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Abstract
Estimating correlations among demographic parameters is critical to understand-
ing population dynamics and life-history evolution, where correlations among pa-
rameters can inform our understanding of life-history trade-offs, result in effective 
applied conservation actions, and shed light on evolutionary ecology. The most 
common approaches rely on the multivariate normal distribution, and its conjugate 
inverse Wishart prior distribution. However, the inverse Wishart prior for the covari-
ance matrix of multivariate normal distributions has a strong influence on posterior 
distributions. As an alternative to the inverse Wishart distribution, we individually 
parameterize the covariance matrix of a multivariate normal distribution to accu-
rately estimate variances (σ2) of, and process correlations (ρ) between, demographic 
parameters. We evaluate this approach using simulated capture–mark–recapture 
data. We then use this method to examine process correlations between adult and 
juvenile survival of black brent geese marked on the Yukon–Kuskokwim River Delta, 
Alaska (1988–2014). Our parameterization consistently outperformed the conjugate 
inverse Wishart prior for simulated data, where the means of posterior distributions 
estimated using an inverse Wishart prior were substantially different from the values 
used to simulate the data. Brent adult and juvenile annual apparent survival rates 
were strongly positively correlated (ρ = 0.563, 95% CRI 0.181–0.823), suggesting that 
habitat conditions have significant effects on both adult and juvenile survival. We 
provide robust simulation tools, and our methods can readily be expanded for use in 
other capture–recapture or capture-recovery frameworks. Further, our work reveals 
limits on the utility of these approaches when study duration or sample sizes are 
small.
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1  | INTRODUC TION

Capture–mark–recapture–resight and capture–mark–recovery data 
can be used to estimate demographic parameters such as true and 
apparent survival, site fidelity, movement and harvest rates, breed-
ing propensity, demographic heterogeneity, and relationships among 
these parameters and environmental covariates (Brownie & Pollock, 
1985; Cam, Link, Cooch, Monnat, & Danchin, 2002; Gimenez, Cam, 
& Gaillard, 2018; Kendall et al., 2013; Kendall, Nichols, & Hines, 
1997). Estimating relationships between demographic parameters 
can lead to more effective conservation actions (Arnold, Afton, 
Anteau, Koons, & Nicolai, 2016; Servanty et al., 2010, 2011), where 
biologists might direct conservation actions toward demographic 
components which are intrinsically linked, such as pre-and post-
fledging survival (Nicolai & Sedinger, 2012) or adjust anthropogenic 
harvest rates to affect population growth rates of wild organisms 
(Nichols, Runge, Johnson, & Williams, 2007; Péron, 2013; Runge et 
al., 2002; Williams & Johnson, 1995). Estimating relationships among 
demographic rates can also advance our understanding of individual 
heterogeneity, life-history trade-offs, and the evolution of life histo-
ries (Cam, Aubry, & Authier, 2016; Cam et al., 2002; Gimenez et al., 
2018; Stearns, 1992).

Estimating correlations among demographic parameters has 
often proven challenging, because sampling correlations can ob-
scure process correlations (Anderson & Burnham, 1976; Link & 
Barker, 2005). For instance, the estimation of band recovery prob-
ability is confounded with the estimation of survival (Anderson & 
Burnham, 1976), affecting inference on the relationship between 
survival and harvest. Previous methods have employed approaches 
to achieve independent samples by comparing estimates of sur-
vival from the marked sample with estimates of harvest of the total 
population (Anderson & Burnham, 1976) or by partitioning the cap-
ture-mark-recovery data (Nichols & Hines, 1983). Recently, work 
on the effects of harvest on survival has focused on understanding 
process correlations (ρ) between survival and harvest rates (Arnold 
et al., 2016; Bartzen & Dufour, 2017; Sedinger, White, Espinosa, 
Partee, & Braun, 2010), where a strong negative correlation suggests 
additive relationships between survival and harvest, and minimal or 
no correlation may be indicative of compensation or partial compen-
sation, although these relationships are complex (Arnold et al., 2016; 
Péron, 2013). Others have focused on the correlation between nat-
ural mortality and harvest mortality (Péron, 2013; Servanty et al., 
2010), where no correlation may be indicative of additive harvest, 
and a negative correlation may be indicative of compensatory har-
vest. Ecologists have both highlighted (Arnold et al., 2016; Péron, 
2013; Servanty et al., 2010) and debated (Arnold, Afton, Anteau, 
Koons, & Nicolai, 2017; Lindberg, Boomer, Schmutz, & Walker, 2017) 
the utility of these approaches. Capture–recapture (Riecke, Leach, 
Gibson, & Sedinger, 2018) and integrated population models can also 
be used to examine covariation among parameters such as survival 
and breeding propensity. This allows researchers to examine life-his-
tory trade-offs at the individual or population level (Cam et al., 
2002), as well as correlations among other demographic parameters 

(Kindsvater et al., 2018; Koons, Arnold, & Schaub, 2017; Link & 
Barker, 2005; Schaub, Jakober, & Stauber, 2013). Conservation bi-
ologists can subsequently use these relationships to predict the po-
tential of management actions to affect wildlife populations.

Bayesian hierarchical models allow for the separation of sam-
pling and process correlations (Link & Barker, 2005). However, the 
choice of priors can dramatically impact posterior distributions and 
inference when using Bayesian models, where relatively uninforma-
tive priors are often favored (Link, Cam, Nichols, & Cooch, 2002) for 
objective Bayesian analyses. Further, conjugate priors are desirable 
computationally, because their full-conditional distributions are an-
alytically tractable with a known distribution, and there is no need 
for Metropolis–Hastings updates or tuning. A conjugate prior for the 
covariance matrix (K × K) of a multivariate normal distribution is the 
inverse Wishart distribution, where quantitative ecologists often 
use this distribution with degrees of freedom equal to K + 1 and a 
K × K identity matrix as a scale matrix (Haff, 1979; Kéry & Schaub, 
2012; Péron, 2013; Wishart, 1928). Thus, for a bi-variate normal 
distribution,

where I is a 2 × 2 identity matrix. Critically, simulation work has re-
vealed that the inverse Wishart prior is strongly informative for co-
variance matrices (Alvarez, Niemi, & Simpson, 2014). Specifically, 
the inverse Wishart prior can result in strong prior influence on the 
posterior distribution of variances and covariances, particularly when 
variances are small (σ2 < 0.25), affecting the posterior distribution of 
correlations (Alvarez et al., 2014). The shape of the logistic link func-
tion, and life-history theory (Stearns, 1992), dictates that the standard 
deviations (σ), and consequently variances (σ2), of demographic pa-
rameters of interest will typically be small (Gimenez et al., 2018). For 
instance, typical North American dabbling duck survival rates exhibit 
variances of approximately σ2 = 0.1, where σ2 is from Equation (1). 
Given the structure of covariance matrices, where the covariance is 
equal to the product of the square roots of the applicable variances, 
and a process correlation between the applicable parameters (σiσjρi,j), 
the use of the Wishart, scaled inverse Wishart (O'Malley & Zaslavsky, 
2008), or hierarchical half-t (Huang & Wand, 2013) priors for a preci-
sion matrix often leads to the underestimation of ρ. This has important 
implications for the interpretation of process correlations, affecting 
biological inference and management decisions.

To alleviate current issues regarding the estimation of ρ and σ2 
when using the logistic link and the inverse Wishart distribution, 
we propose individual parameterization for the components of the 
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covariance matrix when using multivariate normal distributions to 
estimate parameters.

This approach avoids introducing strong, undesirable effects on 
the posterior distributions via the prior distributions, such as the 
scaled inverse chi-square distribution implied for the variances when 
using the inverse Wishart distribution as a prior for the covariance 
matrix (Figure 1), or the implied correlations among σ and ρ (Alvarez 
et al., 2014, Figure 2). The inverse Wishart prior, as well as other 
derivatives of that prior, clearly leads to correlations among σ and 
ρ (Alvarez et al., 2014). Other hyperpriors for variances, such as the 
half-t, half-normal, or half-Cauchy, may be equally effective as a uni-
form prior. However, we strongly suggest careful consideration of 
the data, and the use of vague priors when modeling a covariance 
matrix.

To demonstrate the utility of our approach, we use simulated 
data, as well as a robust longitudinal dataset, capture–mark–recap-
ture–resight data from female Pacific black brent geese (Branta ber-
nicla nigricans; hereafter, brent) marked on the Yukon–Kuskokwim 
River Delta in Alaska (1988–2014). Brent breeding at the Tutakoke 
River Colony on the Yukon–Kuskokwim River Delta, Alaska, has 
been monitored from 1984 through the present (Leach et al., 2019; 
Sedinger, Flint, & Lindberg, 1995). Over the duration of the Tutakoke 
River Colony brent demographic project, researchers have collected 
data on every avian demographic component, where an enhanced 
understanding of process correlations among demographic compo-
nents may lead to more effective management actions, and improve 
our understanding of demographic buffering and life-history trade-
offs. We use multivariate normal distributions, and novel covariance 
matrix parameterizations for demographic parameters (Barnard, 
McCulloch, & Meng, 2000), to assess the relationships among adult 
and juvenile survival of brent to better understand life-history trade-
offs and the demographic buffering hypothesis (Gaillard, Festa-
Bianchet, Yoccoz, Loison, & Toigo, 2000; Pfister, 1998; Stearns, 
1992), which predicts that vital rates with greater demographic sen-
sitivities will have lower variances. Further, we simulate thousands 
of biologically plausible capture–mark–recapture datasets to explore 
the effects of prior influence on inference in the presence of parame-
ter uncertainty and imperfect observation when truth is known. Our 
work has important implications for researchers using multivariate 

normal distributions to estimate process correlations among demo-
graphic parameters of wild organisms, as well as research in other 
fields where inverse Wishart distributions are used as prior for cova-
riance matrices for multivariate data (e.g., Multivariate spatial mod-
els, Gelfand, Diggle, Guttorp, & Fuentes, 2010; Bayesian structural 
equation models).

2  | METHODS

2.1 | Capture–mark–recapture data simulation

We simulated capture–mark–recapture datasets using mean annual 
adult apparent survival probabilities of 0.73 (��ad

=1,�2
�ad

=0.1 on the 
real scale), and mean annual juvenile survival probabilities of 0.27 
(��juv

=−1,�2
�juv

=0.1 on the real scale; Table 1), to approximate adult 

and juvenile survival probabilities for species with intermediate-
paced life-history strategies. Our simulations and the R script we 
provide (Data availability statement) can be easily modified to assess 
relationships for species with slower or faster paced life-history 
strategies. To assess our ability to estimate process correlations (ρ), 
we used fixed variances of 0.1 for adult and juvenile survival rates, 
and randomly generated a process correlation between adult and 
juvenile survival for each simulation (v) using a uniform distribution 
to represent all possible relationships between these two demo-
graphic parameters,

To generate capture–mark–recapture data, we first simulated 
each individual's latent state (zi,t) given its intial release occasion (τi), 
initial age-class (juvenile or adult), number of release occasions (T), 
and time-varying survival probabilities (Φ),

We then simulated capture histories for each individual (yi,t) 
given its current latent state (zi,t) and a detection probability (p = .5),

y∼Normal (�,Σ)
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We simulated 1,000 populations and capture–mark–recapture 
datasets for each pairwise comparison of 10, 20, and 30 occasions, 
and 100, 1,000, and 5,000 releases per occasion, for a total of 9,000 
simulated capture–mark–recapture datasets.

2.2 | Analyzing the simulated data

For each simulated dataset, we built age-specific Bayesian CJS mod-
els (Cormack, 1964; Jolly, 1965; Seber, 1965), identical to the model 
used to simulate the data. We first modeled each individual's latent 
state (zi,t) given its release occasion (τi) and age at release, given 

Equation (4). We then modeled each individual's capture history as a 
function of its latent state, given Equation (5). For computational ef-
ficiency, we structured the capture–mark–recapture data in m arrays 
for juveniles and adults (Data availability statement). To examine 
process correlations between adult (ϕad) and juvenile (ϕad) survival, 
we drew occasion specific adult and juvenile survival probabilities 
from a multivariate normal distribution,

where �= (��ad
,��juv

) and Φ= (�ad,t,�juv,t). We specified vague priors for 
the means of adult and juvenile survival,

(6)logit (Φ)∼Normal (�,Σ),

F I G U R E  1   Fifty randomly generated annual survival probabilities given mean survival (μS) of 0.5 and a variance (�2
S
) of 0.1 on the real 

scale and their respective positions on the inverse logit link function (left). Additionally, we plot prior distributions for the standard deviation 
of survival probabilities from a Wishart prior with an identity scale matrix and degrees of freedom equal to K + 1 (center), and from a 
uniform prior with a lower bound of 0, and an upper bound of 5 (right), where the uniform prior is clearly less informative for variances of 
demographic parameters

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Real

Lo
gi

t–
1

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

0
40

0
60

0
80

0
1,

00
0

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

0
40

0
60

0
80

0
1,

00
0

F I G U R E  2   Correlations among standard deviations (σk) and process correlations (ρ) drawn from an inverse Wishart prior with an identity 
scale matrix and degrees of freedom equal to K + 1 (left), and from a multivariate normal distribution where hyperpriors of the covariance 
matrix were individually specified, where we used a half-normal distribution with a variance of ten for the standard deviations, and a uniform 
prior with lower and upper bounds of −1 and 1 for the process correlation (right). Note the strong correlation between values of (σk) and 
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We then used two approaches to estimate the covariance ma-
trix (Σ). First, we modeled the precision matrix (Σ−1) of the multivar-
iate normal distribution with a Wishart prior (Equation 1). Second, 
we specified priors for the components of the covariance matrix 
(Equation 2).

2.3 | Brent capture–mark–recapture data collection

We captured brent by drive-trapping during brood-rearing and the 
adult remigial molt at the Tutakoke River Brent Colony in western 
Alaska (61.25°N, −165.62°W; Sedinger, Lindberg, Rexstad, Chelgren, 
& Ward, 1997). We uniquely marked all encountered individuals with 
stainless steel or incoloy USGS rings and uniquely engraved plastic 
tarsal rings. Prior to ringing efforts each year, we monitored nests in 
49 long-term, 50-m radius plots, and actively located nests of tarsal-
ringed females at the colony (Sedinger et al., 1995). Following hatch, 
we observed adults and goslings from 3 to 4 m tall observation 
blinds throughout brood-rearing. We then captured adults, goslings, 
and second-year females (fledged the previous year) during the adult 
and second-year remigial molt, and prior to goslings gaining flight 
capabilities, with few exceptions. For this analysis, we constrained 
our encounter histories to include all adult (ad), second-year (sy), and 
juvenile ( juv) females encountered at the nest, during brood-rearing, 
or during ringing drives from 1988 to 2014, for a total sample of 
8,338 adult and second-year, and 12,630 juvenile, female brent.

2.4 | Brent capture–mark–recapture data analysis

We built models to estimate adult and juvenile survival, and the cor-
relation between these parameters, in exactly the same way as for 
the simulated data with one exception. We modeled age-related and 
temporal heterogeneity in detection probability. Brent do not breed 
until after their second year, and they are less likely to be detected at 

the breeding colony until this time. However, we do resight second-
year females at the colony and recapture these individuals during 
ringing efforts. Thus, we modeled detection probabilities of second-
year and adult brent separately based on age-class (k), where we 
estimated detection probability for both age-classes (pk) as random 
variables drawn from a normal distribution with a mean (�pk) and vari-
ance (�2

pk
),

We did not discriminate between adult and second-year sur-
vival probabilities, as previous analyses have not indicated varia-
tion in survival rates between these age-classes (Leach et al., 2019; 
Lindberg, Sedinger, & Lebreton, 2013; Sedinger, Herzog, & Ward, 
2004). To examine process correlations between adult (ϕad,t) and 
juvenile (ϕjuv,t) survival, we drew survival parameters (Φ) from a mul-
tivariate normal distribution. We used identical approaches as those 
used for the simulated data to parameterize the covariance matrix, 
where we first modeled the precision matrix (Σ−1) of the multivariate 
normal distribution with a Wishart prior (Equation 1). Second, we 
specified hyperpriors for the components of the covariance matrix 
(Equation 2).

2.5 | Computational details

We simulated data using R 3.5.1 (R Core Team, 2018), and all analy-
ses were conducted in JAGS (Plummer, 2003) using the ‘jagsUI’ pack-
age (Kellner, 2016). We ran two MCMC chains of 25,000 iterations 
for each model for simulated data, where we discarded the first 
15,000 iterations and retained every fifth saved iteration (Schaub 
& Fletcher, 2015). For the brent data, we ran two MCMC chains of 
100,000 iterations, where we discarded the first 50,000 iterations 
and retained every fifth saved iteration.

3  | RESULTS

3.1 | Capture–mark–recapture simulation

When we used the same model to simulate and analyze the capture–
mark–recapture data with an inverse Wishart prior on the covariance 
matrix of the multivariate normal distribution, the means of the pos-
terior distributions of the process correlation (ρ) between adult and 
juvenile survival were different than the values used to simulate the 
data for all combinations of releases and occasions (Table 2). Further, 
95% Bayesian credible intervals only covered truth for approxi-
mately 75% of simulations (Table 3). Critically, coverage declined as 
|ρ| increased (Figure 3). However, when we used hyperpriors on the 

(7)
��ad

∼Normal (0,1),

��juv
∼Normal (0,1).

(8)

logit(pk,t)=�0+�pk,t ,

�0∼Normal (0,3),

�pk,t ∼Normal (0,�2
pk
),

�pk
∼Uniform (0,3).

TA B L E  1   Parameter values used to simulate data for capture–
mark–recapture models

Model Symbol Parameter value

Parameter θ  

Mean adult survival ��ad
1

Temporal variance in adult 
survival

�2
�ad

0.1

Mean juvenile survival ��juv
−0.5

Temporal variance in juve-
nile survival

�2

�juv

0.1

Process correlation ��ad,�juv
Uniform (−1, 1)

Detection probability p 0.5
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individual components of the covariance matrix, matching the vari-
ances of the demographic parameters to the prior (Figure 1), bias in 
the estimation of ρ was reduced for all combinations of releases and 
occasions (Figure 3), and eliminated when data were sufficient to 
estimate these parameters (Table 2). Further, credible interval cov-
erage was adequate for all combinations of releases and occasions 
(Table 3).

3.2 | Correlations among survival rates of 
female brent

When we used an inverse Wishart distribution as a prior for the co-
variance matrix, adult and juvenile survival of female brent were 
positively correlated (ρ = 0.481, 95% CRI 0.115–0.754; Figure 4), and 
the variance of juvenile survival (�2

�juv
=0.685, 95% CRI 0.380–1.251) 

was significantly greater than the variance of adult survival 
(�2

�ad
=0.194, 95% CRI 0.103–0.369). When we used hyperpriors for 

components of the covariance matrix, which more accurately re-
flected the potential variance of demographic components in our 
simulations, we estimated a stronger correlation between adult and 
juvenile survival (ρ = 0.563, 95% CRI 0.181–0.823; Figure 4). Further, 
estimates of the variances of juvenile survival (�2

�juv
=0.753, 95% CRI 

0.405–1.413) and adult survival (�2
�ad

=0.156, 95% CRI 0.073–0.326) 
also differed from the inverse Wishart parameterization (Figure 5), 
where the difference between the variances increased.

4  | DISCUSSION

4.1 | Implications for the estimation of process 
correlations

Our simulation results highlight two critical issues in the estimation 
of process correlations among demographic components. First, we 
demonstrate the influence of currently used prior distributions on 
biological inference due to the informative nature of the inverse 
Wishart prior for the variances and covariances of demographic pa-
rameters (Figure 1). The Wish−1 (3, I2×2) prior implies certain hyper-
priors for the variances of, and correlations between, demographic 
parameters which strongly impact inference. We also illustrate the 
inherent link between the estimation of ρ and σ when using inverse 
Wishart priors, where there is an intrinsic link between prior val-
ues for variances and process correlations (Figure 2). Our simula-
tions clearly reveal that these issues can be addressed by specifying 
hyperpriors for the individual components of a covariance matrix. 
Second, and critically, we show that analyses with few releases 
(n < 100) or of short duration (t < 20), may fail to accurately estimate 
the underlying process correlation among demographic components 
(Figure 3), even when appropriate priors are used. These approaches 
have important utility for examining relationships between survival 
and harvest. Further, they allow researchers to examine life-history 
trade-offs among demographic components at both the popula-
tion and individual level. Quantitative ecologists can use similar ap-
proaches to examine individual covariation in life-history traits, such 
as survival and breeding probability (Cam et al., 2002), trade-offs 
between current and future reproductive allocation (Leach et al., 
2019), or correlations among demographic parameters and abun-
dance or environmental conditions.

4.2 | Implications for black brent populations

The estimated variance of adult survival rates was significantly 
less than the variance of juvenile survival rates (Figure 5). This is 
consistent with the demographic buffering hypothesis, where we 
would expect population growth rates of long-lived organisms to be 
most sensitive to adult survival (Gaillard et al., 2000; Pfister, 1998). 

TA B L E  2   Mean absolute value of the difference between 
the simulated process correlation used to generate the data, 
and the mean of the posterior distributions of the estimated 
process correlations (ρ), as a function of the number of occasions 
(t), the number of individuals released per occasion (n), and the 
parameterization of the covariance matrix used for the capture–
recapture models

Parameterization Occasions

Releases 10 20 30

Inverse Wishart

100 0.426 0.346 0.325

1,000 0.329 0.227 0.197

5,000 0.280 0.163 0.147

Hyperpriors

100 0.319 0.126 0.095

1,000 0.203 0.067 0.042

5,000 0.150 0.048 0.029

TA B L E  3   The proportion of simulations (out of 1,000) for which 
the value of ρ used to simulate the capture–mark–recapture data 
was included in the 95% Bayesian credible interval of the estimate 
of ρ as a function of the number of occasions (t), the number of 
individuals released per occasion (n), and the parameterization of 
the covariance matrix used for the capture–recapture models

Parameterization Occasions

Releases 10 20 30

Inverse Wishart

100 0.654 0.696 0.720

1,000 0.645 0.675 0.737

5,000 0.617 0.744 0.743

Hyperpriors

100 0.966 0.996 0.999

1,000 0.986 0.999 1.000

5,000 0.986 0.997 0.996
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Therefore, adult survival should be the most consistent demo-
graphic component and be buffered from environmental variation 
or reproductive allocation (Gaillard et al., 2000; Pfister, 1998). As 
predicted, and indicated by previous research (Leach et al., 2017), we 
observed positive correlations between adult and juvenile survival. 
Brent family groups remain together from hatch through late spring 
(Sedinger, Nicolai, Lensink, Wentworth, & Conant, 2007), where we 
would expect environmental variation which impacts adult survival 

to affect juvenile survival as well, despite strong carry-over effects 
of environmental conditions during growth on first-year survival, 
and lifetime fitness, of juvenile brent (Riecke et al., 2018; Sedinger et 
al., 1995, 2007). Long-term declines in both adult (Leach et al., 2017; 
Riecke et al., 2018) and juvenile survival (Leach et al., 2017) have 
critical implications for brent populations, which are also experienc-
ing declines in fecundity (Ward, Amundson, Stehn, & Dau, 2018) and 
population size (Sedinger, Riecke, Leach, & Ward, 2019).

F I G U R E  3   Means of the posterior distributions for process correlations (ρ) among adult (ϕad) and juvenile (ϕjuv) survival estimated from 
simulated capture–mark–recapture data using inverse Wishart (red) and hyperprior (blue) parameterizations for the covariance matrix of the 
multivariate normal distribution from which the parameters were estimated for different combinations of releases (n = 100, 1,000, or 5,000) 
and occasions (t = 10, 20, or 30). The dashed line represents 1:1 congruence between the simulated data and the estimate
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4.3 | Implications for future research

We examine the behavior of multivariate normal distributions 
for demographic parameters in the presence of parameter uncer-
tainty for a variety of biologically plausible scenarios. We suggest 
that investigators simulate data and conduct power analyses prior 
to drawing inference from their data. We provide simple R script to 
perform these analyses, where short-term (<10 years) datasets with 
small sample sizes (<100 releases per year) generally yield inaccurate 

estimates of process correlations when using capture–mark–recap-
ture or capture-mark-recovery data. Our work has important impli-
cations for previous (Péron, 2013; Servanty et al., 2010) and future 
research, and our parameterizations can be expanded to covariance 
matrices of K × K dimensions (Alvarez et al., 2014). Thus, our pre-
liminary analyses highlight the power and importance of robust lon-
gitudinal datasets and the importance of model parameterization. 
Additionally, our simulations do not induce variation or heterogene-
ity in detection probability (p), where variation in these probabilities 

F I G U R E  4   Means and 95% Bayesian 
credible intervals of adult (top left) and 
juvenile (bottom left) survival for black 
brent (Branta bernicla nigricans) marked 
on the Yukon–Kuskokwim River Delta, 
Alaska, 1988–2014. Further, we plot 
the correlation between these two 
parameters (top right), and the posterior 
distributions of the correlation (ρ) 
between these parameters from models 
using either an inverse Wishart prior (red), 
or hyperpriors (blue) for the covariance 
matrix components (bottom right)
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F I G U R E  5   Density plots of the 
posterior distributions of variances (σ2) 
of adult (left) and juvenile (right) survival 
for black brent (Branta bernicla nigricans) 
marked on the Yukon–Kuskokwim 
River Delta, Alaska, 1988–2014 from 
models with inverse Wishart priors on 
the covariance matrix (red), as well as 
models with hyperpriors on the individual 
components of the covariance matrix 
(blue)
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can affect the absolute bias and precision of estimates of ρ (e.g., in-
creased detection probabilities or recovery and reporting rates lead 
to increased precision and accuracy in the estimation of ρ).

These approaches have great utility for the future development 
of integrated population and capture–mark–recapture-recovery 
models, where quantitative ecologists can draw demographic pa-
rameters of interest from multivariate normal distributions within 
integrated population or capture–mark–recapture models to share 
information among demographic parameters. Finally, recent re-
search (Alvarez et al., 2014) has revealed that the scaled inverse 
Wishart distribution (O'Malley & Zaslavsky, 2008) and hierarchical 
half-t prior distribution proposed by Huang and Wand (2013) are 
less informative than the inverse Wishart, although they experience 
similar issues, albeit at a lesser scale (Alvarez et al., 2014). We do not 
believe we have completely resolved this issue, and recent advances 
in Bayesian methods (Gelman, Lee, & Guo, 2015) may further our 
understanding. Finally, our simulations indicate that specifying hy-
perpriors for the components of a covariance matrix is significantly 
more effective than using the inverse Wishart distribution, or other 
recently developed approaches (Huang & Wand, 2013; O'Malley 
& Zaslavsky, 2008) for capture–mark–recapture and other demo-
graphic analyses, as the hyperprior approach leads to accurate esti-
mates of process correlations and variances given sufficient sample 
sizes. These results have important implications for a variety of mul-
tivariate models in ecology.
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