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Abstract

A critical step in studying biological features (e.g., genetic variants, gene families, metabolic

capabilities, or taxa) is assessing their diversity and distribution among a sample of individu-

als. Accurate assessments of these patterns are essential for linking features to traits or out-

comes of interest and understanding their functional impact. Consequently, it is of crucial

importance that the measures employed for quantifying feature diversity can perform

robustly under any evolutionary scenario. However, the standard measures used for quanti-

fying and comparing the distribution of features, such as prevalence, phylogenetic diversity,

and related approaches, either do not take into consideration evolutionary history, or

assume strictly vertical patterns of inheritance. Consequently, these approaches cannot

accurately assess diversity for features that have undergone recombination or horizontal

transfer. To address this issue, we have devised RecPD, a novel recombination-aware phy-

logenetic-diversity statistic for measuring the distribution and diversity of features under all

evolutionary scenarios. RecPD utilizes ancestral-state reconstruction to map the presence /

absence of features onto ancestral nodes in a species tree, and then identifies potential

recombination events in the evolutionary history of the feature. We also derive several

related measures from RecPD that can be used to assess and quantify evolutionary dynam-

ics and correlation of feature evolutionary histories. We used simulation studies to show that

RecPD reliably reconstructs feature evolutionary histories under diverse recombination and

loss scenarios. We then applied RecPD in two diverse real-world scenarios including a pre-

liminary study type III effector protein families secreted by the plant pathogenic bacterium

Pseudomonas syringae and growth phenotypes of the Pseudomonas genus and demon-

strate that prevalence is an inadequate measure that obscures the potential impact of

recombination. We believe RecPD will have broad utility for revealing and quantifying com-

plex evolutionary processes for features at any biological level.

Author summary

Phylogenetic diversity is an important concept utilized in evolutionary ecology which has

extensive applications in population genetics to help us understand how evolutionary pro-

cesses have distributed genetic variation among individuals of a species, and how this
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impacts phenotypic diversification over time. However, existing approaches for studying

phylogenetic diversity largely assume that the genetic features follow vertical inheritance,

which is frequently violated in the case of microbial genomes due to horizontal transfer.

To address this shortcoming, we present RecPD, a recombination-aware phylogenetic

diversity measure, which incorporates ancestral state reconstruction to quantify the phylo-

genetic diversity of genetic features mapped onto a species phylogeny. Through simula-

tion experiments we show that RecPD robustly reconstructs the evolutionary histories of

features evolving under various scenarios of recombination and loss. When applied to a

real-world example of type III secreted effector protein families from the plant pathogenic

bacterium Pseudomonas syringae, RecPD reveals that horizontal transfer has played an

important role in shaping the phylogenetic distributions of a substantial proportion of

families across the P. syringae species complex. Furthermore, we demonstrate that the tra-

ditional measures of feature prevalence are unsuitable as a measure for comparing feature

diversity. We also provide a R package implementation of RecPD for public use: https://

github.com/cedatorma/recpd.

Introduction

The modern genomics era has provided unprecedented opportunities for identifying and

quantifying the impact of genetic variants underlying traits of interest, while furthering our

understanding of the fundamental evolutionary processes driving the emergence, distribution,

and fate of these variants. A critical step in studying these genetic variants is assessing their

overall abundance and the distribution of individuals carrying the variants both within and

between populations and/or communities. Accurate assessment of these patterns of genetic

diversity are essential for linking genotypes to phenotypes and understanding the functional

impact of genetic variation. Consequently, it is critical that we have ways to accurately measure

and quantify genetic diversity under any evolutionary scenario, including complex distribu-

tions brought about through recombination or horizontal gene transfer.

Quantifying diversity is of course not just of interest to those working with genetic data, but

has relevance to any discipline where traits, features, or constituents can vary in state. Perhaps

the simplest and most common diversity index is abundance (aka frequency or prevalence),

which measures the proportion of individuals in a population or community that are of a par-

ticular kind, in a particular state, or which carry a trait or feature of interest. Measures of abun-

dance (most commonly used in ecological research) and prevalence (most commonly used in

epidemiological research) are often refined or extended to assess richness (i.e., the total number

of states in a population or community) and diversity (i.e., the number of states weighted by

their prevalence/abundance). Further, measurements of diversity can be made either within or

between populations or communities, with the former being called alpha diversity (e.g., Simp-

son Index, Shannon Entropy, Hill Numbers) and the latter being called beta diversity (e.g. Jac-

card and Sørensen Indices, and Bray-Curtis Dissimilarity) [1–3]. As is clear from the above

discussion, diversity can be measured for any type of data that varies across an environment,

population or community, including species, operational taxonomic units (OTUs), nucleotides

or amino acids, gene families, metabolic capacities, phenotypic traits, or even gene expression

levels varying across tissues or cellular environments. In this study, we will simply use the term

feature to encompass this wide range of data types and define it as any measurable difference

between samples.
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While prevalence and abundance are intuitive ways to quantify the overall presence /

absence of a feature of interest, these measures assume that all samples are independent

and uncorrelated. Consequently, they have no ability to assess populations or communi-

ties with some underlying structure, such as would be expected when the samples have a

shared evolutionary history. Consequently, prevalence and related non-phylogenetic mea-

sures can be confounded by complex or unbalanced phylogenetic patterns, complex evolu-

tionary histories, and biased sampling. Phylogenetic diversity (PD) statistics have been

developed that incorporate measures of evolutionary relatedness among individuals into

the prevalence-based diversity measure discussed above. In general, PD measures are cal-

culated by summing the branch lengths from a common ancestor of a selected group of

descendants in a phylogenetic tree representing the total genetic diversity of the sampled

population [4–6]. Two of the most widely used phylogenetic diversity metrics are Faith’s

Phylogenetic Diversity [4] and UniFrac [7]. Faith’s PD measures within-population alpha

diversity by calculating the sum of the phylogenetic tree branch lengths of all those

branches that span the descendants sampled from a given population or sharing the fea-

ture of interest. UniFrac measures between-population beta diversity by calculating the

proportion of branch lengths in a phylogenetic tree that lead exclusively to the descen-

dants sampled from a given population or that uniquely carry a feature of interest. Both

Faith’s PD and UniFrac can work with cladograms that only represent the evolutionary

branching patterns, or phylograms, where the branch lengths are proportional to evolu-

tion time and divergence. When applied to quantifying feature diversity, Faith’s PD and

UniFrac also implicitly allow for the loss of the feature along phylogenetic lineages (e.g.,

by pseudogenization); thereby, making them excellent measures for vertically inherited

traits. To date, phylogenetic diversity measures have largely been applied to the study of

taxonomic diversity, and have been useful for identifying habitats which possess the great-

est maximum biodiversity of a particular taxa/species to prioritize conservation efforts

[8,9], and studying differences in species communities between habitats or under chang-

ing environmental conditions over time [1,2,10].

While phylogenetic diversity measures have proven to be extremely useful, they all share a

crucial underlying assumption that the feature of interest is vertically inherited. They can

account for the loss of a feature but have no way to correct for non-vertical evolutionary pro-

cesses such as recombination or horizontal gene transfer. While the assumption of vertical

transmission is robust for many systems and studies, it is not appropriate when studying most

microbial systems, where the horizontal transmission of genetic material is an important

source of genetic novelty, functional innovation, and rapid adaptation.

Here we describe RecPD, a recombination-aware phylogenetic diversity measure.

RecPD is uses the same framework as other well-established phylogenetic diversity mea-

sures but incorporates methods for dealing with recombination and horizontal transfer.

RecPD maps the distribution of a feature of interest onto a species tree and then employs

a variety of ancestral state reconstruction approaches to infer the evolutionary histories

of gain and loss which may have given rise to an observed distribution of that feature.

Through simulation studies we show that RecPD can accurately account for diverse evo-

lutionary scenarios involving recombination, which are ignored by currently available

phylogenetic diversity measures. We derive a number of RecPD-based measures that

summarize the impact of horizontal transfer, and then show the utility of the approach

when analyzing the distribution of type III secreted effector protein families carried by

the plant pathogenic bacterium Pseudomonas syringae. We also show the broad applica-

bility of RecPD in investigating growth-related phenotypes across the Pseudomonas
genus.
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Results

Development of RecPD

The development of RecPD was inspired by the need to understand the distribution of bacte-

rial gene families, so we will discuss the methods from this context although the method is

transferable to any other features of interest (e.g., genetic variants, metabolic capabilities, or

taxa). We begin with a phylogeny of strains on which we will map the acquisition, loss, descent,

and divergence of a gene family of interest. In most circumstances, this phylogeny will be

based on the core genome (i.e., those genes found in all strains of the species) and be con-

structed from the concatenated sequences of core genes. For simplicity, we will refer to this as

the species tree. We also have presence / absence distribution of a gene family of interest that

varies among the strains in the study set. The goal of RecPD is to determine the phylogenetic

diversity of the gene family by reconstructing its evolutionary history on the species tree,

accounting for potential horizontal acquisition events that may have occurred.

Step 1: Assignment of gene family ancestral states on the species

phylogenetic tree

To reconstruct the putative lineages where a gene family has arisen during the evolutionary

history of a bacterial species, we first begin with ancestral state reconstruction of the gene fam-

ily. In this case ancestral states considered will be a binary category of gene family presence/

absence. To achieve this task, we devised a novel nearest-neighbour (NN) ancestral reconstruc-

tion approach (Fig 1A) that begins by identifying which strains in the study set carry the gene

family of interest. Based on this, the tips of the species tree are assigned a state of presence or

absence for the gene family. Next, each internal/ancestral node is examined and assigned to

one of three possible states based on information from the closest-related tips descended from

it: 1) ‘present’ if the nearest-neighbour, i.e., closest related, descendant tips of the node both

possess the gene family; 2) ‘absent’ if the gene family is absent in the nearest-neighbour descen-

dant tips; 3) ‘split’ if only one nearest-neighbour descendant tip possesses the gene family,

which may indicate potential gain/recombination or loss events.

Our framework also allows for the incorporation of other popular approaches for ancestral

state reconstruction, such as most-parsimonious reconstruction (MPR) [11] and maximum-

likelihood ancestral character estimation (ACE) [12]. The goal of MPR is to find the overall set

of internal node states which results in the fewest number of state changes, e.g., most-parsimo-

nious, between ancestral and descendant nodes. The ACE approach was devised as an

improvement on MPR, which incorporates branch-length information and inferred gain and

loss rates from which the likelihood of given state for each internal node is determined (i.e.,

from the likelihoods of the states of its descendants).

As the reconstruction of ancestral states is not a trivial task [13,14]. It is important to

emphasize that reconstructed ancestral states can vary depending on the approach used, so it is

useful to state the potential strengths and limitations inherent to each. The NN approach may

produce spurious evolutionary histories of ancestral gene family loss followed by reacquisition

depending on the frequency of gain and loss in different lineages. MPR is less liable under these

scenarios but does not incorporate divergence between ancestral and descendant nodes; there-

fore, it may miss certain internal nodes where a state might be present or could find equally par-

simonious scenarios resulting in ambiguous state assignments. In the case of ACE, modelling

gains and losses as separate processes may resolve ambiguities in some scenarios, but reliably

estimating these rates largely depends on the sampling of the given species phylogeny. State

assignments will tend to become more uncertain as the amount of divergence between ancestral
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nodes increases. A combination of approaches could be used in theory to find consensus assign-

ment, although this method has not yet been developed.

Step 2: Identification of gene family lineages

Ancestral node state assignments made in the previous step are then consolidated to delineate

the species lineages and ancestral phylogenetic tree branches where the gene family is likely to

have arisen (Fig 1B). This is done by examining all the branches of the species tree and assign-

ing a presence state to branches if their ancestral-descendant node states are also predicted to

be present, otherwise a given branch is assigned as an absence state. Some branches may also

include nodes where a split/ambiguous state has been assigned as the result of potential gain or

loss events occurring in descendant node lineages. In this case, branches are selected for inclu-

sion if the ancestral or descendant node is assigned to the presence state, or both are split

states/ambiguous.

After branch-state identification, the final node states are consolidated, with gain and loss

event nodes highlighting the particular internal nodes where the gene family appears to have

been gained or lost in subsequent descendant lineages respectively (Fig 1C). In addition, the

states of tip nodes descended from each gain or loss lineage are updated accordingly.

Step 3: Calculation of RecPD and nRecPD

After the corresponding gain and loss lineages for a given gene family distribution has been

determined, its recombination-adjusted phylogenetic diversity, RecPD, is calculated by sum-

ming the total branch-lengths of the gain lineages divided by the sum of the total branch-

lengths of the species tree (Fig 1D). RecPD values are bounded to have values ranging from

Fig 1. Outline of the RecPD methodology: Calculating recombination adjusted phylogenetic diversities of feature

distributions by employing ancestral state reconstructions. (A) Tip states are assigned to a given species

phylogenetic tree based on presence (teal), or absence (red) of the gene family of interest. (B) Ancestral node states are

inferred using one of there ancestral state reconstruction methods and assigned to either presence (teal), absence (red),

or split (blue) states, the latter which indicate potential gain/loss events. (C) Branches are assigned to presence states if

they join consecutive presence or split nodes/tips (teal), otherwise they are assigned to absence (red). (D) Gene-family

lineages are identified, and split state nodes are assigned to gains (teal) or losses (red). Branches descended from the

phylogenetic tree root node where no ancestral presence nodes were identified are assigned to absence (grey). RecPD is

then calculated as the sum of gene family lineage branch-lengths normalized by the total branch-lengths of the

phylogenetic tree.

https://doi.org/10.1371/journal.pcbi.1009899.g001
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(~0 to 1), with the lowest values determined by the tip with the smallest branch length from its

most immediate parental node (i.e., when feature prevalence = 1), and reaching a maximum

when the feature is present at all tips. In addition, the observed values of RecPD for different

gene families of the same prevalence could be used to infer the relative impact of recombina-

tion on those families, with high RecPD values corresponding to families less impacted by hor-

izontal transfer and low RecPD values corresponding to families heavily impacted by gene

gain and loss. Furthermore, normalizing the RecPD of a gene family by its corresponding

Faith’s PD (nRecPD) yields a more accurate measure which indicates the degree of recombina-

tion that has given rise to its distribution: where nRecPD ~ 1 indicates vertical inheritance and

nRecPD ~ 0 indicates recently occurring horizontal transfer events.

Step 4: RecPD-Derived measures

In addition to RecPD, we can also calculate additional measures based on the ancestral mapping

of the gene family onto the species tree (summarized with formal definition in Table 1). These

measures can be divided into two classes that either assess the overall topological structuring of

gene families within the species tree or summarize the evolutionary events influencing gene fam-

ily lineages (i.e., those lineages of the species tree where the gene family is predicted to be present)

inferred by RecPD. The first class of topology-based measures include: Span, which measures

how much of the maximum possible species diversity is realized for the gene family of interest

and is akin to the Faith’s PD (S1 Fig); and Clustering, which measures the extent to which the

gene family lineages identified by RecPD partition among subclades of the species tree, which

may be more or less closely related (S2 Fig). While Span and Clustering are conceptually very

similar, the former uses branch lengths, while the latter is a cladistic measure that only considers

clade structure. The second class of evolutionary event-based measures include: Longevity, which

is the median normalized evolutionary distance since a gene family was initially gained across

species lineages (S3 Fig); and Lability, the normalized number of gain, loss, and re-acquisition

event nodes occurring across species lineages for a given gene family (S3 Fig).

We also developed a comparative measure for directly quantifying the extent of shared

ancestry (i.e., correlation) between different gene families, called RecPDcor. For a pair of gene

family distributions, RecPDcor is calculated as the sum of the ancestral lineage branch-lengths

Table 1. RecPD and derived measures.

Name Type Description Formula

RecPD Phylogenetic

Diversity

The sum of RecPD-inferred feature gain lineage branch-lengths (Brg) divided by the sum of

the total branch-lengths of the species tree (Brtree). RecPD ¼
PG

g
Brg

P
Brtree

nRecPD Phylogenetic

Diversity

RecPD divided by the sum of branch-lengths descended from feature most-recent common

ancestral node (BrMRCA), i.e., Faith’s PD. nRecPD ¼
PG

g
Brg

P
BrMRCA

Span Cladistic Faith’s PD divided by maximum Faith’s PD possible for a feature with equal prevalence (P). Span ¼
P

BrMRCA

max
P

BrMRCA ; Pð Þ

Clustering Cladistic The number tips descended from a gain lineage node possessing a feature (Ng:present)
divided by the total number of descendant tips, divided by the total number of gain lineages

identified (NG).

Clustering ¼
PG

g

Ng T:presentð Þ

Ng T:presentð ÞþNg T:absentð Þ

 !

=NG

Longevity Event-Based Median normalized evolutionary distance of all tips possessing a feature to their ancestral

gain node (Brg� tg ) across species lineages, divided by the maximum root-to-tip distance of

the phylogenetic tree (Brroot-t).
Longevity ¼

median Brg� tg ; g2G

� �

max Brroot� t ; t2Tð Þ

Lability Event-Based The number of loss event nodes identified in each feature gain lineage (Ng(n:loss)), divided by

the total number of descendant nodes of that lineage (Ng(n)).
Lability ¼

PG

g
Ng n:lossð Þ

PG

g
Ng nð Þ

RecPDcor Correlation Jaccard similarity between a pair of RecPD-inferred feature lineages, weighted by their

respective branch-lengths.
RecPDcorab ¼

P
Bra \ BrbP
Bra [ Brb

https://doi.org/10.1371/journal.pcbi.1009899.t001
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where they co-occur divided by the sum of branch-lengths from the union of their ancestral

lineage reconstructions (S4 Fig). This is in essence the branch-length weighted Jaccard similar-

ity between ancestral gene family lineages.

RecPD accounts for potential recombination events from randomized gene family phyloge-

netic distributions. As a preliminary exploration of our RecPD method, we present an ideal-

ized test-case scenario using a randomly generated species tree of ten tips and assessed the

potential impact of recombination inferred from examining all possible gene family presence/

absence patterns. We calculated Faith’s PD for each gene family phylogenetic pattern to serve

as a baseline evolutionary scenario considering only vertical descent, gene family loss, and no

recombination. Fig 2A shows that RecPD was affected by the choice of the ancestral state

reconstruction method used (NN, MPR, or ACE). When compared to Faith’s PD, ACE tends

to overestimate PD, which is likely due to increasing uncertainty in state assignments for the

deepest ancestral nodes the species tree. In contrast, both the NN and MPR methods consis-

tently predict lower PD values than Faith’s, particularly for gene family distributions found in

at least half of the species in the tree, with MPR predicting the greatest degree of recombina-

tion (Fig 2B and 2C). Therefore, RecPD can serve to identify potential gene family distribution

patterns which do not conform to a strictly vertical pattern of inheritance. These results also

hold for randomly generated species trees of greater size (S5 Fig).

Nearest-neighbours ancestral state reconstruction accurately captures

recombination events of simulated gene family evolutionary histories

In the real world, we almost never know the true evolutionary histories of a gene family.

Although ancestral reconstruction methods are valuable as a means for reconstructing evolu-

tionary histories, more thorough analyses of genomic data are required for support. Therefore,

Fig 2. RecPD results in lower PD estimates compared to recombination-agnostic Faith’s PD and is affected by

ancestral state reconstruction approach employed. (A) RecPD using three ancestral state reconstruction methods

(NN, MPR, and ACE) and Faith’s PD distributions binned by gene family prevalence. Results shown correspond to all

1022 possible randomized gene-family distributions mapped onto a randomly generated example tree topology of ten

tips. (B) RecPD normalized by Faith’s PD for three ancestral state reconstruction methods binned by gene-family

prevalence. Results shown correspond to all 1022 possible randomized gene-family distributions mapped onto a tree of

ten tips. (C) Example gene family distribution of prevalence = 5 illustrating differences in inferred evolutionary events

using different methods: Faith’s PD = 5 losses, 0 gains (boxed), RecPD(NN) = 2 losses, 4 gains, RecPD(MPR) = 0

losses, 5 gains, and RecPD(ACE) = 5 losses, 0 gains.

https://doi.org/10.1371/journal.pcbi.1009899.g002
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we simulated gene family histories on randomly generated species trees using a Poisson pro-

cess to model recombination and loss (Table 2 and S6 Fig). With these ‘known’ gene family

histories we evaluated how accurately the different ancestral state reconstruction approaches,

NN, MPR, and ACE, perform in identifying recombination events under diverse evolutionary

scenarios, e.g., loss-recombination balanced, loss dominant, or recombination dominant.

To determine the accuracy of RecPD and each ancestral reconstruction approach (NN,

MPR, and ACE) we calculated the ratio between the calculated RecPD values, and the known

PD based on the simulated distribution. As before, Faith’s PD was also calculated as a baseline

comparison assuming no recombination. The results of our simulation using a tree of ten tips

(Fig 3) show that Faith’s and RecPD using ACE result in similar error rates, largely overesti-

mating the PD of gene families, recapitulating results shown previously (mean error

Faith = 0.46 ± 0.68; mean error ACE = 0.57 ± 0.78). Conversely, RecPD using MPR underesti-

mated gene family PD (error MPR = -0.18 ± 0.24). Surprisingly, our newly devised NN method

was shown to be the most accurate (mean error = 0.083 ± 0.28) in correctly reconstructing

gene family histories evolved under high-recombination scenarios. These results were consis-

tent across different evolutionary scenarios (S7 Fig) and for other simulations using randomly

generated species trees of ranging from 50 to 100 tips, with the observed error decreasing with

increasing tree size (S8 Fig).

RecPD identifies gene family distributions with shared and unrelated evolutionary histories.

We next explored the use of RecPD in the context of identifying gene families with shared evo-

lutionary histories. From the RecPD NN ancestral reconstructions for all randomized gene

family distributions generated in our first analysis, we calculated the RecPDcor values of their

recombination adjusted evolutionary histories, resulting in 521,731 unique pairwise compari-

sons (note that identical distributions were excluded). In the case of gene family distributions

with identical prevalence, we observed that RecPDcor values can vary considerably (Fig 4),

particularly for distributions of lower prevalence, reflective of their greater possibility of having

evolved through recombination (see Fig 2). Similarly, RecPDcor values tended to be lower for

gene family distributions with greater relative differences in prevalence, which is to be

expected as the result of limited overlap in evolutionary histories (S9 Fig).

We also compared RecPDcor against other correlation measures to examine the effect of

recombination in determining gene family co-occurrence (Fig 4B). The two measures

employed were a Faith’s PD-based (faith_cor) branch-length weighted Jaccard similarity,

which ignores recombination and assumes vertical ancestry of gene families, and Jaccard

similarity of co-occurrence among species/tips of the tree (tip_jacc), which ignores gene

family ancestries. It was observed that the correlations of gene family distributions tended

to be overestimated when not accounting for potential recombination, while ignoring their

evolutionary history altogether resulted in their underestimation. In the latter case, by com-

paring the differences between RecPDcor and tip Jaccard similarities, we could identify sev-

eral instances where tip Jaccard either missed or identified spuriously correlated gene

families (Fig 5).

Table 2. Gene family evolutionary history simulations: Parameters used.

Tree Size

(Ntips)

# of Trees

(N_trees)

Longevity Rate

(long_r)

Loss Rate

(death_r)

Recombina-tion Rate

(recomb_r)

# Rate Parameter

Sets

Simulations per Set

(N_iter)

# of

Simulations

10 10 0,1 0,2,4,6,8,10 0,2,4,6,8,10 72 25 5894

50 10 0,1 0,2,4,6,8,10 0,2,4,6,8,10 72 25 8173

100 10 0,1 0,2,4,6,8,10 0,2,4,6,8,10 72 25 8147

https://doi.org/10.1371/journal.pcbi.1009899.t002
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RecPD characterization of Pseudomonas syringae type III secreted effector

families

Pseudomonas syringae is a highly diverse phytopathogenic bacterial species complex that

includes over 60 pathogenic varieties that cause many agronomically important crop diseases

Fig 3. RecPD with nearest-neighbours (NN) ancestral state reconstruction accurately identifies simulated gene

family evolutionary histories, while MPR and ACE over- and under- estimate recombination, respectively.

Summary of simulations of gene family evolution comparing actual phylogenetic diversity to estimated diversity using

Faith’s PD and RecPD employing three different ancestral reconstruction methods (NN, MPR, and ACE: see Table 1

for parameters used and number of simulations run). (A) Scatterplots of estimated PD values against actual PD values

by method. (B) Corresponding density plot distributions. Results are shown for recombination predominant rate

regime on randomly generated trees with 10 tips.

https://doi.org/10.1371/journal.pcbi.1009899.g003

Fig 4. Pairwise gene family evolutionary history correlations using RecPDcor differ in comparison to

recombination-agnostic and phylogeny-agnostic approaches. (A) RecPD correlation (RecPDcor) values for

randomized gene family distributions vs. prevalence reveals that the majority of low-prevalence trait distributions have

distinct evolutionary histories; (B) RecPDcor of trait distributions substantially differs when compared to 1) Faith’s PD

based branch-length weighted Jaccard similarity (recombination-agnostic), and 2) tip presence and absence Jaccard

similarity (phylogeny-agnostic) measures: 1) Ignoring recombination results in over-estimation of low-prevalence

feature evolutionary history correlations (RecPDcor / Faith’s PD< 1); 2) Ignoring evolutionary history results in under-

estimation of intermediate-prevalence feature evolutionary history correlations (tip_jacc / RecPDcor> 1).

https://doi.org/10.1371/journal.pcbi.1009899.g004
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[15–18]. Decades of research have established P. syringae as an important model for the study

of host-pathogen interactions. One factor that makes P. syringae a particularly adept phyto-

pathogen is its use of a type III secretion system and diverse repertoires of type III secreted

effector proteins (hereafter effectors), which have evolved to promote disease by disrupting

host immunity and cellular homeostasis [19,20]. In turn, plant hosts have evolved a layer of

immunity that triggers when receptors recognize the presence or activity of pathogen effectors

[19,21–23]. As a result, the outcome of any particular host-pathogen interaction, and pathogen

host specificity in general, largely depends on the specific effectors carried by the pathogen

and the specific immune receptors carried by the host. These interactions have led to a co-evo-

lutionary arms race and the accumulation of extensive effector and immune diversity. The P.

syringae species complex has at least 70 characterized effector families, most of which include

numerous diverse alleles that have evolved through both vertical and horizontal evolutionary

processes [15]. There is huge diversity in the suites of effectors carried by individual P. syringae
strains, with most strains carrying ~30 effectors (±9 stderr) [15].

We applied RecPD to a previously published dataset of 529 representative effector alleles

distributed among the 70 effector families identified from a collection of 494 sequenced P.

syringe strains [15,24]. P. syringae strains are classified into phylogroups based on their place-

ment in a core genome phylogenetic analysis, with phylogroups varying in overall size and

diversity. We mapped effector alleles onto the core genome (i.e., species) tree and found wide

variation in the prevalence and distribution of families (Fig 6A) [15]. Relatively few effector

families are widely conserved across the P. syringae species complex, and effector families of

similar levels of prevalence can be distributed in very different ways across the phylogroups,

suggesting the importance of recombination and loss in effector evolution [15,24].

We used RecPD to gain a better understanding of effector evolutionary diversity. Not unex-

pectedly, we find that effector phylogenetic diversity is positively correlated with prevalence,

Fig 5. RecPDcor identifies correlated gene-family distributions missed by tip Jaccard similarity. Top panels–

Distributions of two features (black = present, white = absent) arrayed against a species tree. RecPDcor and tip Jaccard

similarities both identify correlated and anti-correlated gene families. Bottom panels–Distributions where RecPDcor

reveals correlated gene family distributions where tip Jaccard does not, and where tip Jaccard overestimates correlation

of gene families with distinct evolutionary histories. Tree topologies are represented as cladograms with branches of

equal length; actual branch-lengths are indicated by branch-thickness as indicated in the legend. Branches are assigned

to different categories based on the overlap of their RecPD-inferred gene family lineages: Shared—branches where

both traits are present (teal); 2)Unique—branches where only a single trait is present (blue);None–branches where

both traits are absent (red).

https://doi.org/10.1371/journal.pcbi.1009899.g005
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however we note that relying on prevalence alone gives a misleading view of the phylogenetic

distribution of effectors as a whole (Fig 6B). Notably, both Faith’s PD and RecPD values were

lower on average when compared to effector prevalence, which reflects the impact of shared

evolutionary history and the effect of sampling biases inherent in real-world datasets. Further-

more, we also note the importance of considering the effects of recombination when calculating

phylogenetic diversity. In the instance of lower-prevalence effector families (found in less than

~ 25% of strains), Faith’s PD values tend to be larger than expected based on the observed preva-

lence, possibly due to impact of horizontal gene transfer that distributes many of these families

across multiple phylogroups (i.e., deeper common evolutionary ancestry including branches

with greater evolutionary divergence). The impact of horizontal transfer is much more evident

from the RecPD values, which are consistently lower than the corresponding Faith’s PD values.

This is made even more clear when we normalize the PD values by calculating the ratio of

RecPD to Faith’s PD (nRecPD). Since Faith’s PD assumes strictly vertical ancestry, families with

a high ratio (~ 1) can be interpreted as evolving by largely vertical evolutionary processes, while

a low ratio supports extensive horizontal transmission. We found that the extent of recombina-

tion can vary widely for effector families, even when they have very similar prevalence (Fig 6C).

The longevity (median normalized evolutionary distance since an effector family was gained)

also appears to be correlated to nRecPD. Taken together, this analysis supports the hypothesis

that the majority of effector families have experienced extensive horizontal transfer and have

been acquired relatively recently during the evolutionary history of P. syringae.
To concretely illustrate the impact of horizontal transfer and utility of RecPD, we highlight

two examples. The first is the effector families HopS and HopAW (Fig 7A), which have nearly

identical prevalence, with HopS found in 114 strains and HopAW found in 116 strains, but

dramatically different distributions and inferred evolutionary histories. The Faith’s PD values

for the two families are 0.152 and 0.198 for HopS and HopAW, respectively. HopS, with a

RecPD value of 0.164, appears to largely follow vertical descent from an early acquisition event

in the evolutionary history of P. syringae and is highly conserved in phylogroup 1 and 6 strains.

Fig 6. RecPD reveals significant impact of recombination in the phylogenetic distributions of P. syringae effector

families. (A) Core genome phylogeny of the P. syringae species complex, with internal tree nodes indicating P.

syringae phylogroups. The outer ring barplot shows the total number of distinct effector families carried by each strain

and coloured according to strain phylogroup designation. (B) Plot of effector family prevalence against RecPD(NN)

and Faith PD for all 70 effector families. (C) Effector family RecPD values normalized by Faith’s PD, binned by effector

family prevalence. The point size indicates effector family longevity.

https://doi.org/10.1371/journal.pcbi.1009899.g006

PLOS COMPUTATIONAL BIOLOGY RecPD: Recombination-aware phylogenetic diversity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009899 February 22, 2022 11 / 21

https://doi.org/10.1371/journal.pcbi.1009899.g006
https://doi.org/10.1371/journal.pcbi.1009899


In contrast, HopAW, with a RecPD value of 0.048, appears to have been gained and lost at

numerous times throughout the P. syringae phylogroups. The second example is the effector

families HopH and HopBN (Fig 7B) which have different prevalence (206 vs. 78 strains for

HopH and HopBN respectively), but nearly identical RecPD values of ~ 0.16. Their corre-

sponding Faith’s PD values are 0.31 and 0.34, indicating similar overall distribution across the

P. syringae species phylogeny despite their difference in prevalence. However, by visually com-

paring their reconstructed evolutionary histories it can be seen that HopH and HopBN have

followed dramatically different evolutionary trajectories. The RecPD derived measures also

paint a very different evolutionary picture for each family, as shown in Table 3.

Application of RecPD on Pseudomonas spp. growth phenotypes

Pseudomonas is a genus within the Gamma-proteobacteria, which includes hundreds of dis-

tinct species isolated from a range of diverse environmental habitats [25]. The genus is known

for the remarkable metabolic diversity and the broad range of environmental niches which its

members inhabit [26], running the gamut from important opportunistic and emergent patho-

gens of humans and plants, e.g., P. aeruginosa [27] and P. syringae (as highlighted above)

[17,18,28], respectively, to commensal species associated with the plant rhizosphere [29].

Fig 7. RecPD gene lineage reconstructions reveal significant differences in evolutionary histories between effector

families of similar prevalence and phylogenetic diversity. Example pairs of effector family distributions mapped

onto the P. syringae core-genome phylogeny. (A) Effector families HopS and HopAW show similar prevalence

(HopS = 114 and HopAW = 116) but different RecPD values (HopS = 0.399 and HopAW = 0.198). (B) Effector

families HopH and HopBN show different prevalence HopH = 206 and HopBN = 78) but similar RecPD values (0.16).

Tree topologies are represented in a ‘willow tree’ format, with branches set to equal length, and actual branch-lengths

indicated by branch-thickness. Branches are coloured according to overlap between RecPD-inferred gene family

lineages.

https://doi.org/10.1371/journal.pcbi.1009899.g007

Table 3. RecPD and associated measures for selected effector families shown in Fig 7.

T3SE Effector Family Prevalence Faith’s PD RecPD(NN) Span Clustering Longevity Lability

HopS 114 0.152 0.164 0.225 0.991 0.574 0.015

HopAW 116 0.198 0.048 0.269 0.896 0.004 0.147

HopH 206 0.313 0.160 0.369 0.937 0.031 0.115

HopBN 78 0.342 0.161 0.400 0.818 0.017 0.073

https://doi.org/10.1371/journal.pcbi.1009899.t003
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Species within the genus Pseudomonas are now typically delineated via multilocus and

genomic methods, although historically they were identified using an array of phenotypic and

growth assays [30]. While there are many instances where the phenetic assays disagree with

the results from molecular typing, these complementary approaches can provide valuable

information about the evolutionary processes driving phenotypic diversification. They also

provide an excellent opportunity to apply our RecPD methodology.

We examined the relationships among ten representative Pseudomonas species based on

the distribution of 18 distinguishing metabolic and phenotypic traits listed in Bergey’s Manual

of Systematic Bacteriology [31]. The 18 traits have a mean prevalence of 4.3 +/- 2.7 s.d. and fall

into approximately four distinct phenotypic clusters that delimit different Pseudomonas spp.

clades (Fig 8). We used 16S rRNA gene sequences to determine the genetic relationships

among the ten bacterial species and applied RecPD to examine the phylogenetic diversity of

each phenotype/trait across the Pseudomonas species phylogenetic tree. Interestingly, most of

phenotype clusters appear to be vertically inherited (nRecPD ~ 1), with only utilization of

ketogluconate, L-valine, geraniol, and glucose, and the presence of fluorescent pigments show-

ing signs of horizontal transfer (nRecPD ~ 0.7). These results indicate that most of phenotypes

historically used to classify Pseudomonads have been transmitted vertically, explaining why

they proved to be robust for species delineation.

Discussion

Diversity measures, such as phylogenetic diversity, have been used to gain valuable insight into

the complexity of ecological communities. These statistics can be used to quantify diversity both

within and between species or communities (alpha and beta diversity, respectively), and to

assess richness (i.e., how many), divergence (i.e., how different), and regularity (i.e., how uni-

form). Put another way, these measures assess the sum, mean, and variance of the phylogenetic

differences among organisms [6]. Despite their tremendous utility, all these measures have a

Fig 8. nRecPD indicates largely vertical descent of Pseudomonas spp. growth phenotype distributions, revealing

clade specific loss-patterns and between-clade recombination. A heatmap showing presence / absence profiles of 10

growth phenotypes assayed over 10 representative strains of the genera Pseudomonas. Growth phenotype columns are

hierarchically clustered and split into 4 major clusters, while species are arranged according to a 16S rRNA

phylogenetic tree. Corresponding nRecPD values calculated for each growth phenotype are indicated by the top

horizontal annotation strip, with blue indicating vertical descent (nRecPD = 1) and purple indicating signatures of

recombination (nRecPD ~ 0.7).

https://doi.org/10.1371/journal.pcbi.1009899.g008
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common underlying assumption that raises concerns about their applicability for the majority

of life on Earth. Specifically, they assume that organisms under study have descended from a

common ancestor strictly through vertical descent. While this may be a reasonable assumption

for eukaryotes, it is certainly less valid for bacteria and archaea, where horizontal gene transfer

can occur within and between species and dramatically influence their adaptive capabilities.

We developed our recombination-aware phylogenetic diversity metric RecPD to provide a

framework for understanding ecological and evolutionary diversity that is robust to the pres-

ence of horizontal gene transfer and recombination. RecPD utilizes ancestral state reconstruc-

tion to infer the evolutionary histories of features of interest (e.g., gene families, metabolic or

phenotypic traits, taxa, etc.) in the context of a given phylogeny. It then identifies evolutionary

gains and losses of these features on the tree and quantifies the diversity for only that fraction

of the species tree where the feature is present. It then enables the calculation of a number or

related measures that quantify the amount of recombination that has occurred in the history

of the feature. In general, RecPD provides an intuitive statistic for comparing the diversity and

impact of recombination on any feature of interest. It also provides a way to identify lineages

that have gained a feature of interest via horizontal transfer, which may otherwise be difficult

to determine with features that do not have a clear pattern of descent.

An important step in calculating RecPD is the reconstruction of ancestral states to infer

gain and loss events. RecPD can use either of the two well-established ancestral state recon-

struction approaches that use distinct modelling frameworks, e.g., parsimony (MPR) and max-

imum likelihood (ACE). We also introduce a novel approach that is based on nearest-

neighbouring states (NN). When evaluating the accuracy of each ancestral reconstruction

approach we found that MPR and ACE led to under- and over-estimation of the phylogenetic

diversity of simulated gene family histories, respectively, reflective of the assumptions and lim-

itations particular to each modelling framework. We found that the NN ancestral state recon-

struction approach provided the most accurate reconstructions, and importantly, performed

robustly under evolutionary scenarios of elevated recombination and loss. In addition, we also

showed that correlation of ancestral lineages could serve as a useful extension of traditional

genomic-context approaches to assess functionally linked gene families [32,33]. However, we

caution that the reconstructed gene family histories are still best-guesses given the data at

hand, and predicted horizontal transfer events should be used as a starting point for validation

using other methods, e.g., conservation of genomic neighbourhood, association with mobile

genetic elements, GC content, nucleotide diversity, or species-gene tree topological concor-

dance [34].

The utility of RecPD is clear when analyzing gene families such as P. syringae effectors that

function as both virulence factors and immune elicitors. These effectors are subject to strong

selective pressures, frequent horizontal transfer, and pseudogenization. In a preliminary study

of P. syringae effectors, we demonstrate that RecPD provides greater insights into effector

diversity and evolution than non-phylogenetically aware methods. Interestingly, the dynamic

nature of effector evolution through horizontal transfer was sharply contrasted with the largely

vertical transmission seen for growth phenotypes of the Pseudomonas genus. Taken together,

these examples highlight the broad applicability of RecPD for the studying the processes of

diversification operating at different scales of biological and evolutionary resolution.

From our simulation experiments and application to real world data, we observed that

RecPD performs with little burden on computational resources (for example, the P. syringae
example above for a tree with 494 species and 70 features took less than one minute, whereas

our simulation results for a tree with 100 tips an 8147 features results took approximately 25

minutes). However, in less than ideal situations, important considerations are warranted

which will impact the applicability of RecPD. This includes the availability of high-quality
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genome assemblies required to construct a reliable species phylogenetic tree, insufficient sam-

pling of species to adequately capture phylogenetic diversity, and incomplete coverage of fea-

tures for the corresponding species phylogeny. Researchers should take care to assess the

reliability of tree topology, particularly by assessing bootstrap support for internal-nodes,

which will impact the reliability of lineage reconstructions. Furthermore, RecPD does not take

into consideration differential abundance of features, so care must be taken when comparing

multiple features of different abundances. An important avenue for future development will be

the incorporation of options for abundance-weighted phylogenetic diversity calculation, and

ancestral reconstruction approaches for continuous features, which will expand the application

of RecPD to metagenomic community surveys.

In addition to quantifying the impact of recombination, RecPD may also be of value in ana-

lytical approaches that need to control for population structure, such as genome wide associa-

tion studies (GWAS). Bacterial GWAS approaches are heavily dependent on population

structure corrections that control for the evolutionary history of the sample [35–41]. The abil-

ity of RecPD to identify and quantify recombination may increase the power of these statistical

methods and provide an interesting avenue for future development. In general, RecPD has

great potential for quantifying diversity and assessing the contributions of vertical and hori-

zontal modes of evolution, which is of critical importance for understanding the processes

driving the evolution of many bacterial and archaeal gene families

Methods

Definition of RecPD

Given a phylogenetic tree and a list representing feature of interest and its presence/absence

state for each tree tip, ancestral state reconstruction is performed (see Methods–Development

of RecPD–Step 1) and the ancestral states of internal tree nodes and branches are assigned.

Ancestral feature lineages are identified by traversing branches from each feature presence

state tip to its deepest ancestral presence state nodes in the tree (i.e. presence state nodes imme-

diately descended from an absent state parental node). RecPD is then calculated by the sum of

all unique ancestral presence state branches divided by the total branch length of the phyloge-

netic tree:

RecPD ¼
PG

g Brg
P
Brtree

Where:

• Brg- all presence state branch lengths between the deepest ancestral tree presence (g) nodes

to directly descendant feature presence tips.

• Brtree All branch lengths of the phylogenetic tree.

RecPD Development and implementation

All code development, final implementation of RecPD analyses, simulation experiments and

figures presented in this work was performed in RStudio (R version 4.0.2) [42]. The ape library

[43] was used for basic phylogenetic tree import and processing tasks, generation and visuali-

zation of random trees used in methods development section, and ancestral reconstruction

using MPR and ACE. Faith’s PD was calculated using the pd() function from the picante

library [44]. The ggtree library [45] was used for final phylogenetic tree visualizations. R code

for running RecPD can be found in S1 File.
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Gene family evolutionary simulation

Simulation gene-family history evolution was performed using a Poisson process to model

gene family recombination and loss events onto a provided species tree phylogeny (code sup-

plied in S2 File). The method is motivated by ideas from the modelling of birth-death phyloge-

netic trees [46], similar approaches used for simulating microbial gene-tree phylogenies [47],

and the simulation of bacterial genomes and phenotypic evolution on phylogenetic trees [40].

In essence, it models the evolution of a trait (gene-family, variant, or locus) through loss and

recombination occurring along the different lineages of a provided species phylogenetic tree.

The tree can be either ultra-metric or non-ultrametric, with branch-lengths representing either

time since emergence from a common ancestor, or a molecular evolutionary distance (average

expected nucleotide/amino acid substitutions per site).

The model requires two parameters, specifying the rate exponents for each type of event

and their values can be scaled according to the maximum root-to-tip death of the phylogenetic

tree (in our case this value is scaled to 1):

• Extinction/Death/Loss Rate (Er): losses of a locus/state

• Recombination Rate (Rr: gains of a locus/state from one species lineage to another

These rates can be thought of as a summary of the evolutionary selective pressures act-

ing to maintain a locus/state or its selective advantage helping to propagate it. Note that

these rates remain constant throughout the evolutionary history of the species tree, how-

ever in reality they are likely to vary under different population bottlenecks or changing

environments.

Using these rates the Poisson interarrival time distribution for any event (loss or transfer)

can be calculated using the exponential distribution with the rate parameter equal to the sum

of the extinction and recombination rates: P(ti) = (Er + Rr) � exp(-(Er + Rr)�ti), where exp is

the exponential function and ti is the given inter-arrival time between successive events.

Another important feature of this model is that probabilities of events occurring at a given

inter-arrival time:

• Extinction Probability: Er / (Er + Rr)

• Recombination Probability: Rr / (Er + Rr)

In our modelling procedure, first the emergence time of the trait is randomly drawn from a

uniform distribution and then randomly assigned to a species lineage existing at that time

(trait origination event). Next, the occurrence of events is modelled using a Poisson process by

randomly drawing a sequence of interarrival times from the inverse cumulative probability

function of the exponential distribution: e_t = -log(1-P(i))/(Er + Rr + Lr)), where i is a random

variable sampled from a uniform distribution taking values from [0–1].

The inter-arrival time sequence is cumulatively summed and then added to the emergence

time of the first event (cumsum(e_t) + birth_time) which gives a sequence of the the event

occurrence times that will then be randomly mapped upon the species tree lineages. Note, only

those event occurrence times time of emergence for the locus/state until the time when the

species tips are observed (= 1) are considered.

Iterating successively through the event timings, a number between [0–1] is randomly

drawn from a uniform distribution (prob_event) and used to determine whether the given

event is a loss or recombination:

• Extinction/Loss: if prob_event < = Er / (Er + Rr); otherwise
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• Recombination: prob_event > Er / (Er + Rr)

In addition, a locus/state longevity rate (Lr) parameter can be incorporated, which will

result in the inter-arrival event distribution of exp(-(L + Er + Rr)), but also add the possibility

of no events occurring in the evolution of the trait:

• No Event (Trait State Maintained): if prob_event < = Lr / (Lr + Er + Rr); otherwise

• Extinction/Loss: prob_event < = Er / (Lr + Er + Rr); otherwise

• Recombination: prob_event < = Rr / (Lr + Er + Rr)

If the event is a trait loss, species lineages possessing the locus/state at the given time are

extracted and assigned as a loss event, and all descendant lineages occurring after the event

time are also assigned as losses. If the event is a recombination, then a species lineage lacking

the locus/state at the given time (if it exists) is randomly selected and assigned as a locus gain

event, and its descendants are assigned as a locus gain event, in distinction to the initial locus/

state origination event. In effect this generates a locus/state distribution presence/absences for

the tips of the species tree, as well as the ancestral evolutionary histories of these traits. There

may also be tips which never possessed the locus in their evolutionary history (absence). Using

this approach, we can examine how frequently locus/state distributions overlap between differ-

ent evolutionary regimes, e.g. loss dominated vs. recombination dominated.

Pseudomonas syringae type III effector family analysis

Data for P. syringae effectors including NCBI genomic accession numbers for 494 P. syringae
strains used for effector identification, associated strain metadata, and classified effector family

sequences originates from a previously published study [15]. Genomic assemblies used were

generated using the protocol outlined in [15]. Annotation of genome assemblies was per-

formed using prokka (version 1.14.16) [48], pangenome analysis and core-genome nucleotide

alignment was produced using PIRATE (version 1.0.4) [49], from which a core-genome phylo-

genetic tree was generated using IQ-TREE (version 1.6.12) [50]. All software was run in Linux.

Generation of effector presence/absence matrices, RecPD analyses, and phylogenetic tree visu-

alization and annotation were performed in R.

Pseudomonas growth phenotype analysis

Growth phenotypic data for Pseudomonas species was extracted from [31] and converted into

binary presence / absence format. Corresponding representative species 16S rRNA gene

sequences were downloaded from NCBI (including Cellvibrio japonicus as an outgroup

according to [25] and aligned using MUSCLE (v3.8.1551) [51]. Phylogenetic tree construction

was performed using IQ-TREE (version 1.6.12) [50]. Heatmap visualization was generated

using the ComplexHeatmap package in R [52].

Supporting information

S1 Fig. Illustration of RecPD Span metric calculation with example distributions of identi-

cal prevalence but differing Spans. (A) Span is calculated by summing of branch-lengths join-

ing tips in the phylogenetic tree possessing a gene family with a given level of prevalence. (B)

Normalizing by the maximum possible sum of branch-lengths found at the same level of prev-

alence. (C) Example gene family distributions of prevalence = 4 mapped onto a tree of 10 tips,

with maximum, minimum and median span values.

(TIF)
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S2 Fig. Illustration of RecPD Clustering metric calculation with example distributions.

Clustering is calculated from the sum of the number of internal presence state nodes identified,

normalized by the maximum clustering possible based on tip prevalence.

(TIF)

S3 Fig. Illustration of RecPD Longevity and Lability metric calculation with example dis-

tributions of identical prevalence but different Longevity and Lability. Longevity is calcu-

lated as the median branch-lengths of ancestral gain to loss internal nodes and presence state

tips, normalized by the maximum root-to-tip distance of the phylogenetic tree. Lability is the

corresponding sum of ancestral gain and loss nodes identified for each RecPD reconstructed

gene-family lineage divided by the total number of gained and lost tips. Panels A–C show

gene-family distributions of prevalence = 4 mapped onto a tree of 10 tips having approximately

equal Longevity and Lability (A), High Longevity and low Lability (B) and low Longevity and

high Lability (C).

(TIF)

S4 Fig. Illustration of RecPDcor metric calculation. A pair of RecPD gene family reconstruc-

tions are merged into a consolidated phylogenetic tree with mutually present (teal), unique

(blue), and mutually absent (red) ancestral branches identified. RecPDcor is then calculated as

the sum of branch-lengths mutually present branches divided by the total sum of mutually

present and unique branches.

(TIF)

S5 Fig. Differences of RecPD by NN, MPR, and ACE ancestral reconstruction approaches

normalized by Faith’s PD: Random gene family distributions for trees of 100, 500, and

1000 tips. 50 random gene-family distributions were generated at each level of prevalence

indicated, resulting to 451 distributions in total for each tree.

(TIF)

S6 Fig. Gene family evolutionary history simulation—outline of simulation experiment

protocol.

(TIF)

S7 Fig. RecPD NN, MPR, and ACE vs. Faith’s PD–estimated / actual PD for evolved gene

family distributions by rate regime (example trees with 10 tips).

(TIF)

S8 Fig. RecPD values for simulated gene family histories shows consistent performance for

trees of different size. Difference of NN, MPR, and ACE and Faith’s PD compared to actual

PD for evolved gene family distributions by rate regime. (A) Trees with 50 tips. (B) Trees with

100 tips.

(TIF)

S9 Fig. Effect of feature prevalence differences on corresponding RecPDcor values. Facets

represent the distribution of RecPDcor values binned by the normalized prevalence differ-

ences, min (prevalence) / max(prevalence), of each pairwise randomized gene-family distribu-

tion comparison compared. Note, normalized prevalence difference = 1 indicate distributions

with identical prevalence. Results correspond to a test-case of all possible 1022 gene-family dis-

tributions mapped onto a tree of 10 tips.

(TIF)

S1 File. R code for calculation of RecPD and associated metrics.

(R)
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S2 File. Tutorial for running RecPD analyses.

(HTML)

S3 File. R code for gene family evolutionary history simulations.

(HTML)
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