get the average patient incoming rate to 4,
the parameter Numpatient is set to 1000 and rincome is 0.004.

Three performance analysis scenarios
Three scenarios are tested in this subsection to show the
application of the CPP model in performance analysis.

The CPP model can detect the optimal resource alloca-
tion, estimate the passage time and determine the maxi-
mum throughput of the healthcare system.
Scenario 1: Resource optimization
Initially there are 3 stroke teams, 3 scanners and 20
beds available in the stroke clinical pathway. As the
average patient input is around 4, it may happen that
the resource utilisation is low. Hence, we investigate the
influence of resource quantity on system throughput. By
varying the numbers of stroke teams, scanners and beds,
we can find from Figure 10 that the largest throughput
that can be achieved is 3.95 patients/day, slightly smaller
than 4 patients/day. We cannot have the maximum
throughput value exactly equal to the number of input
patients. It can be explained from the definition of par-
allel input patients PatientHome[Numpatient], where Num-
patient is 1000 and the input rate is 0.004. Theoretically,
the number of input patients per day should be 1000 *
0.004 = 4. On the first day, 4 patients on average fall ill
and are treated sequentially through the clinical path-
way. As the mean time for the patient staying in HASU
department is 2 days, it is possible that these 4 patients
are still in the pathway on the next day. Hence, they
cannot return to the state PatientHome on the second
day, meaning that the number of patients at PatientHome

is slightly smaller than 1000. Therefore, there is a trivial
difference between the maximum throughput and the
number of input patients. However, this small difference
does not influence the performance analysis process.
Figure 10 is used to show how our performance analy-

sis result guides medical staff to find optimal resource
allocation, i.e., the amount of resource is kept minimal
while still maintaining the maximum throughput in the
clinical pathway. The three 3D graphs look similar and
they actually demonstrate the process of reducing

Table 1 HASU activity data from NHS [36]

Number of beds in
HASU

Number of stroke
admissions

Number of ‘mimic’ admissions Number of Transient
Ischaemic Attack
(TIA)

Number of patient
directly admitted to a
HASU

20 116 27 15 156

Number of stroke
patient
thrombolysed

Average door to needle
(thombolysis) times
(min)

Number of patients receiving a brain
scan within 24hrs of admission to
HASU

HASU median length
of stay (day)

Total number discharged
home directly from HASU

11 58 158 2 48

Table 2 The settings of experiment

Department Resource Resource Number Activity Activity Period Rate (/(day*resource))

LAS Ambulance Unlimited do Fast 1 hour 24

A&E for stroke Stroke team 3 stroke investigation 0.75 hour 32

CT scan Scanner 3 scan 3 hours 8

HASU bed 20 rehabilitation 48 hours 0.5
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redundant resources while keeping the throughput
unchanged. In these 3D graphs, we give two examples.
In the first example, the numbers of beds and scanners
are reduced from 20/3 to 8/1, respectively. This example
shows that twelve redundant bed resources and two
scanner resources can be removed and the clinical path-
way’s throughput is not influenced. The second example
further reduces two redundant stroke team resources
and keeps the throughput unchanged.
We can obtain the optimal number of each resource

in Table 3 and find that the resource utilisation can be
increased while the system throughput is maintained. It
is notable that the CPP model can find the optimal
resource allocation with varying number of input
patients. For example, with an input of 4 patients per
day, the optimal resource allocation is 1 stroke team, 1
scanner and 8 beds; if the input rate increases to 0.006,
meaning that there are 6 patients falling ill every day,
the optimal resource allocation is found to be 1 stroke
team, 1 scanner and 12 beds.
Scenario 2: Passage time estimation
Besides estimating the system throughput and resource
utilisation, CPP model can further predict the mean

passage time of a patient with the introduction of a sto-
chastic probe as follows:

NotFinished
def
= (treat HASU, rtreat HASU). Finished;

Finished
def
= (treat HASU, rtreat HASU). Finished;

(41)

The state NotFinished becomes Finished once the
activity whose action type is treat_HASU is completed.
When we attach this probe to the patient state compo-
nent as follows:

Patient Home
��

treat HASU NotFinished (42)

The mean time of a patient from falling ill to leaving the
HASU can be obtained. Figure 11 shows the probability
that a patient is discharged from the HASU within a spe-
cific time duration when there is 1 stroke team, 1 scanner
and 8 beds available. We can see that 90% of patients can
be discharged within 2.5 days and only 14% of patients
can be discharged within 1 day. Estimation of the whole
passage time not only tells patients when they can be dis-
charged, but also informs doctors the resource occupa-
tion time.

Figure 9 Simplified stroke clinical pathway.

Figure 10 Resource optimization of clinical pathway. The number of scanners varies from 1 to 3 and the number of beds ranges between 1
and 20 in each graph. The number of stroke team is set to 1 in (a), 2 in (b) and 3 in (c) respectively. The maximum throughput of 3.95 can be
achieved in (a), where there are 1 stroke team, 1 scanner and 8 beds.
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Scenario 3: Maximum input estimation
We can also examine the maximum throughput with dif-
ferent parameter settings. For example, if the pathway
model uses the initial parameters, in Figure 12 we can
see that when the number of input patients increases
from 1 to 100, the maximum throughput is around 10
patients/day. When the input number is 10, the through-
put reaches 9.74 patients/day, slightly smaller than the
maximum value (this difference has been discussed in the
Resource optimization subsection). Any further increase
in the number of input patients has trivial contribution
to the system throughput.
Therefore, by simulating the CPP model, we can find

the maximum number of input patients that can be
supported by the healthcare system. This maximum
input estimation is significant for hospital to determine
whether it can accept more stroke patients or not. For
example, suppose there are already 10 patients on aver-
age coming to the hospital from the surrounding area.
If the national health community asks whether this

hospital can serve patients from larger area, meaning
that more than 10 patients will arrive every day, by
estimating the maximum input this hospital can deter-
mine whether this is possible and whether more
resources are required to support the increased num-
ber of patients.

Conclusions
This paper introduces a clinical pathway management
platform, ICPA, whose core element is the stochastic
model CPP. CPP can unambiguously describe a variety of
elements in a clinical pathway. Using CPP, the clinical
pathway can be quantitatively analyzed and this perfor-
mance analysis can provide a range of useful information
for facilitating clinical pathway management. A real-
world stroke clinical pathway, obtained from Charing
Cross hospital of Imperial College London, is employed
to demonstrate the practical applicability of ICPA. Three
scenarios were tested to show that ICPA can assist hospi-
tals to improve healthcare system by 1) reducing

Table 3 Comparison of resource utilisation: The utilisations of resources resulting from the model with initial and
optimal parameter sets are compared.

Stroke team Scanner Bed

Number Utilisation Number Utilisation Number Utilisation

Initial parameter set 3 0.038 3 0.153 20 0.368

Optimal parameter set 1 0.115 1 0.46 8 0.92

Figure 11 Passage time. It shows the probability that a patient can be discharged within a specific time. This figure is obtained when the
model uses an optimal parameter set. When the model uses the initial parameter set, we get the same figure, showing that the system passage
time remains the same.
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redundant resources 2) predicting patient passage time 3)
estimating the maximum patient input. The approach
presented in this paper can be used effectively to manage
the clinical pathways within one hospital. There are mul-
tiple revenues for extending the work and we discuss
four possible directions below.

1. CPP model can be extended to incorporate survi-
val analysis by collecting clinical data including
patient recovery speed and survival rate. The aug-
mented model can then be used to examine the
influence of treatment delay on patients’ recovery
processes. Therefore, the results from the ICPA can
be used to increase patient recovery probability and
decrease the recovery time.
2. Multiple hospitals can be managed concurrently
using ICPA. At present, there are seven hospitals in
London with HASU departments to treat stroke
patients. ICPA can be extended to combine their
clinical data to build a uniform model. By analysing
this model, patients can be dynamically scheduled to
different hospitals in order to optimise their treat-
ment process.
3. The stroke clinical pathway discussed in this
paper is described in the coarse granularity. With
clinical data, ICPA can be applied to analyse an ele-
ment in the clinical pathway in the fine granularity.
For example, the HASU department, one element of
the stroke clinical pathway, needs to treat patients

with multiple therapies. If this type of information
can be obtained and modelled by CPP, ICPA can
view HASU as a clinical pathway and conducts per-
formance analysis on it.
4. A user friendly interface can be build to facilitate
medical staff’s access to ICPA. Currently, ICPA only
provides analysis results such as optimal resource
allocation to medical staff. By interpreting these per-
formance analysis results, medical staff can optimally
re-allocate medical resources and re-configure treat-
ment process. In the future, we plan to develop a
user portal to help medical staff construct the clini-
cal pathway model by themselves.
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