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Self-referential processing refers to the processing of information relevant to oneself and
plays an important role in cognition. Behavioral studies have shown that directional cue
stimuli have a qualitatively different function during attentional orienting after presentation
of the cue associated with the self. However, it is necessary to determine how neural
activity is influenced by self-referential processing during attentional orienting. The
present study involved establishing an association between non-predictive arrow cues
and the “self” during a training task and then investigating the influence of self-referential
processing on neural activity during attentional orienting. Enhanced neural activity was
observed in cortical midline structures (CMS) during the use of self- vs. neutral-arrow
cues, which suggests that the arrow associated with the “self” triggered self-referential
processing during attentional orienting due to the experiences of the participant in the
training task. Comparison of obtained under the incongruent and congruent conditions
revealed a qualitative difference in neural activities between the self- and neutral-arrow
cues associated with attentional orienting. Furthermore, when the neutral-arrow cue
was treated as a baseline condition, neural activity was reduced in the frontoparietal
attention networks by self-referential processing under the incongruent condition, but it
was enhanced under the congruent condition. Thus, the stimulus modulated subsequent
attentional neural processes after being associated with the self as a cue, which indicates
that this process may be triggered by self-reference to automatically and effectively
capture information. Our findings extend those of previous behavioral studies of neural
activity, suggesting that directional cues were qualitatively influenced by self-referential
processing, and showed different functions during attentional orienting. Moreover, the
present study provides important evidence of how self-referential processing affects
attentional orienting in the frontoparietal network.

Highlights

- Enhanced activity was observed in CMS due to self-referential processing.
- The influence of self-referential processing differed in the frontoparietal network.
- Activity was enhanced by self-referential processing under the congruent condition.
- Activity was reduced by self-referential processing under the incongruent condition.

Keywords: self-referential processing, attentional orienting, dorsal frontoparietal network, ventral frontoparietal
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INTRODUCTION

Humans commonly exhibit biased responses such that they
preferentially encode information relevant to themselves
compared to information relevant to others (e.g., Rogers et al.,
1977; Keyes and Brady, 2010; Keyes, 2012; Nakao et al., 2012).
For example, when people are asked to remember specific
information, the recall rates are better when such information
is related to themselves than to other people (Rogers et al.,
1977). More recent studies have reported the faster classification
of self-faces compared to the faces of other people when
participants were asked to classify faces as self, friend, or stranger
(Keyes and Brady, 2010; Keyes, 2012). This phenomenon is
known as the self-referential effect and has been observed in
children and young and older adults (e.g., Sui and Zhu, 2005;
Gutchess et al., 2007, 2010, 2015; Cunningham et al., 2014).
The advantages associated with self-referential processing
may also be relevant when information is assigned a new
association with the self. Previous studies (Sui et al., 2015;
Sui and Humphreys, 2017) have indicated that self-reference
operates as an integrative mechanism during information
processing to either enhance or disrupt the performance of tasks
related to perception (Sui et al., 2012), memory (Kelley et al.,
2002), and decision-making (Sui and Humphreys, 2013) when
self-referential information is associated with stimuli. Thus,
it is important to understand the mechanisms underlying the
manner in which self-reference influences subsequent stages of
information processing.

Self-referential processing may also aid in the preferential
analysis of information during attentional orienting (Sui et al.,
2009; Zhao et al., 2015). To avoid the familiarity effect
and investigate the influence of self-referential processing
on attentional orienting, Zhao et al. (2015) suggested that
a directional stimulus (e.g., a red arrow) is regarded as a
self-referential cue, whereas a different directional stimulus
(e.g., a green arrow) is associated with a strange person and
is regarded as the other-referential cue in a training task.
Then, in a cueing task, participants were required to indicate
whether sound targets (voice or tone) were presented at the left
or the right location (i.e., a localization task) was conducted.
Zhao et al. (2015) showed that self- but not other-referential
arrow cues induced a pattern of attentional orienting that was
similar to that elicited by gaze (Zhao et al., 2014). This finding
suggests that directional cues, such as arrows, have the ability
to manifest a qualitatively different function during attentional
orienting due to self-referential processing. However, this finding
is supported by only behavioral evidence; thus, it is necessary to
determine the manner in which neural activity is influenced by
self-referential processing during attentional orienting to arrow
cues.

Although no previous study has directly investigated the
neural correlates of the effects of self-referential processing
under the attentional cueing paradigm, previous studies have
demonstrated separate neural correlates for self-referential
processing and attention orienting. Activity in cortical midline
structures (CMSs), such as the anterior cingulate cortex
(ACC)/ventromedial prefrontal cortex (vmPFC), has been shown

to be associated with self-referential processing (for a review,
see Northoff and Bermpohl, 2004). For example, Sui et al.
(2013) used geometric shapes to establish an association between
‘‘self’’ and ‘‘others,’’ and immediately implemented a matching
task involving judgments of whether paired shapes and words
were matched or mismatched. The results revealed increased
activity to self-associated pairs in the vmPFC. Several aspects
of attention orienting are involved in the cortical activity of
two attentional networks (e.g., Zhao et al., 2017). The dorsal
frontoparietal network has been associated with orienting or
attending to a cued target in cueing paradigms, as well as being
involved in reorienting attention to an uncued target, while the
ventral frontoparietal network is thought to be responsible only
for reorienting attention (Corbetta et al., 2008; Corbetta and
Shulman, 2011).

Combining behavioral and neural evidence, we suggest that
the neural activity of attentional orienting to arrow cues may
be qualitatively influenced by self-referential processing. Given
that Zhao et al. (2015) reported that self-referential, but not
other-referential, arrow cues could induce a pattern of attentional
orienting that was similar to that elicited by gaze (Zhao et al.,
2014), it is possible that the neural pattern of arrow cues
influenced by self-referential processing is similar to the effect
of gaze on attentional orienting. Engell et al. (2010) showed a
qualitative difference between the neural pattern of attentional
orienting in response to gaze vs. arrow cues. Compared with
arrow cues, which induced increased activity, no difference in
the responses to incongruent vs. congruent gaze cues were
induced in the dorsal and ventral frontoparietal networks. Thus,
if different patterns of neural activity were not observed between
incongruent vs. congruent conditions when using a self-arrow
as a cue, then self-referential processing would have induced
qualitatively different types of attentional processing.

To investigate how the neural activity underlying
attentional orienting induced by arrow cues was influenced
by self-referential processing, the present study manipulated the
self-referentiality of arrow stimuli in a training task, in which
participants were trained to associate two arrows (e.g., red and
green arrows) with the words ‘‘self’’ and ‘‘other.’’ Subsequently, in
the attentional cueing task, we used a self-referential and neutral
arrow cue to direct attention toward the right or left of a screen,
and a target was presented at either the cued or opposite location.
Participants were instructed to indicate whether the target letter
was presented at the left or the right location. This behavioral
task has been successfully performed with various types of
directional cue (e.g., arrow and gaze see Engell et al., 2010); thus,
comparisons between self- and neutral-arrow cues are less likely
to be confounded by behavioral differences. Because enhanced
neural activity of CMSs was observed with the use of self- vs.
neutral-arrow cues in the attentional cueing task, we proposed
that the arrow associated with ‘‘self’’ may trigger self-referential
processing during attentional orienting due to the experiences
of the participant in the training task. Thus, we assessed neural
activities within the dorsal and ventral frontoparietal networks
to examine whether qualitatively different types of attentional
processing between self- and neutral-arrow cues emerged
through self-referential processing.
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MATERIALS AND METHODS

Participants
The present study was approved by the local ethics committee
of Capital Medical University, Beijing, China. No foreseeable
risks to the participants were present, and no information
that could personally identify the individuals was collected. All
participants provided written informed consent and background
information, and all procedures complied with the ethical
standards of the 1964 Declaration of Helsinki regarding
the treatment of human participants in research. In total,
24 volunteers (17 women and seven men; mean ± SD age:
21.42 ± 1.18 years) participated in this study. All participants
were right-handed as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971) and had normal or corrected-to-
normal visual and auditory acuity.

Stimuli
Figure 1A illustrates the stimuli used in the training task. A red,
green, or white arrow (5.2◦ wide × 3.2◦ high) was presented
above the fixation cross, whereas the word ‘‘self’’ (
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) (2.9◦ wide × 2.0◦ high) was displayed below the fixation
cross. In the cueing task, the stimuli (i.e., the red, green, and
white arrows) were the same as those in the training task.
The letter ‘‘T’’ (0.6◦ wide and 0.6◦ high) was presented 5.2◦

to the left or right side of the center of the screen as a target
stimulus.

Apparatus
All stimuli were generated on a Windows computer and
presented to the participants via a custom-built magnet-
compatible audio–visual system during magnetic resonance
imaging (MRI) scans. Presentation software (ver. 10.2;
Neurobehavioral Systems) was used to generate the visual
stimuli on a Windows computer, and participants viewed the
visual stimuli on a back-projection screen and generated their
responses using a keypad (Current Designs Inc.; Philadelphia,
PA, USA).

Procedure
Two tasks were involved in the present experiment. First, the
participants were trained to associate two arrows (e.g., one
red and one green) with the words ‘‘self’’ and ‘‘other’’ in the
training task, and the self-referential arrow was then used as a
self-cue and a novel arrow (i.e., white) was used as a neutral
cue; however, the other-referential arrow was not implemented
in the cueing task. The cueing blocks were initiated following
the completion of the training block; all participants performed
one block of the training task and four blocks of the cueing task
(Figure 1B).

FIGURE 1 | Experimental task structure. (A) Examples of self- and other-arrow pair stimuli. (B) Procedure of the experimental task. (C) Illustration of stimulus
presentation in the (C) training task and (D) cueing task. Three different colored arrows (i.e., red, green and white) were included. Only two arrows (red and green)
were associated with the “self” or “other” words in the training task and the white arrow was used as a neutral-arrow in the cueing task but not in the training task.
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Training Task
The participants were trained to develop an association
between self- or other-referential information and two arrows
(Figure 1A). Each arrow was associated with the word ‘‘self’’ or
‘‘other.’’ For example, a red and a green arrow were associated
with ‘‘self’’ and ‘‘other,’’ respectively. Another arrow (e.g., a white
arrow) was used as a neutral-arrow in the subsequent cueing
task. Thus, one of six different patterns of associations were
implemented for each participant in the training task (i.e., a red
arrow for ‘‘self’’ and a green arrow for ‘‘other,’’ a red arrow for
‘‘self’’ and a white arrow for ‘‘other,’’ a green arrow for ‘‘self’’ and
a red arrow for ‘‘other,’’ a green arrow for ‘‘self’’ and a white arrow
for ‘‘other,’’ a white arrow for ‘‘self’’ and a red arrow for ‘‘other,’’
and a white arrow for ‘‘self’’ and a green arrow for ‘‘other’’). These
patterns were counterbalanced across participants.

Each trial began with a display consisting of a central fixation
cross that was presented for 500 ms in the center of the
screen. Then, the training stimuli were presented for 100 ms in
conjunction with a colored arrow (e.g., red or green) and the
assigned or unassigned word (‘‘self’’ or ‘‘other’’), irrespective of
the direction of the arrows. The participants were instructed
to only respond when the relationship between the colored
arrow and the assigned word was correct by pressing a button
as quickly and accurately as possible. Although a total of four
pairs were included (e.g., red arrow-self, red arrow-other, green
arrow-self, green arrow-other), participants were requested to
respond only to two correct pairs (e.g., red arrow-self and
green arrow-other). The cue remained on the screen until the
participant responded or 3050 ms had elapsed (Figure 1C). Each
participant performed one block of 280 trials, in which each
stimulus was presented during 70 trials and all combinations of
arrows and words occurred in equal proportions in a randomized
order.

Cueing Task
An example of the procedure in the cueing task is shown in
Figure 1D. Each trial began with a display consisting of a
fixation cross that was presented for 400 ms in the center of
the screen. Then, a transverse white line as neutral stimulus was
presented for 350 ms, and the cue stimulus pointing right or left
(e.g., a colored arrow associated with ‘‘self’’) was subsequently
presented. The stimulus onset asynchrony (SOA) between the
target and cue was fixed at 200 ms. Finally, the target letter ‘‘T’’
appeared to the left or the right side of the cue stimulus for 50 ms.
The participants were asked to respond as quickly as possible
when a target appeared on the left or the right side by pressing the
corresponding key on the switch keypad using their dominant
index or middle finger, respectively; reaction times (RTs) were
measured in each trial. The cue remained on the screen until
the participant responded or 1000 ms had elapsed. The targets
appeared randomly at the cued location in 50% of the trials.
The participants were told that the cues were uninformative
with respect to the potential locations of the subsequent target
and were instructed to fixate on the center of the screen in
each trial.

The functional MRI (fMRI) analysis was based on a
within-subjects 2 × 2 factorial design with the cue condition

(self- or neutral-arrow) and congruence condition (congruent or
incongruent) as repeated factors; an arrow associated with ‘‘self’’
was used as a self-relevant arrow cue (e.g., red arrow) and the
other arrow, which was not presented in the training task and was
not associated with a specific word, was used as a neutral-arrow
cue (e.g., a white arrow). In total, 60 trials were performed under
each condition. Four blocks were included in the cueing task.
Each block had 120 trials, with 60 cueing and 60 rest trials. The
present experimental design was based on a mixed block/event-
related paradigm that allows for the more complete utilization of
the blood-oxygen-level-dependent (BOLD) signal which, in turn,
enables a deeper interpretation of how brain regions function on
multiple timescales (Petersen and Dubis, 2012). As in previous
studies (Friston et al., 1999; Yan et al., 2017), we presented
alternating blocks of experimental trials with the cue condition as
well as blocks for baseline measures. The congruence trials were
presented in a pseudorandom event-related distribution within
the experimental blocks.

MRI Acquisition
MR images were acquired using a 3.0-T Trio Tim Scanner-
vision (Siemens; Erlangen, Germany). A whole-bodyMRI system
was employed to measure activation with a head coil. The
functional images consisted of 33 consecutive slices parallel to
the plane of the anterior–posterior commissure and covered the
whole brain. A T2∗-weighted gradient-echo planar imaging (EPI)
sequence with the following parameters was used: TR = 2000 ms,
TE = 30 ms, flip angle = 90◦, field of view = 220 × 220 mm,
matrix size = 64 × 64, and voxel size = 3.4 × 3.4 × 3.5 mm3.
Excluding the most-inferior parts of the cerebellum, most of the
brain regions, including the entire temporal cortex, were imaged.
Furthermore, high-resolution isotropic T1-weighted images were
acquired using the following parameters: TR = 1900 ms,
TE = 2.52 ms, flip angle = 9◦, field of view = 250 × 250 mm,
176 sagittal slices, and voxel size = 1 × 1 × 1 mm3.

Data Analysis
Behavioral Data Analysis
All data were analyzed using SPSS software (ver. 21.0; IBM
Corp.). To assess the strength of the association between arrow
color and self- or other-referential words using a cut-off of
10% errors in any block, we measured total error rates (TERs),
including omission and commission errors in the training task.
Consistent with a previous study (Zhao et al., 2015), at least
90% of the trials were required to be correct in the block, and
RTs shorter than 100 ms or longer than 1000 ms were excluded
from the RT analysis (1.19% of the trials). The difference in
mean accuracy and RTs between self- and other-arrow stimuli
was calculated for each participant. For this analysis, we used
paired t-tests.

In the cueing task, the mean RT of the correct responses was
calculated for each condition and each participant, excluding
incorrect responses (1.20% of the trials) and RTs shorter than
100 ms or longer than 1000 ms were excluded from the RT
analysis (6.15% of the trials). Additionally, the present study
assessed whether a speed/accuracy trade-off occurred. Given that
the rates of incorrect responses were so low and there was a floor
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effect for the accuracy scores, we did not further analyze the
error data. Next, the mean RTs were analyzed using a two-way
analysis of variance (ANOVA) with cue (self- and neutral-arrow)
and congruence (congruent and incongruent) as the within-
subject factors. Significant interactions were analyzed further
with follow-up simple main effect analysis (Kirk, 1995).

Image Data Analysis
The imaging data from the cueing task were analyzed in
the present study. Data pre-processing and statistical analyses
were performed using the Statistical Parametric Mapping
computer package (SPM12; Wellcome Department of Cognitive
Neurology, London, UK1) implemented in MATLAB 2013b
(MathWorks). First, to correct for head movement, functional
images of each run were realigned using the first scan as a
reference. The movement parameters generated during spatial
realignment showed that the subjects moved less than 2 mm
during the course of the trial. Then, the T1 anatomical
image was coregistered to the first scan of the functional
images. Subsequently, all anatomical and functional images were
normalized to Montreal Neurological Institute (MNI) space
using the anatomical image-based unified segmentation-spatial
normalization approach (Ashburner and Friston, 2005); Finally,
these spatially normalized functional images were resampled to a
voxel size of 2 × 2 × 2 and smoothed with an 8-mm full-width-
at-half-maximum (FWHM)Gaussian kernel at half-maximum to
compensate for anatomical variability among participants.

We conducted random-effects analyses to identify voxels
with significant activation at the population level (Holmes
and Friston, 1998). First, a single-subject analysis (Friston
et al., 1995) was performed. For each condition, The BOLD
response was modeled as the neural activity and was convolved
with a canonical hemeodynamic response function (HRF) that
yielded regressors in a general linear model (GLM). We used a
high-pass filter with a cut-off period of 128-s to eliminate the
artifactual low-frequency trend. Global scaling was conducted
to correct for global fluctuation related to motion artifacts.
Serial autocorrelation was assumed to follow a first-order
autoregressive (AR[1]) model, which was estimated from the
pooled active voxels with a restricted maximum likelihood
procedure and used to whiten the data and design the matrix
(Friston et al., 2002).

The contrast images from the first-level analyses of all subjects
were then used for the second-level group statistics. First, the
data for each participant were best-fitted (least square fit) at
every voxel using a linear combination of the effects of interest.
These included delta functions representing the onsets of the
four conditions given by the convolving of the 2 × 2 factorial
design (cue [self- and neutral-arrow] × congruence [congruent
and incongruent]) with the SPM12 HRF. Second, based on
the behavioral results, a 2 × 2 (cue × congruence) factorial
ANOVA was performed to investigate the relationship between
the behavioral results and brain activation. Based on methods
analysis (Woo et al., 2014; Eklund et al., 2016), voxels were
identified as significantly activated if they reached a cluster-level

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12

threshold of p < 0.05 (family-wise error [FWE]-corrected for
multiple comparisons) and a voxel-level threshold of p < 0.001
(uncorrected for multiple comparisons at the whole-brain level),
which were used to protect against false-positive activations. The
peak voxels of clusters exhibiting reliable effects are reported
in the stereotactic coordinates of MNI. a priori hypotheses
regarding the neural activity associated with self-referential
processing in the ACC/vmPFC and precuneus/PCC and the
influence of self-referential processing on attentional orienting
in the dorsal and ventral frontoparietal networks were stated.

Based on anatomical masks outlined using theWFUPickAtlas
tool, a small volume correction (SVC) procedure was employed
separately to the a priori regions of interest (ROIs): the bilateral
anatomical structures in the CMSs, such as the ACC/vmPFC
(Brodmann area [BA] 10/24/32), the precuneus/PCC (BA
7/23/31), and the dorsal and ventral frontoparietal network
(e.g., Thiel et al., 2004; Doricchi et al., 2010; Yan et al.,
2015; Zhao et al., 2017), such as the FEF (BA8), the VFG
(BA 44/45/47), and the TPJ (BA 22/39/40). Consistent with
the whole-brain level analysis, SVC analysis was performed
with a cluster-level threshold of p < 0.05 (FWE-corrected for
multiple comparisons) and a voxel-level threshold of p < 0.001
(uncorrected for multiple comparisons). To examine whether
the significant brain activities were specific to those in the
regions involved in self-referential processing or attentional
processing, we used a control analysis with a relatively liberal
threshold (voxel-level threshold of p < 0.001 uncorrected with
a minimum cluster-level threshold of five voxels) at the whole-
brain level. Furthermore, to assess the relationship between
the behavioral response and significant brain activation during
self-referential processing, we calculated Pearson’s correlation
coefficients between the RT under the self-arrow condition and
the beta values in an 8-mm radius sphere centered on the peak
voxel of activation.

Finally, to quantify neural responses associated with the
influence of self-referential processing on attentional orienting,
beta values for the self- and neutral-arrows under the congruent
and incongruent conditions were extracted and averaged across
voxels in the given ROIs using spheres with a radius of 8mm. The
means of the beta values between conditions were compared with
a 2 (cue: self- and neutral-arrow) × 2 (congruence: congruent
and incongruent) repeated-measures ANOVA. Because only
two variables were included in each independent condition, a
follow-up simple main effect analysis was conducted (p < 0.05)
if a two-way interaction was significant. All statistics were
calculated using SPSS software (ver. 21.0).

RESULTS

Behavioral Results
Training Task
The TERs for all 24 participants were less than 10% in the training
task (mean ± SD: 2.3 ± 1.18%); all data were analyzed. The
participants responded significantly more quickly to the arrow
associated with ‘‘self’’ than to the arrow associated with ‘‘other’’
(551.3 vs. 603.1 ms; t(23) = 9.30, p < 0.001), which indicates that
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TABLE 1 | Mean reaction time (RT), SD and percent errors (%E) as a function of
cue and congruence.

Cue Congruence

Congruent Incongruent

M SD %E M SD %E

Self-arrow 302.2 60.5 1.9 318.7 62.9 0.9
Neutral-arrow 302.2 64.0 0.5 318.4 58.2 2.0

FIGURE 2 | Reaction times (RTs) during attentional orienting in the cueing
task. Mean RT (± SE) under the congruent and incongruent conditions as a
function of cue condition (self- or neutral-arrow). The results revealed a main
effect of congruence, but not cue, which indicates a delayed response under
the incongruent compared to the congruent condition. However, no significant
interaction was observed between cue and congruence. Statistically
significant at alpha = 0.05.

self-referential information has a higher processing priority than
other-referential information. Accuracy was also significantly
higher in response to the arrow associated with ‘‘self’’ than to
the arrow associated with ‘‘other’’ (99.8 vs. 99.6%; t(23) = 2.326,
p = 0.029). These results indicate that the associations between
the words (‘‘self’’ and ‘‘other’’) and arrow cues were established.

Cueing Task
Themean RTs under each condition are listed in Table 1, and the
mean differences in RTs between the congruent and incongruent
conditions for the self- and neutral-arrow cues are shown
in Figure 2. A two-factor repeated-measures ANOVA with
cue (self- and neutral-arrow) and congruence (congruent and
incongruent) as the within-subject factors was used to analyze
RTs and revealed a main effect of congruence (F(1,23) = 13.55,
p = 0.001, η2p = 0.37) but not cue (F(1,23) = 0.005, p = 0.94,
η2p < 0.001), which indicates that there was a delayed response
under the incongruent compared to the congruent condition.
However, no significant interaction was observed between cue
and congruence (F(1,23) = 0.004, p = 0.95, η2p < 0.001).

fMRI Results
Next, the patterns of brain activation associated with
self-referential processing and attentional orienting were
investigated. The primary analysis was performed with a 2
(cue conditions [self- and neutral-arrow]) × 2 (congruence
conditions [congruent and incongruent]) repeated-measures
ANOVA.

Main Effects of Cue and Congruence
An anatomical region-based SVC analysis revealed significant
activation in the left limbic lobe, including the ACC when
the self- vs. neutral-arrow was presented (Figure 3, Table 2);
however, no significant activity was shown in the whole-
brain analysis. These results are consistent with those of
previous studies (for reviews, see Northoff and Bermpohl,
2004; Schmitz and Johnson, 2007) and indicate that the
activity in the ACC was associated with the processing of
self-referential information. When using a control analysis at
the whole-brain level, significant activation was only found in
the CMS, including the bilateral anterior cingulate and right
precuneus (Supplementary Table S1). This finding indicated
that the effect of the self- vs. neutral-arrow was restricted
to regions involved in self-referential processing. Moreover, a
significant correlation was found between the RT under the
self-arrow condition and differential activity for self- vs. neutral-
arrows in the left ACC (r = −0.422, p = 0.04), indicating
that the RT in response to the self-arrow was facilitated by
increased activation of contrasting self- and neutral-arrows in
the left ACC (Figure 3). Thus, the association between ‘‘self’’
words and the arrow cues was established. An evaluation of
differences between the congruence conditions did not reveal
any significant activity in either the whole-brain or SVC
analysis.

Interaction of the Cue and Congruence Conditions
A 2 (cue: self- and neutral-arrow) × 2 (congruence: congruent
and incongruent) ANOVA was performed to investigate the
influence of self-referential processing on the attentional
orienting networks. The whole-brain analysis revealed significant
interaction effects in several visual association areas: the bilateral
occipital lobe, including the superior occipital gyrus (SOG); the
left temporal lobe, including the middle occipital gyrus (MOG);
and the frontoparietal networks, including in the bilateral parietal
lobe in regions such as the precuneus/SPL and in the right
parietal lobe in the TPJ (Figure 4, Table 3). There was no
significant activity in either the FEF or VFG based on the SVC
analysis. Moreover, when using a control analysis (an intensity
threshold of p < 0.001 uncorrected with a minimum spatial
extent threshold of five voxels) in the whole-brain level analysis,
the results were consistent with the previous analysis (spatial
extent threshold of p < 0.05 FWE with an intensity threshold
of p < 0.001 uncorrected). The results indicated differential
activities among the bilateral occipital lobe, right paracentral
lobule, bilateral precuneus/SPL, right TPJ and IFG, and right
SFG/MFG (Supplementary Table S2). Except for the right
paracentral lobule, associated with motor function, the other
areas have been shown to be closely associated with attentional
processing (e.g., Hietanen et al., 2006; Engell et al., 2010; Li et al.,
2012).

ROI Analysis
Because the present study focused on the manner in which
attentional orienting was influenced by self-referential
processing based on activity in the dorsal and ventral
frontoparietal networks, the results of the interactions in
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the bilateral SPL and right TPJ were further assessed using an
ROI-based analysis. Figure 4 and Table 4 present the locations
and patterns of the responses in all ROIs from which a beta value
was extracted (i.e., the bilateral SPL and right TPJ). The beta
values were analyzed with a 2 (cue: self- and neutral-arrow) × 2
(congruence: congruent and incongruent) repeated-measures

FIGURE 3 | Based on anatomical masks outlined using the WFU PickAtlas
tool, a small volume correction (SVC) procedure was employed separately to
the a priori regions of interest: the bilateral anatomical structures in the anterior
cingulate cortex (ACC)/ventromedial prefrontal cortex (vmPFC; BA 10/24/32),
the precuneus/posterior cingulate cortex (PCC; BA 7/23/31), the frontal eye
field (FEF; BA8), the ventral frontal gyrus (VFG; BA 44/45/47), and the left
temporoparietal junction (TPJ; BA 22/39/40). The upper parts of the figure
shows SVC analysis of responses to the self- vs. neutral-arrow conditions,
which revealed significant activation only in the left ACC based on an
anatomical mask; a cluster-level threshold of p < 0.05 (FWE-corrected) with a
voxel-level threshold of p < 0.001 (uncorrected). The lower part of the figure
shows the correlation between the behavioral RTs under the self-arrow
condition and beta values for the self- vs. neutral-arrow in an 8-mm radius
sphere centered on the peak voxel of activation in the left ACC.

ANOVA and revealed significant interactions in the bilateral
SPL (left SPL: F(1,23) = 29.456, p < 0.001, η2p = 0.562; right
SPL: F(1,23) = 30.391, p < 0.001, η2p = 0.569) and right TPJ
(F(1,23) = 14.202, p = 0.001, η2p = 0.382; Table 4).

A post hoc test revealed that the beta values were lower
under the congruent condition than under the incongruent
condition when using a neutral-arrow cue (left SPL: p < 0.001,
right SPL: p < 0.001, and right TPJ: p = 0.01) but not
when using a self-referential arrow cue (left SPL: p = 0.33,
right SPL: p = 0.142, and right TPJ: p = 0.001). These
findings are consistent with those of previous studies showing
stronger activity under incongruent conditions compared to
congruent conditions when using a neutral-arrow as a cue
(Corbetta et al., 2008; Corbetta and Shulman, 2011). We
also found higher beta values under the congruent condition
(left SPL: p = 0.006, right SPL: p = 0.001, and right TPJ:
p = 0.012) but lower ones under the incongruent condition
(left SPL: p = 0.002, right SPL: p = 0.001, and right TPJ:
p = 0.002) when a self-arrow cue was used but not when a
neutral-arrow cue was used. These findings indicate that the
neural activity underlying attentional orienting was influenced
by self-referential processing under both the congruent and
incongruent conditions. The ROI analysis also found a similar
pattern in the active areas when using a control analysis
with a relatively liberal threshold in the whole-brain analysis
(Supplementary Figure S1, Table S3).

DISCUSSION

In the training task used in the present study, the participants
responded more quickly and accurately to the arrows associated
with ‘‘self’’ than to those associated with ‘‘other.’’ Previous
studies investigating priority in the processing of self- vs. other-
referential information have shown that participants respond
more quickly and accurately to one’s own face than to
another’s face (Keyes and Brady, 2010; Lv et al., 2015) and
that stimuli (i.e., arrow or face) elicit a quicker response when
associated with ‘‘self’’ than with ‘‘other’’ (Zhao et al., 2015).
Likewise, the present study demonstrated that self-referential
arrows had a higher processing priority than other-referential
arrows.

Importantly, main effect analyses of fMRI data from the
cueing task revealed significant activity in the left ACC when
a self-arrow cue was used vs. when a neutral-arrow cue was
used. A correlation analysis found that the self-arrow RT was
facilitated by increased activity in the left ACC when comparing
self- and neutral-arrows. The coordinate of the activity in the

TABLE 2 | Main effects of cue condition: self-arrow > neutral-arrow.

Side Area Region BA Coordinates Z-value P (FWE) P (FWE) P (uncorr) Cluster size

x y z (cluster level) (peak level) (peak level)

Small volume corrections analysis
L Limbic Anterior cingulate 32 −16 44 12 3.78 0.043 0.006 0.000 5

BA, Brodmann area; L, Left; R, Right; FWE, family-wise error; a cluster level at the threshold of p < 0.05 (FWE corrected) with the voxel-level at the threshold of p < 0.001
(uncorrected). Cluster size is in voxels; voxel size is 2 × 2 × 2 mm3.
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FIGURE 4 | The upper part of the figure shows significant activity in the bilateral superior occipital gyrus (SOG) and superior parietal lobule (SPL), left middle occipital
gyrus (MOG), and right TPJ, as revealed by a whole-brain analysis of responses to the interaction between the cue and congruence conditions; a cluster-level
threshold of p < 0.05 (FWE-corrected) with a voxel-level of threshold of p < 0.001 (uncorrected). The lower part of the figure shows the mean beta values (± SE) in
the bilateral SPL and right TPJ; these areas are overlaid on the mean normalized structural magnetic resonance imaging (MRI) scans from all participants in the
present study.

TABLE 3 | Interactions between cue and congruence conditions.

Side Area Region BA Coordinates Z-value P (FWE) P (FWE) P (uncorr) Cluster size

x y z (cluster level) (peak level) (peak level)

Exploratory whole-brain analysis
R Occipital Superior Occipital Gyrus 19 32 −86 24 4.64 0.000 0.020 0.000 1368

Parietal Precuneus/Superior Parietal Lobule 7 20 −66 52 3.96 0.232 0.000
L Parietal Precuneus/Superior Parietal Lobule 7 −28 −70 32 3.86 0.009 0.319 0.000 359

Temporal Middle Occipital Gyrus 39 −36 −68 22 3.85 0.325 0.000
Occipital Superior Occipital Gyrus 19 −36 −76 22 3.71 0.463 0.000

R Parietal Temporoparietal Junction 40 44 −40 46 3.56 0.033 0.623 0.000 247

BA, Brodmann area; L, Left; R, Right; FWE, family-wise error; a cluster level at the threshold of p < 0.05 (FWE corrected) with the voxel-level at the threshold of p < 0.001
(uncorrected). Cluster size is in voxels; voxel size is 2 × 2 × 2 mm3.

TABLE 4 | ROI results.

Regions defined by locating local maxima
Region Interaction F Self Incon vs. Con Neutral Incon vs. Con Con Self vs. Neutral Incon Self vs. Neutral

Left precuneus/SPL 29.456∗∗∗ 0.992 52.088∗∗∗ 9.273∗∗ 12.927∗∗

Right precuneus/SPL 30.391∗∗∗ 2.309 35.870∗∗∗ 15.840∗∗ 13.082∗∗

Right TPJ 14.202∗∗ 3.608 15.104∗∗ 7.411∗ 11.871∗∗

ROIs represent previously examined areas that exhibited a significant interaction between the cue and congruence conditions in a 2 × 2 ANOVA; a cluster level at the
threshold of p < 0.05 (FWE corrected) with the voxel-level at the threshold of p < 0.001 (uncorrected). Con: congruent; Incon: incongruent. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.

left ACC was consistent with previous studies (Holt et al.,
2011; reviews in Hu et al., 2016), which demonstrated that

the ACC/vmPFC are associated with self-referential processing.
In particular, Sui et al. (2013) used the same technique as the
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present study to establish an association between either ‘‘self,’’
‘‘friend,’’ or ‘‘other’’ and neutral geometric shapes (triangle,
circle, or square). These authors found that the ACC/vmPFC
region was more strongly activated in response to neutral shapes
associated with ‘‘self’’ than to those associated with other words,
regardless of the familiarity of the stimulus. The present study
extended these findings by performing a direct comparison of
brain activity between self- and neutral-arrow conditions. Given
that the present results also revealed a significant correlation
between the RT in self-referential processing and brain activation
in the left ACC, we suggest that the contrasted brain activity in
CMS likely reflected increases due to self-referential processing
rather than decreases due to other-referential processing. Taken
together, the present findings suggest that the arrow associated
with ‘‘self’’ triggered self-referential processing during the
cueing task due to the experiences of the participant in the
training task.

Interaction analyses of the fMRI data indicated that there
were different patterns of attentional orienting between the self-
and neutral-arrow conditions under incongruent vs. congruent
conditions. Previous studies have consistently reported greater
degrees of neural activity in attentional networks under
incongruent than congruent conditions when using a neutral-
arrow cue (Corbetta et al., 2008; Corbetta and Shulman, 2011).
Consistent with this, the present study observed more neural
activity in the ventral and dorsal frontoparietal networks,
including the right TPJ and the left/right SPL, under incongruent
vs. congruent conditions when using a neutral-arrow cue.
However, this difference was not seen between the incongruent
and congruent conditions when using a self-arrow cue.
Taken together, these findings suggest that the neural activity
underlying attentional processing could be modulated based on
the meaning of a cue. Accordingly, Özdem et al. (2016) observed
increased activation in the TPJ under the incongruent condition
compared to the congruent condition when the gaze change of
a robot was believed to be controlled by a human as opposed to
being pre-programmed. Moreover, in a behavioral study, Zhao
et al. (2015) showed that self-referential arrow cues induced a
similar pattern of attentional orienting with gaze cues after the
association between non-predictive arrow cues and words (‘‘self’’
and ‘‘other’’) was established in a training task. These findings
suggest that directional cues develop qualitatively different
functions during attentional orienting due to self-referential
processing.

The present findings extend those of a previous study (Zhao
et al., 2015) by demonstrating that the neural activities associated
with attentional orienting qualitatively rather than quantitatively
differed between self- and neutral-arrow cues after an association
between arrow cues and the ‘‘self’’ was established in the training
task. It is possible that the pattern of neural activity elicited
by self-arrow cues is similar to that elicited by social cues
(i.e., gaze). Consistent with this proposition, Engell et al. (2010)
contrasted incongruent and congruent conditions and found that
qualitatively different patterns of brain activity emerged in the
frontoparietal network when comparing arrow and gaze cues.
Similarly, the present study showed that the regions within the
dorsal and ventral frontoparietal networks, including the right

TPJ, IFG and IPS, responded differentially to incongruent vs.
congruent arrow cues but not to incongruent vs. congruent
gaze cues. That is, there was greater neural activity under the
incongruent condition compared to the congruent condition
when using an arrow as a cue, but these networks were similarly
recruited for the incongruent and congruent conditions when
using gaze cues. A direct comparison of attentional orienting
between gaze vs. arrow and self- vs. neutral-arrow conditions
should be performed in future research, as it will be important
to reach a firm conclusion regarding whether the neural pattern
associated with attentional orienting during self-referential cues
is similar to that elicited by gaze cues.

Furthermore, the interaction analyses of the fMRI data
revealed that self-referential arrows influenced the neural activity
underlying attentional orienting under both the incongruent
and congruent conditions when a neutral-arrow cue was used
as the baseline condition. The ROI analyses showed that,
compared to the neutral-arrow cue conditions, the neural
activity in the dorsal and ventral frontoparietal networks,
including in the SPL and TPJ, in response to the self-arrow
cue was reduced under the incongruent condition whereas this
neural activity was enhanced under the congruent condition.
Previous studies have consistently shown that self-referential
processing aids in the effective capture of information useful
for cognitive abilities, including attention and memory (for
reviews, see Sui et al., 2015; Sui and Humphreys, 2017). For
example, Zhao et al. (2015) found that self-referential cues
were preferentially associated with a voice target in a cueing
paradigm after the association between non-predictive cues
and words (‘‘self’’ and ‘‘other’’) was established in a training
task; therefore, the cueing effect is enhanced by self-referential
cues for a voice target relative to a tone target but not
by other-referential cues. Based such findings, it is possible
that the present results reflect the priority of self-referential
processing and its influence on attentional orienting during
behavioral processes, which aids in the effective capturing of
information. That is, the reduced neural activity associated
with self-referential processing under the incongruent condition
may indicate that participants can more rapidly disengage
their attention from the cued location to capture a target,
whereas the enhanced activity during self-referential processing
under the congruent condition may show that attentional
orienting was more strongly triggered by self-arrow cues
than neutral-arrow cues and helped to capture the cued
target.

However, there were no significant differences in the behavior
elicited by the self-arrow and neutral-arrow cues under either the
incongruent or the congruent condition in the present study. The
design of the present cueing paradigm is relatively simple and
may cause difficulties when attempting to distinguish behavioral
differences; however, this paradigm can be effectively used to
examine differences in neural activity following various cues
during attentional orienting. Engell et al. (2010) used a cueing
paradigm that is similar to the one used in the present study
to examine differences between gaze and arrow cues. These
authors found qualitative differences in the fMRI data between
gaze and arrow cues, but no differences in the behavioral data
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were found under the congruent and incongruent conditions.
It is possible that the different influences of self-referential
processing on the neural activity associated with attentional
orienting under the incongruent and congruent conditions
shown in the present study would have been more evident
behaviorally if they had been assessed using a more difficult
paradigm; indirect evidence supports this idea (e.g., Friesen
et al., 2004; Sui et al., 2009; Yan et al., 2016). For example,
using an identification task, Sui et al. (2009) asked participants
to identify whether a target at a left or right location was
upright or inverted when using arrows after training trials
were performed to associated the arrow cues with the words
‘‘self’’ and ‘‘friend’’. There was a faster response under the
incongruent condition when using self- vs. friend-arrow cues at
a short SOA (250 ms), which indicates that participants might
have been able to more rapidly disengage attention from the
cued location to capture a target. Friesen et al. (2004) used
a counterpredictive cueing paradigm in which the target was
more likely (i.e., 75% of the trials) to appear at the location
opposite to that of the cue direction, which is more demanding
in terms of the top-down control of attention compared to a
non-predictive paradigm. These authors found that attentional
orienting was more strongly triggered by gaze cues than arrow
cues under a short SOA condition and suggested that this aids
in capturing a cued target. Based on the finding that the neural
activity associated with attentional orienting was elicited by
self-arrow cues in a manner similar to that elicited by gaze cues,
it can be speculated that attentional orienting and attentional
disengagement are more strongly triggered by self-arrow cues
in a counterpredictive cueing paradigm. Future studies should
directly investigate whether the influence of self-referential
processing on the neural activity associated with attentional
orienting can be quantified in behavioral terms using a difficult
paradigm.

There were some limitations to the current study. First,
this study contrasted incongruent vs. congruent conditions
to investigate the influence of self-referential processing
on attentional orienting. In previous studies, neutral cues
(e.g., direct gaze) were manipulated as a baseline condition to
examine the neural mechanisms underlying attentional orienting
under incongruent and congruent conditions (e.g., Hietanen
et al., 2006; Lockhofen et al., 2014; Joseph et al., 2015).
However, compared to the use of non-directional arrows as
neutral cues, the use of a direct gaze used as a neutral cue
was perceived as directional rather than non-directional, which
is problematic in terms of comparing arrow cues vs. social
gaze cues (Engell et al., 2010). This study also contrasted
incongruent vs. congruent conditions to examine differences in
attentional orienting between arrow and social gaze cues. To
determine whether the neural pattern associated with attentional
orienting during the presentation of self-referential arrow cues
was similar to the gaze pattern reported by Engell et al.
(2010), the present study employed a design that contrasted
incongruent vs. congruent conditions. Future research should
investigate differences between self- and other-referential cues
by comparing congruent vs. neutral and incongruent vs.
neutral cues.

Second, the present study only examined the difference in
the effect of attentional orienting on neural activity between
self-referential and neutral-cues. Zhao et al. (2015) found that
attentional orienting based on gaze cues could be inhibited by
other-referential processing. Although a gaze cue can induce
an enhanced cueing effect to a voice vs. a tone, after a facial
gaze was associated with the other condition, the cueing effect
to a voice target was inhibited by an other-referential gaze.
Compared with self-referential processing to enhance attentional
orienting, we speculated that other-referential processing might
inhibit related information via a different mechanism. Thus,
future research should compare neural activity between other-
referential cues and neutral cues with respect to attentional
orienting.

Finally, we did not monitor subjects’ eye movements. Friesen
et al. (2004) monitored eye position and showed that the
attention effects produced by non-predictive directional cues
were not affected by a subject’s eye movements. Moreover, given
that our results did not show significant activity in FEF regions,
which are responsible for saccadic eye movements, this might
reflect that the current findings did not depend on subjects’ eye
movements. However, future research should use eye tracking
and examine whether subjects’ eyes move towards the target
before making a response.

CONCLUSION

In the present study, neural activities in the CMS were
enhanced when using self- vs. neutral-arrow cues in a cueing
paradigm after the association between non-predictive cues
(arrow) and words (‘‘self’’) were established in a training task.
This finding suggests that the arrow associated with ‘‘self’’
triggered self-referential processing during the cueing task due
to the experiences of the participant in the training task. Next,
neural activities under the incongruent and congruent conditions
were contrasted, revealing that qualitatively different patterns
of attentional processing between self- and neutral-arrow cues
emerged due to self-referential processing. It is possible that
the neural activity associated with attentional orienting was
elicited by self-referential arrow cues in manner similar to that
elicited by social gaze stimuli (Engell et al., 2010). Furthermore,
using a neutral-arrow cue as a baseline condition, the present
study found that neural activity was reduced by self-referential
processing under the incongruent condition but enhanced by
self-referential processing under the congruent condition in
the dorsal and ventral frontoparietal networks. These results
suggest that when a stimulus is associated with the self, it
modulates subsequent attentional neural processes. This process
may be triggered by self-reference to automatically and effectively
capture relevant information.
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