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We present an adaptive stimulus design method for efficiently estimating the parameters

of a dynamic recurrent network model with interacting excitatory and inhibitory neuronal

populations. Although stimuli that are optimized for model parameter estimation should,

in theory, have advantages over nonadaptive random stimuli, in practice it remains

unclear in what way and to what extent an optimal design of time-varying stimuli may

actually improve parameter estimation for this common type of recurrent networkmodels.

Here we specified the time course of each stimulus by a Fourier series whose amplitudes

and phases were determined by maximizing a utility function based on the Fisher

information matrix. To facilitate the optimization process, we have derived differential

equations that govern the time evolution of the gradients of the utility function with respect

to the stimulus parameters. The network parameters were estimated by maximum

likelihood from the spike train data generated by an inhomogeneous Poisson process

from the continuous network state. The adaptive design process was repeated in a

closed loop, alternating between optimal stimulus design and parameter estimation from

the updated stimulus-response data. Our results confirmed that, compared with random

stimuli, optimally designed stimuli elicited responses with significantly better likelihood

values for parameter estimation. Furthermore, all individual parameters, including the time

constants and the connection weights, were recovered more accurately by the optimal

design method. We also examined how the errors of different parameter estimates

were correlated, and proposed heuristic formulas to account for the correlation patterns

by an approximate parameter-confounding theory. Our results suggest that although

adaptive optimal stimulus design incurs considerable computational cost even for the

simplest excitatory-inhibitory recurrent network model, it may potentially help save time in

experiments by reducing the number of stimuli needed for network parameter estimation.

Keywords: optimal stimulus design, Fisher information matrix, excitatory-inhibitory network, inhomogeneous

poisson spike train, maximum likelihood estimation, parameter confounding, Fourier series, sensory coding

1. INTRODUCTION

One basic problem in systems neuroscience is to understand the relationship between sensory
stimulus and neural activity (Simoncelli et al., 2004; Van Hemmen and Sejnowski, 2005). Once the
mathematical expression of the stimulus-response relation of a sensory neuron is chosen, all the free
parameters of themodel can potentially be determined by system identification, or fitting themodel
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to a neurophysiological dataset which consists of the stimuli
used and the corresponding elicited neural responses (Westwick
and Kearney, 2003; Wu et al., 2006). Accurate parameter
estimation requires properly chosen stimuli. For example, stimuli
that elicited hardly any responses from the sensory neuron
would yield unreliable parameter estimates since the responses
reveal little information about the underlying neural system
(Christopher deCharms et al., 1998; Wang et al., 2005). Many
types of stimuli have been used for model parameter estimation,
ranging from random stimuli (Marmarelis and Marmarelis,
1978; Chichilnisky, 2001; Pillow et al., 2008) to natural stimuli
(Theunissen et al., 2001). The focus of this paper on automated
methods of stimulus design.

In this paper we adopt an adaptive approach to stimulus
design to optimize model parameter estimation for a generic
excitatory-inhibitory recurrent network model. The adaptive
procedure takes into account of the responses to the preceding
stimuli, and generates each new stimulus adaptively by
maximizing a utility function, which quantifies the usefulness of
a given stimulus for model parameter estimation. This approach
belongs to a widely used statistical methodology that is often
called optimal experimental design, with applications in various
disciplines, sometimes under other names (Atkinson and Donev,
1992; Pukelsheim, 1993; Fedorov and Leonov, 2013). The general
idea of choosing stimuli adaptively has been explored by many
researchers, and various methods have been proposed, with the
alopex algorithm as an early example (Harth and Tzanakou, 1974;
Benda et al., 2007; DiMattina and Zhang, 2013). Some adaptive
methods are not model-based; that is, they do not rely on an
explicit model of the stimulus-response relationship, such as
the iso-response method (Bölinger and Gollisch, 2012; Gollisch
and Herz, 2012; Horwitz and Hass, 2012), stimulus ensemble
optimization (Machens et al., 2005), and response maximization
by hill-climbing (Nelken et al., 1994; O’Connor et al., 2005) or
by genetic algorithms (Bleeck et al., 2003; Yamane et al., 2008;
Carlson et al., 2011; Chambers et al., 2014).

The optimal experimental design approach requires an
explicit stimulus-response model, and the aim is to estimate
the parameters of the given model as accurately as possible.
Once all the parameters are determined, the stimulus-response
model can potentially predict the responses to all possible stimuli
allowed by the model. From an information-theoretic point of
view, optimal experimental design based on a suitable model
is expected to yield responses that are more informative about
the model parameters than responses to nonadaptive random
stimuli (Paninski, 2005). For generalized linear models, optimal
experimental design method has been shown to be particularly
efficient for its parameter estimation, with guaranteed unique
solution for Gaussian stimuli (Lewi et al., 2009). Optimal design
method can improve parameter estimation for hierarchical
feedforward networks or multilayer perceptrons by optimizing
the D-optimal metric based on the Fisher information matrix
(DiMattina and Zhang, 2011). This method has been used
in neurophysiological experiments where sound stimuli with
multiple spectral bands were generated adaptively to optimize
parameter estimation of the feedforward circuit models of the
inferior colliculus (Dekel, 2012; Tam, 2012) and the auditory

cortex (Feng et al., 2012; Feng, 2013). The feedforward network
models used in these experiments are appropriate for stationary
sound stimuli where the emphasis is on spectral features rather
than temporal features. Extension to time-varying stimuli would
require dynamical neural network models.

Although in this paper we focus on parameter estimation
problem only, it is worth mentioning that optimal design can
have different goals. One particularly useful example is the
optimal design approach that facilitates the comparison of
competing models because the best stimuli for model estimation
may not be the best stimuli for model discrimination, and
vice versa (Sugiyama and Rubens, 2008; Cavagnaro et al.,
2010). For example, to compare different feedforward network
models, one could combine model estimation and model
comparison procedures to generate stimuli that maximally
distinguishing the competing models based on the current
parameter estimates (DiMattina and Zhang, 2011, 2013). This
model comparison method has been successfully applied to
auditory neurons recorded from the inferior colliculus in a
preliminary neurophysiological experiment where the stimulus
design was based on feedforward network models with different
numbers of inhibitory neurons (Tam, 2012).

The neural network model considered in this paper is a
simplified recurrent network based on the standard firing rate
model (Figure 1). This type of networks has a long history
(Amari, 1972; Wilson and Cowan, 1972) and has been used
in various research topics (Hopfield, 1984; Beer, 1995; Ledoux
and Brunel, 2011; Miller and Fumarola, 2012; Zhang, 2014;
Doruk and Zhang, 2018). In particular, such networks have been
used to model the neurons in the auditory system (Hancock
et al., 1997; Hancock and Voigt, 1999; de la Rocha et al., 2008).
Neurophysiological experiments with online adaptive stimulus
design for auditory neurons in the inferior colliculus (Dekel,
2012; Tam, 2012) and the auditory cortex (Feng et al., 2012;
Feng, 2013) were also based on this type of networks although
only spectral information was used while temporal dynamics was
ignored.

We seek to extend the optimal design approach to the dynamic
recurrent networks with time-varying stimuli. The goal is to
estimate the time constants and weight parameters of a given
network. The optimal experiment design will be performed by
maximizing a metric based on the Fisher information matrix,
which is a function of both the stimulus input and the network
parameters. As the true network parameters are unknown in real
experiments, the Fisher Information matrix is calculated based
on the estimated values of the parameters in the current step.
An optimization on a time-varying stimulus is not easy and
often its parametrization is required. For time-varying inputs
such as the auditory stimuli, that can be done by representing
the stimuli by a sum of phased cosine elements. We will model
the experimental data as extracellular recording of neuronal
spike trains, where the only information available is the spiking
timing. This situation prevents one to apply traditional parameter
estimation techniques such as minimummean square estimation
as it is more suitable for continuous rate data. We will use the
likelihood function of the inhomogeneous Poisson spike model
whose instantaneous rate is given by the continuous state of a
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FIGURE 1 | (A) A generic recurrent network with external inputs (stimulus). (B) A recurrent network with one excitatory unit and one inhibitory unit. Each unit has a

sigmoidal gain function and could represent a group of neurons. The responses, as simulated recordings in an experiment, are assumed to be inhomogeneous

Poisson spikes based on the continuous rate generated by the state of the excitatory unit.

unit. Due to the transient dynamics, we need to derive differential
equations to solve for the time courses of the derivatives of the
utility function in order to speed up the optimization process.
We will examine the advantages as well as the limitations of
using adaptive optimal design for dynamic excitatory-inhibitory
networks based on the performance of parameter estimation and
the computational cost.

2. MODELS AND METHODS

2.1. Continuous Time Recurrent Neural
Networks
A generic recurrent neural network may have any number of
neurons, and may allow any pattern of connections within the
network and any connection weights for the external inputs
(Figure 1A). The intrinsic dynamics of each unit is much simpler
than conductance-based model (Hodgkin and Huxley, 1952) and
resembles the dynamics of the voltage of a passive membrane
with a time constant. The output may be interpreted as the firing
rate which is related to the voltage by a nonlinear gain function,
and the synaptic excitation and inhibition are represented as
connection weights between units. The continuous dynamical
equation of this generic network can be written as:

τi
dVi

dt
= −Vi +

∑

j

Wijgj
(

Vj

)

+
∑

k

CikIk (1)

where τi is the time constant of neuron i in the network, Vi is the
state of neuron i (loosely interpreted as its membrane potential),
Wij is the weight of the synaptic connection from neuron j to
neuron i, the gain function gj is the input-output function of
neuron j which transforms its membrane potential to its firing
rate, and Cik is the connection weight from external input Ik to
neuron i. The gain function is the only source of nonlinearity in

Equation (1). A popular choice of the gain function is the logistic
sigmoid function given by:

gj
(

Vj

)

=
Ŵj

1+ exp
(

−aj
(

Vj − hj
)) (2)

where Ŵj is the maximum rate at which neuron j can fire, hj is a
soft threshold parameter, and aj is a slope parameter.

In this paper we focus on the generic excitatory-inhibitory
network as shown in Figure 1B. This is the simplest form of the
recurrent network described above with only two units, which
may be interpreted either as two neurons or as two groups of
neurons, one excitatory (e) and one inhibitory (i). The dynamical
equations of the system can be written as:

τeV̇e = −Ve + weege (Ve) − weigi (Vi) + weI (3)

τiV̇i = −Vi + wiege (Ve) − wiigi (Vi) + wiI (4)

where the subscripts e and i stands for excitatory and inhibitory
neurons, respectively, and I is a single stimulus variable. Onemay
also interpret Ve and Vi as the average activities of populations
of excitatory neurons and inhibitory neurons, respectively . Note
that in Equations (3) and (4), the weight parameters themselves
are assumed to be positive numbers, and their signs are shown
explicitly in the equations.

We can rewrite Equations (3) and (4) equivalently as a single
equation:

d

dt

[

Ve

Vi

]

=

[

βe 0
0 βi

]{

−

[

Ve

Vi

]

+

[

wee −wei

wie −wii

] [

ge (Ve)

gi (Vi)

]

+

[

we

wi

]

I

}

(5)
where we define

βe = 1/τe , βi = 1/τi (6)

for easier manipulations of the equations. This vector-matrix
form is more convenient for mathematical treatment in the
following sections.
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2.2. Inhomogeneous Poisson Spike Model
and Likelihood Function
In the model described above, the final output of the excitatory
neuron is a continuous firing rate: re = ge (Ve). Since neuronal
spiking activity often has Poisson-like noise (Shadlen and
Newsome, 1994), for a better comparison with extracellular
neurophysiological recording data, we consider spike trains
generated by an inhomogeneous Poisson process, and take
re = ge (Ve) as the instantaneous firing rate (Lewis and Shedler,
1979). We write the rate as re (t) to emphasize its dependence
on time. The probability of finding a spike in the infinitesmal
time interval

[

t, t + dt
)

is equal to re (t) dt. Given a spike train
(t1, t2, . . . , tK) in the time interval [0,T], with any finite T > 0,
the probability density function for this spike train can be derived
from the inhomogeneous Poisson process (Snyder and Miller,
1991; Brown et al., 2002; Eden, 2008), and the result reads:

p (t1, t2, . . . , tK) = exp

(

−

∫ T

0
re (t) dt

)

K
∏

k=1

re (tk) (7)

This probability density describes how likely a particular spike
train (t1, t2, . . . , tK) is generated by the inhomogeneous Poisson
process with the rate function re(t). Of course, this rate function
depends implicitly on the network parameters and the stimulus
used.

2.3. Maximum Likelihood Methods and
Parameter Estimation
The network parameters to be estimated are listed below as a
vector:

θ = [θ1, . . . , θ8] = [βe,βi,we,wi,wee,wei,wie,wii] (8)

which includes the time constants and all the connection weights
in the excitatory-inhibitory network. Our maximum-likelihood
estimation of the network parameters is based on the likelihood
function given by Equation (7). It is well known from estimation
theory that maximum likelihood estimation is asymptotically
efficient; that is, it reaches the Cramér-Rao lower bound for any
unbiased estimator in the limit of large data size. Sometimes
parameter estimation in optimal design is based on maximum a
posteriori estimation (DeGroot, 1970; Pukelsheim, 1993) which
is closely linked to the maximum likelihood estimation (Myung,
2003).

It is straightforward to extend the likelihood function in
Equation (7) to the situation where there are multiple spike trains
elicited by a sequence of stimuli. Suppose there areM stimuli and
them-th stimulus (m = 1, . . . ,M) elicits a spike train with a total
of Km spikes in the time window [0,T], and the spike timings

are given by Sm =
(

t
(m)
1 , t(m)

2 , . . . , t(m)
Km

)

. By (7), the likelihood

function for the spike train Sm is

p (Sm | θ) = exp

(

−

∫ T

0
r(m)
e (t) dt

)

Km
∏

k=1

r(m)
e

(

t
(m)
k

)

(9)

where r(m)
e is the firing rate in response to them-th stimulus. Note

that the rate function r
(m)
e depends implicitly on the network

parameters θ and on the stimulus parameters. The left-hand
side of (9) emphasizes the dependence on network parameters θ ,
which is convenient for parameter estimation. The dependence
on the stimulus parameters will be discussed in the next section.

We assume that the responses to different stimuli are
independent, which is a reasonable assumption when the inter-
stimulus intervals are sufficiently large so that any adaptation
and plasticity can be ignored. Under this assumption, the overall
likelihood function for the collection of allM spike trains can be
written as

L(S1, . . . , SM | θ) =

M
∏

m=1

p (Sm | θ) (10)

By taking natural logarithm, we obtain the log likelihood
function:

l(S1, . . . , SM | θ) = ln L(S1, . . . , SM | θ)

= −

M
∑

m=1

∫ T

0
r(m)
e (t) dt +

M
∑

m=1

Km
∑

k=1

ln r(m)
e

(

t
(m)
k

)

(11)

Maximum-likelihood estimation of the parameter set is given
formally by

θ̂ = argmax
θ

l(S1, . . . , SM | θ) (12)

Numerical issues related to this optimization problem will be
discussed in sections 2.5 and 2.6. In addition, some discussion
on the local maxima problems will be provided in section 3.4.

2.4. Utility Function of Optimal Design of
Stimuli
The optimal design method generates each stimulus by
maximizing a utility function, which quantifies the usefulness of
a given stimulus for parameter estimation based on the network
model. The basic idea is to design stimuli to elicit responses
that are most informative about the network parameters. In
optimal design method, the utility function U(x, θ) depends
on the stimulus parameters x, and typically also on the model
parameters θ . An intuitive explanation of the dependence on the
model parameters is best illustrated with an example. Suppose we
want to estimate a Gaussian tuning curve model with unknown
parameters although we may have some idea about the sensible
ranges of these parameters. To estimate the height of the tuning
curve accurately, we should place a probing stimulus around
the likely location of the peak. To estimate the width, the
probing stimulus should go to where the tuning curve is likely
to have the steepest slope. For the baseline, we should go for
the lowest response. This simple example illustrates the fact that
an optimally designed stimulus depends on which parameter
is to be estimated, and on the prior knowledge of possible
parameter values. Since a scalar utility function U(x, θ) depends
on all the parameters θ = [θ1, θ2, . . .], optimizing this single
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scalar function is sufficient to recover all the parameters, at least
in theory. Indeed, when a sequence of stimuli are generated
by optimal design, the stimuli may alternate spontaneously
as if the optimization was performed with respect to each
of the parameters one by one (DiMattina and Zhang, 2011).
Alternatively, we may also optimize the parameters one by one,
as described below.

Once the utility function U(x, θ) is chosen, the optimally
designed stimulus may be written formally as:

x̂ = argmax
x

U(x, θ) (13)

where the network parameters θ can be obtained by maximum-
likelihood estimation from the existing spike data as described
in the preceding section. Here the stimulus is specified by vector
x, which is a set of parameters rather than the actual stimulus
itself. Direct computation of the actual time-varying stimulus
is not easy because no closed analytical form of the objective
function is available and furthermore the computation of the
optimal control input generally requires a backward integration
or recursion. Instead of struggling with this difficulty, one can
restrict the stimulus I to a well known natural form such as sum
of phased cosines as shown below:

I =

N
∑

n=1

An cos (ωnt + φn) (14)

whereAn is the amplitude,ωn is the frequency of the n-th Fourier
component, and φn is the phase of the component. We choose a
base frequencyω1 and set the frequencies of all other components
as the harmonics: ωn = nω1 for n = 1, . . . ,N. Now the stimulus
parameters can be summarized by the stimulus parameter vector:

x = [x1, · · · , x2N] = [A1, · · · ,AN ,φ1, · · · ,φN] (15)

We sometimes refer to x as the stimulus, with it understood that
it really means a set of parameters that uniquely specify the actual
stimulus I.

The Fourier representation of the stimulus in (14) is generic
and flexible in the sense that given enough terms, it may
potentially approximate any continuous function to arbitrary
precision. The optimal design procedure should be able to
automatically identify what stimuli are best for recovering the
parameters from the observed network state. In general, allowing
the stimuli to be time-varying is more powerful than using
only stationary stimuli. For example, if we only consider the
equilibrium states under stationary stimuli, we always have V̇e =

V̇i = 0 so that the time constants τe and τi effectively disappear
from Equations (3) and (4). In other words, the time constants
cannot be recovered solely from the equilibrium states of the
networks under stationary stimuli. Some transient responses to
time-varying stimuli are required to recover these parameters.
In this paper we use the Fourier form as a convenient choice
although other representations are also possible.

Some popular choices of the objective function are based on
the Fisher information matrix, which is generally defined as:

Fij (x, θ) =

〈

∂ ln p(r | x, θ)

∂θi

∂ ln p(r | x, θ)

∂θj

〉

(16)

where p(r | x, θ) is the probability distribution of the response r
(number of spikes) elicited by a given stimulus x within a certain
time window, and the average 〈 〉 is over all possible responses
r according to the probability distribution p(r | x, θ) for fixed
x and θ . The Fisher information matrix reflects the amount
of information contained in the noisy response r about the
model parameters θ , assuming a generative model given by the
conditional probability p(r | x, θ). So the stimulus designed by
maximizing a certain measure of the Fisher information matrix
(16) is expected to decrease the error of the estimation of the
parameters θ .

Next we give an explicit expression for the response likelihood
function p(r | x, θ), which is different from the spike train
likelihood function such as p (t1, t2, . . . , tK) in (7) and p (Sm | θ)

in (9) although they all follow from the same inhomogeneous
Poisson model. In our network model, the recorded spike
train has an inhomogeneous Poisson distribution with the rate
function re (t). We write this rate as re (t, x, θ) to emphasize its
dependence on the stimulus x and the network parameters θ .
Assuming a small time window of duration1t centered at time t,
the response (number of spikes) obeys the Poisson distribution:

p(r | x, θ) =
λ(t, x, θ)r

r!
exp(−λ(t, x, θ)) (17)

where the mean response is given by

λ(t, x, θ) = re(t, x, θ)1t (18)

Now the entry of the Fisher information matrix in (16) becomes

Fij (t, x, θ) =
1t

re (t, x, θ)

∂re (t, x, θ)

∂θi

∂re (t, x, θ)

∂θj
(19)

where t is added as a variable of Fij to emphasize its dependence
on time.

The utility function U can be chosen as a scalar function of
the Fisher information matrix F. A popular and theoretically well
founded choice is the D-optimal design with the utility function:

U(x, θ) = det F(x, θ) (20)

which reflects the inverse volume of the error covariance ellipsoid
for all the parameters of the model. One drawback of the method
is that the determinant of the Fisher information matrix is not
always easy to optimize. The A-optimal design, based on the trace
of the Fisher information matrix, is much easier to optimize:

U(x, θ) = tr F(x, θ) (21)

Another alternative is the E-optimal design where the objective
function is the smallest eigenvalue of the Fisher information
matrix.
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In this paper the A-optimality measure of the information
matrix is preferred. There is an obvious reason for this
preference. As the computational complexity of the optimization
algorithms are expected to be high, the necessity of numerical
derivative computation should be avoided as much as possible.
Since it is not easy to evaluate the derivatives of the
eigenvalues and determinants by anymeans other than numerical
approximations it will be convenient to apply a criterion like A-
optimality which is simply a the sum of the diagonal elements.
Since the Poisson rate function re varies with time, the A-optimal
utility function in (21) should be modified by including an
integration over time:

U (x, θ) =

∫ T

0
trF(t, x, θ)dt =

∫ T

0

8
∑

k=1

1

re(t, x, θ)

(

∂re(t, x, θ)

∂θk

)2

dt

(22)
where 8 is the total number of parameters (θ1, · · · , θ8), and the
time window1t is ignored because it is a constant coefficient that
does not affect the result of the optimization.

For convenience, we can also define the objective function
with respect to a single parameter θk as:

Uk (x, θ) =

∫ T

0

1

re(t, x, θ)

(

∂re(t, x, θ)

∂θk

)2

dt (23)

The objective function in (22) is identical to

U (x, θ) =

8
∑

k=1

Uk (x, θ) (24)

where 8 is the total number of parameters in (8).
The optimization of the D-optimal criterion in (20) is

not affected by parameter rescaling, or changing the units of
parameters. For example, changing the unit of parameter θ1 (say,
from msec−1 to sec−1) is equivalent to rescaling the parameter
by a constant coefficient so that θ1 → cθ1. The effect of this
transformation is equivalent to a rescaling of the determinant
of the Fisher information matrix by a constant factor, namely,
det F → (det F)/c16, which does not affect the location of the
maximum of (20). By contrast, the criterion function in (21)
or (22) are affected by parameter rescaling. A parameter with
a smaller unit would tend to have larger derivative value and
therefore contribute more to (22) than a parameter with a large
unit.

To alleviate this scaling problem, we use Uk one by one
to generate the stimuli. That is, stimulus 1 is generated by
maximizing U1, and stimulus 2 is generated by maximizing U2,
and so on. Once the 8th stimulus is generated by maximizing
U8, we go back and use U1 to generate the next stimulus, and
so on. Finally, an alternative way to get rid of scale dependence
is to introduce logarithm and use U =

∑

k lnUk as the criterion,
which, however, may become degenerate when Uk approaches 0.

2.5. Gradient Computation by Solving
Differential Equations
Gradient computation often helps speed up optimization
algorithms. The main difficulty of computing gradients in a

dynamic network model is the lack of closed form expressions
like in the case of static nonlinear mapping given by a multilayer
perceptron. Although gradient computations can be easily
performed numerically on an explicit function by testing its
values in a small neighborhood, this approach is not suitable for
our implicit functions because our variables are all governed by
differential equations and the increments in perturbation may
not be compatible with the differential equations. One feasible
remedy is to directly solve for the gradients in self-contained
differential equations derived from the original equations (Flila
et al., 2010; Telen et al., 2012a,b). We will adapt this method for
our excitatory-inhibitory network.

We have two optimization problems in this paper, namely,
optimizing the utility function for stimulus design, and
optimizing the likelihood function for parameter estimation.
To compute the gradients in these two cases, we need to first
evaluate the gradients of the network state variable with respect
to either the stimulus parameters or the network parameters. We
will derive the differential equations satisfied by these gradients
by taking derivatives on both sides the original dynamical
Equation (5) .

First we consider the gradients with respect to the stimulus
parameters, which include the amplitudes An and the phases φn

of the Fourier series in Equation (14). We write the stimulus
parameter as a vector:

x = [x1, x2, . . . , x2N] = [A1, . . . ,AN ,φ1, . . . ,φN] (25)

We write the state of the network also as a vector: v = [Ve,Vi]T.
We take derivatives such as ∂v/∂x as an independent variable,
and solve it directly from the differential equation derived from
the original dynamical Equation (5). Taking derivative with
respect to x on both sides of Equation (5), we obtain the desired
differential equation:

d

dt

∂v

∂x
=

[

βe 0
0 βi

]{

−
∂v

∂x

+

[

wee −wei

wie −wii

] [

g′e (Ve) 0
0 g′i (Vi)

]

∂v

∂x
+

[

we

wi

]

∂I

∂x

}

(26)

where g′e and g
′
i are the derivatives of the gain functions ge and gi,

respectively, and the matrices derivatives are defined in the usual
manner:

∂I

∂x
=

[

∂I

∂A1
. . .

∂I

∂AN
,

∂I

∂φ1
. . .

∂I

∂φN

]

(27)

and

∂v

∂x
=











∂Ve

∂A1
. . .

∂Ve

∂AN

∂Ve

∂φ1
. . .

∂Ve

∂φN

∂Vi

∂A1
. . .

∂Vi

∂AN

∂Vi

∂φ1
. . .

∂Vi

∂φN











(28)

Equation (26) can be written equivalently in the shorthand form:

d

dt

∂v

∂x
= B

{

−
∂v

∂x
+WG

∂v

∂x
+ w

∂I

∂x

}

(29)
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where B =

[

βe 0
0 βi

]

,W =

[

wee −wei

wie −wii

]

,G =

[

g′e(Ve) 0
0 g′i (Vi)

]

,

and w =

[

we

wi

]

.

Next we consider the gradients with respect to the network
parameters: θ = [θ1, . . . , θ8] = [βe,βi,we,wi,wee,wei,wie,wii].
By taking derivative with respect to θk on both sides of Equation
(5), we obtain

d

dt

∂v

∂θk
= B

{

−
∂v

∂θk
+WG

∂v

∂θk

}

+ zk (30)

where
∂v

∂θk
=

[

∂Ve

∂θk
,
∂Vi

∂θk

]T

and the last term zk refers to the

extra components resulting from the chain rule of differentiation.
These extra terms are presented in Table 1.

We also need to consider the second-order cross
derivatives as needed for maximizing the trace of the Fisher
information matrix. Taking derivative of (29) with respect to θk,
we find:

d

dt

∂2v

∂x∂θk
= B

{

−
∂2v

∂x∂θk
+WG

∂2v

∂x∂θk
+WG′ diag

(

∂v

∂θk

)

∂v

∂x

}

+ Zk

(31)

TABLE 1 | The extra components zk in Equation (30).

k Parameter θk Extra term zk in Equation (30)

1 βe





1 0

0 0











−





Ve

Vi



+w





ge (Ve)

gi
(

Vi
)



+ wI







2 βi





0 0

0 1











−





Ve

Vi



+w





ge (Ve)

gi
(

Vi
)



+ wI







3 we B





1

0



 I

4 wi B





0

1



 I

5 wee B





1 0

0 0









ge (Ve)

gi
(

Vi
)





6 wei B





0 −1

0 0









ge (Ve)

gi
(

Vi
)





7 wie B





0 0

1 0









ge (Ve)

gi
(

Vi
)





8 wii B





0 0

0 −1









ge (Ve)

gi
(

Vi
)





where G′ =

[

g′′e (Ve) 0
0 g′′i (Vi)

]

, diag

(

∂v

∂θk

)

=

[

∂Ve
∂θk

0

0 ∂Vi
∂θk

]

, and

∂2v

∂x∂θk
=













∂2Ve

∂A1∂θk
. . .

∂2Ve

∂AN∂θk

∂2Ve

∂φ1∂θk
. . .

∂2Ve

∂φN∂θk

∂2Vi

∂A1∂θk
. . .

∂2Vi

∂AN∂θk

∂2Vi

∂φ1∂θk
. . .

∂2Vi

∂φN∂θk













(32)
which is compatible with (28). The last term Zk is specified in
Table 2.

Nowwe are ready to evaluate the derivatives of themean firing
rate re = ge (Ve) with respect to the network parameters θk in (8)
and the stimulus parameters xj in (25). The first and the second
order derivatives are:

∂re

∂θk
= g′e (Ve)

∂Ve

∂θk
(33)

∂re

∂xl
= g′e (Ve)

∂Ve

∂xl
(34)

∂2re

∂xl∂θk
= g′′e (Ve)

∂Ve

∂xl

∂Ve

∂θk
+ g′e (Ve)

∂2Ve

∂xl∂θk
(35)

TABLE 2 | The extra components Zk in Equation (31).

k Parameter θk Extra term Zk in Equation (31)

1 βe





1 0

0 0





{

−
∂v

∂x
+WG

∂v

∂x
+w

∂ I

∂x

}

1 βi





0 0

0 1





{

−
∂v

∂x
+WG

∂v

∂x
+w

∂ I

∂x

}

3 we B





1

0





∂ I

∂x

4 wi B





0

1





∂ I

∂x

5 wee B





1 0

0 0



G
∂v

∂x

6 wei B





0 −1

0 0



G
∂v

∂x

7 wie B





0 0

1 0



G
∂v

∂x

8 wii B





0 0

0 −1



G
∂v

∂x
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These formulas are expressed in terms of the derivatives ∂Ve
∂θk

,
∂Ve
∂xl

and ∂2Ve
∂xl∂θk

, which are regarded as independent dynamical

variables that can be solved from the three differential Equations
(29)–(31). In our simulations, the initial conditions were always
assumed to be the equilibrium state, and the initial values of the
derivatives were set to zero.

Next, we evaluate the gradient of the utility function in
Equation (22) with respect to the stimulus parameters xl as
follows:

∂U

∂xl
=

∫ T

0

∂

∂xl

8
∑

k=1

1

re

(

∂re

∂θk

)2

dt (36)

=

∫ T

0

8
∑

k=1

{

−
1

r2e

∂re

∂xl

(

∂re

∂θk

)2

+
2

re

∂re

∂θk

∂2re

∂xl∂θk

}

dt (37)

where the last expression is written in terms of the derivatives that
are already evaluated by Equations (33)–(35). If we design the
stimulus with respect to one parameter by optimizing the utility
function in Equation (23), we rewrite the above by removing the
summation and obtain:

∂Uk

∂xl
=

∫ T

0

∂

∂xl

1

re

(

∂re

∂θk

)2

dt (38)

=

∫ T

0

{

−
1

r2e

∂re

∂xl

(

∂re

∂θk

)2

+
2

re

∂re

∂θk

∂2re

∂xl∂θk

}

dt (39)

Lastly, for maximum likelihood estimation, one needs the
gradient of the log likelihood function of spike trains in (11):

∂ l

∂θk
= −

M
∑

m=1

∫ T

0

∂r
(m)
e (t)

∂θk
dt +

M
∑

m=1

Km
∑

k=1

1

r
(m)
e
(

t
(m)
k

)

∂r
(m)
e
(

t
(m)
k

)

∂θk

(40)
The right-hand side is already written in terms of derivatives that
can be evaluated by (33).

2.6. Practical Numerical Issues Related to
Optimization
As described in the preceding sections, our optimal design
method requires solving two separate maximization problems as
given by Equations (12) and (13). Since the goal of this paper is
not to develop or implement optimization algorithms, we used
the optimization programs available in MATLAB (R2013b) for
all the simulation results reported in the paper. After comparison
with several MATLAB optimization programs including genetic
algorithms, simulated annealing and pattern search, we found
that the function fmincon, with the default interior-point method
of constrained nonlinear optimization, performed adequately for
our problems.

The function fmincon and similar algorithms are local
optimizers. In order to find a good optimum, the algorithms
are often repeated with multiple initial guesses and the best one
is chosen according to the value of the objective and gradient
value at the termination point. This is especially important in
the optimal design part as the utility function in Equation (23)

may have lots of local maxima. The local maxima problem also
exists for the likelihood function (11), but to a lesser extent.
This is because as the number of stimuli increases, the likelihood
function tends to converge to the same optimum for different
initial guesses. See section 3.4 for a detailed discussion of this
issue.

The local optimization algorithms such as fmincon need the
gradient of the objective function. Although the gradient could
be computed numerically, it is better to use the derivatives
obtained directly by solving differential equations as explained
in the preceding section. This is because numerical gradient
computation is much slower and also increases the risk of
singularities in the solution.

Finally, MATLAB parallel computation toolbox can speed up
the optimization. We obtained a speedup by a factor of 5 even on
a PC with a single Intel i7 six-core processor.

2.7. Procedural Information
In this section, we will summarize the overall procedure to show
how the optimal design and parameter estimation algorithm
works together in an automated loop. The first issue is the choice
of the initial parameter values. In the beginning of an experiment
(or simulation in our case), one usually has no idea about the true
values of the network parameter vector θ , although one may have
some prior information about plausible or reasonable ranges of
acceptable parameter values. Since the optimal design method
needs a current parameter estimate, one can assign a randomly
chosen initial parameter vector from some prior distribution. In
our simulations, we simply drew each parameter randomly from
a uniform distribution between a lower bound and an upper
bound of acceptable parameter values. One can find the details
about the parametric bounds in Table 3. The stimulus amplitude
coefficients [An in (14)] also need to be bounded because in
the real world the total energy of the sound stimulus is finite.
In simulations, very large amplitudes may lead to unrealistically
large responses and instabilities which may break the optimal
design procedures. An upper bound on An’s can be found by a
few initial simulations, and if no instabilities are detected one will
be fine with the decided value of the bound.

The overall process of the algorithm is summarized below:

1. Set i = 1 (iteration count)
2. Set the current estimate θ̂ as a random vector between θmin

and θmax (from Table 3)
3. Set k = 1 (parameter count)
4. Optimize Uk(x, θ̂) (as in Equation 23) to generate stimulus x̂ ,

which elicits a new response.
5. Update the current maximum likelihood estimate, θ̂ , by

including the new response data.
6. Set k → k+ 1. If k > 8 (total number of parameters) set

i → i+ 1 and go to the next step, otherwise go to Step 4 .
7. If i > Nitr stop and report the result as θ̂ , otherwise go to Step

3

Here Nitr is the total number of iterations. The total number
of stimuli generated by the procedure is equal to 8Nitr. The
optimal design results in the next section were all obtained by
this procedure.
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TABLE 3 | True values, bounds, and estimates of network parameters.

Parameter True value θ Lower bound θmin Upper bound θmax Estimate θ̂opt (mean ± std) Estimate θ̂rand (mean ± std)

βe 50 0 100 49.94 ± 0.86 50.07 ± 1.63

βi 25 0 100 25.18 ± 1.44 25.23 ± 1.96

we 1 0 2 1.002 ± 0.036 0.998 ± 0.039

wi 0.7 0 2 0.698 ± 0.068 0.715 ± 0.100

wee 1.2 0 3 1.227 ± 0.069 1.247 ± 0.107

wei 2 0 3 2.069 ± 0.187 2.071 ± 0.227

wie 0.7 0 3 0.712 ± 0.095 0.784 ± 0.171

wii 0.4 0 3 0.456 ± 0.199 0.569 ± 0.374

The true values of the 8 parameters in the excitatory-inhibitory network in Equation (5) are shown, followed by the lower and upper bounds used during the maximum-likelihood

optimization process. The means and the standard deviations of the maximum-likelihood estimates θ̂opt and θ̂rand were obtained from 100 repeated trials, where each trial had 120

optimally designed stimuli and 120 random stimuli, respectively.

3. SIMULATION RESULTS

In this section, we will summarize our computer simulation
results based on the adaptive stimulus design and network
parameter estimation algorithms as described in the preceding
section. Besides the properties of the optimally designed stimuli
and the accuracy of the parameter estimation, we will also
examine how the errors of different parameter estimates are
correlated, and how the correlations might be accounted for
by parameter confounding formulas derived from the network
dynamical equations.

3.1. Details of the Example Problem
All simulations of the excitatory-inhibitory network (Figure 1B
and Equation 5) were based on the generating values (sometimes
also referred to as “true values”) of the parameters given in
Table 3. The gain functions ge (Ve) and gi (Vi) require additional
parameters, namely, Ŵe, ae, he,Ŵi, ai, and hi. These gain functions
are given by Equation (2) except that the subscript j should be
replaced by either ‘e’ or ‘i’. Because this research was aimed
at the estimation of the network parameters only, the gain
functions, representing the input-output properties of individual
units, were assumed to be fixed with the parameter values Ŵe =

100, ae = 0.04, he = 70,Ŵi = 50, ai = 0.04, and hi = 35.
This assumption simplifies the parameter estimation problem
because now we can focus on network parameter estimation
only. This assumption is not absolutely required because our
method could be readily extended to estimate these parameters
as well. The simplification here is equivalent to assuming that
we already know the input-output relations of each individual
unit. In realistic situation, we may use the average input-output
relationship of each neuronal type if it is known because each unit
in the model could correspond to a subpopulation of neurons as
describe before.

This set of parameters allows the network to have a unique
equilibrium state for each stationary input. For a square wave
stimulus (Figure 2A), the resultant excitatory and inhibitory
neural membrane potential responses, namely, Ve (t) and Vi (t),
show both a transient component (initial peak) and a sustained
component (later plateau) (Figures 2B,C). The peak response of
the inhibitory unit rises more slowly than the excitatory unit.

The peak of the excitatory unit is more pronounced, which is
especially clear in the firing rate re (t) = ge (Ve (t)) as shown in
Figure 2D.

The optimization of the stimuli requires that the maximum
power level in a single stimulus is bounded. This is a precaution
to protect the model from potential instabilities due to over-
stimulation. In real experiments, the stimuli should also have
bounded maximum energy and subject will also need to be
protected from over-stimulations. Consider the Fourier series for
the stimulus in (14). As the amplitude parameter is assumed to be
nonnegative (An ≥ 0), assigning an upper bound defined as Amax

should be enough. This is applied to all stimulus amplitudes An.
In this research, a fixed setting of Amax = 120 is chosen. The
lower bound is obviously Amin = 0. The phase parameter φn

is allowed to vary freely without any lower or upper bounds as
the cosine function itself is already bounded (−1 ≤ cos ≤ 1). The
frequency ωn of the stimulus component is the n-th harmonics of
a base frequency fbase; that is, ωn = 2πnfbase. Since we assumed
a simulation time of Topt = 3 s, we made a reasonable choice

of the base frequency as fbase = 10
3 Hz or 3.33 Hz. So we have

chosen an integer relationship between the stimulation frequency
and simulation time. The number of stimulus components N is
chosen as N = 5 which is found to be reasonable concerning
speed and performance balance.

Optimization algorithms such as fmincon requires an initial
guess of the optimum solution. To make the initial choice
uninformative, we picked each initial value randomly with a
uniform distribution between the lower bound and the upper
bound. In the optimization of stimuli, the initial amplitudes
were uniformly distributed between [0,Amax] and phases were
uniformly distributed between [−π ,π). Although we did not
have any constraints on the phase parameter, we limited the
initial phase values to a safe assumed range. We follow a
similar strategy for the network parameter estimation based on
maximum likelihood method. The multiple initial guesses were
chosen randomly from a set of values uniformly distributed
between the lower and upper bounds defined in Table 3.

In section 2.3, one recall from (10) or (11) that the likelihood
estimation should produce better results when the number of
spike train samples, M, increases. Because of this fact, the
likelihood function should always be evaluated with all the
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FIGURE 2 | The network model in Figure 1B in response to a square-wave stimulus. The states of the excitatory and inhibitory units, Ve and Vi, are shown, together

with the continuous firing rate of the excitatory unit, re = ge (Ve). The firing rate of the excitatory unit (bottom panel) has a transient component with higher firing rates,

followed by a plateau or sustained component with lower firing rates.

available spike trains generated since the beginning of the
simulated trial. The total number of spike trains, M, is always
equal to the total number of stimuli. If the optimal design process
is iterated Nitr times, one will have M stimuli with M = 8Nitr

due to the fact that each iteration has 8 optimal designs sub-steps
for each of the eight parameters in (8) (see section 2.4). In our
simulations, we typically used 15 iterations Nitr = 15, so that we
hadM = 120 stimuli and the likelihood in (11) had 120 samples.
This also means that optimal design and subsequent parameter
estimation were iterated 120 times for each simulated trial. To
obtain the statistics of the estimates, the trial was repeated 100
times for each case.

3.2. Statistics of Optimally Designed
Stimuli
With all the necessary information from section 3.1, one
can perform an optimal design experiment where stimuli
are generated adaptively to elicit neural responses. An

example of an optimally design stimulus, together with the
elicited responses, is shown in Figure 3. It is noted that the
optimally designed stimulus in the top panel of Figure 3

is periodic in time because it is modeled by the Fourier
series in (14).

In addition to the network responses, the bottom half of
Figure 3 shows the time courses of the parametric sensitivity
derivatives ∂re

∂θi
which are generated by integrating (30) and then

substituting to (33). The sensitivity derivatives varied greatly
in their magnitudes or maximum absolute values. In Figure 3,
the magnitudes of the derivatives with respect to the weight
parameters (we, wei, etc.) were more than 10 times that of the
time parameters (βe and βi). In particular, the maximum value of
∂re
∂we

was over 100 times greater than that of ∂re
∂βe

. This difference
supports the idea that optimizing the Fisher Information Metric
in (23) should be performed with respect to each single parameter
separately as described at the end of section 2.4. Otherwise, if
one only optimizes the sum in (24) as a whole, then a term with
a low-sensitivity parameter could be easily overwhelmed by the
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FIGURE 3 | An example of an optimally designed stimulus with a duration of 3 s (top panel). The responses of the excitatory and the inhibitory units in the network are

shown below, followed by an example of spike trains (blue vertical bars) generated by an inhomogeneous Poisson process according to the continuous firing rate of

the excitatory unit (re). In response to this stimulus, the time courses of eight derivatives variables, namely, the derivatives of the firing rate re with respect to all the

network parameters, are shown as red curves. These derivatives were solved directly from the differential Equation (29).

fluctuations of a term with a high-sensitivity parameter. We also
note that the times courses of some of the sensitivity derivatives
looked very similar, while others looked like mirror images of one

another. This means that small increments of these parameters
affect the output firing rate re in either the same direction or
the opposite direction, due to the intrinsic dynamics of the
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FIGURE 4 | Time evolution of the optimally designed stimuli in a simulated experiment with 120 iterations. (A) Random stimuli with uniformly distributed random

Fourier amplitudes An and phases φn. (B) The optimally designed stimuli show specific patterns in the amplitudes An and the phases φn. The rightmost column is a

vector representation of An and φn using complex number x + iy = An exp(iφn).

network and how the excitatory unit and inhibitory unit are
wired up.

Unlike random stimuli generated by Fourier series with
random amplitudes and phases, the optimally designed stimuli
seemed to have some inherent structures, which can be observed
in the stimulus sequence generated one by one in a simulated
experiment (Figure 4) as well as in the histograms obtained from
repeated experiments (Figure 5). The appearance of oscillations
in the sequence of optimally designed stimuli in Figure 4B is
probably due to the spontaneous switching by the optimal design
algorithm to probe different parameters (DiMattina and Zhang,

2011). The random stimuli were used as a control in our study.
Their amplitudes An and the phases φn showed flat distributions
in the histograms (Figure 5A). This is expected because the
stimuli were generated by randomly drawing the amplitudes and
phases from a uniform distribution. By contrast, the amplitudes
An and the phases φn of the optimally designed stimuli were
distributed in more complex manners (Figure 5B). For instance,
the distribution of amplitude A5 (bottom panel) had a major
peak in themiddle, besides additional concentrations at either the
lower bound or the upper bound. The lower and upper bounds
mean the minimum and the maximum energy allowed for each
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Fourier component. The distributions of the amplitudes showed
a tendency to cluster at the upper bound, which occurred in about
half of the cases; the amplitudes lied between the lower and upper
bounds also in about half of the cases, while the lower bound
was reached in less than 2% of the cases. Our Fisher information
maximization procedure yielded phase parameters with specific
distributions. In fact, none of the phase parameters (rightmost
column in Figure 5B) had a flat distribution; instead, they all
seemed to have distributions with multiple peaks, indicating
that the phases were not irrelevant variables for the optimal
design.

The tendency for optimally designed stimuli to cluster around
the topological boundary of the set of allowable stimuli was
reported for feedforward networkmodels (DiMattina and Zhang,
2011). In that situation, both the feedforward network and
the stimuli were stationary without involving time. Here we
found similar topological boundary property for time-varying
stimuli in a dynamic recurrent network. We suspect there might
exist deeper mathematical reasons underlying this phenomenon
although a full and rigorous analysis is beyond the scope of this
paper.

3.3. Maximum-Likelihood Estimates of
Network Parameters
Given a dataset consisting of stimulus-response pairs, we can
always use maximum-likelihood estimation to fit the network
model to the data to recover all the parameters. Maximum-
likelihood estimation is known to be asymptotically efficient in
the limit of large data size, in the sense that the estimation is
asymptotically unbiased (i..e, average of the estimates approaches
the true value) and has minimal variance (i.e., the variance of the
estimates approaches the Cramér-Rao lower bound).

The accuracies of the maximum-likelihood estimates from the
optimally designed stimuli, as well as from the random stimuli,
are shown in Table 3. Both types of stimuli yielded reasonably
accurate estimates of the network parameters although some
parameters appeared harder to estimate than others. The
maximum-likelihood estimates based on optimally designed
stimuli were closer to the true values, on average, than that based
on random stimuli. Furthermore, the standard deviations of the
estimates based on optimally designed stimuli were also smaller,
indicating more consistent estimates in repeated trials.

A further comparison of the accuracies of individual
parameter estimates is shown in Figure 6. As expected, the
estimates of all parameters tended to be more accurate when the
number of stimuli increased, both for the random stimuli and for
the optimally designed stimuli. For every individual parameter,
the error for the optimally designed stimuli was always smaller
than that for the random stimuli, across all total numbers of
stimuli we tested. The statistical significance of the differences
was evaluated by Wilcoxon rank-sum test (Mann and Whitney,
1947; Gibbons and Chakraborti, 2011; Hollander et al., 2014).
Most of the differences reached statistical significance at p =

0.05, as indicated by the asterisk (∗) above the bars in Figure 6.
That is, in all cases with an asterisk, the estimates from optimal
design was significantly better than that from random stimuli.

With the total number of stimuliM = 120 (the largest sample
size in our tests in Figure 6), the p-values of Wilcoxon rank-
sum test for all the parameters estimated by the two methods
were as follows: p (βe) = 4.5 × 10−5, p (βi) = 9.1 × 10−3,
p (we) = 0.989, p (wi) = 6.9 × 10−3, p (wee) = 2.0 × 10−3,
p (wei) = 5.6 × 10−3, p (wie) = 2.2 × 10−5, and p (wii) =

2.9×10−8. Thus the optimally design stimuli yielded significantly
more accurate estimates than the random stimuli for 7 out
of 8 parameters at the significance level p = 0.05. The only
exception is the third parameter, we, which was not significant
regardless of the sample size M (Figure 6). This parameter was
among the easiest to estimate because it had low errors relative
to the true value for both methods (Table 3 and Figure 6).
Although the optimal design method performed slightly better
across all sample sizes, the small differences between the two
methods did not reach statistical significance for our sample sizes
(Figure 6). The error of parameter we might also be associated
with the parameter confounding phenomenon, which will be
discussed in section 3.5. The most significant difference, or the
smallest p-value, was achieved for the parameter wii, which was
the hardest parameter to estimate because it had the largest
errors relative to the true value for both methods (Table 3 and
Figure 6). Parameter wii tended to have larger errors because
the data recording was performed directly on the excitatory unit
whose activity was affected only indirectly by the inhibitory unit
self-connection weight. For the parameter which was the most
difficult to estimate, the advantage of the optimal design over
random stimuli was the most significant.

Besides means and standard deviations, we now examine
the actual distributions of the likelihood values for the two
types of estimates. We found that maximum likelihood obtained
from the optimally design stimuli was typically much better
than that obtained from the random stimuli (Figure 7A). A
proper comparison should be based on the same number of
stimuli. because for each estimation method, the likelihood value
increased with the number of stimuli (Figure 7B), For a given
number of stimuli, the optimally designed stimuli always yielded
much greater likelihood value than the random stimuli. The
minimum difference between the two sets of likelihood values
(i.e., between the maximum from the random stimulus samples
and theminimum from the optimal design samples) was typically
at least two times greater than the standard deviation of either
estimate except for the case with 24 samples (M = 24 with
Nitr = 3). Even in this case, this violation occurred only for one
outlier data point.

As expected from the log likelihood formula (11), the log
likelihood value should increase approximately linearly with the
number of stimuli, M, assuming that each stimulus, on average,
contributes about the same to the log likelihood function.
Although this assumption is not exactly true in further analysis,
it is a good enough approximation that is compatible with the
linear relationship. The linear relationship was confirmed by the
numerical results in Figure 7B. Based on the regression lines, the
values of the log likelihood have the following empirical formulas:

lopt = 257.1Mopt + 76.2 (41)
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forMopt optimally designed stimuli, and

lrand = 174.5Mrand + 31.1 (42)

for Mrand random stimuli. Both regression lines path through
the origin point (0, 0) approximately (Figure 7B). This means
that the ratio of the log likelihood values in the two cases is
approximately a constant, as long as the two methods have the
same number of stimuli. That is, when Mopt = Mrand, it follows
from Equations (41) and (42) that the log likelihood ratio is
approximately:

lopt

lrand
≈

257.1

174.5
= 1.47 (43)

where the small constant terms in Equations (41) and (42) are
ignored. In other words, the two lines have a slope ratio of

approximately 1.47. There is another way to look at the empirical
formulas. For achieving the same level of likelihood value (lopt =
lrand), it follows from Equations (41) and (42) that

Mopt

Mrand
≈

174.5

257.1
= 0.68 (44)

where once again the small constant terms in Equations (41)
and (42) are ignored. Thus the optimal design saves the number
of stimuli by about 32% or 1/3. Although this saving seems
moderate, it may become useful in situations where it is extremely
valuable to keep the duration of an experiment as short as
possible.
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3.4. Problem of Local Maxima During
Optimization
We used optimization in two places: maximum likelihood
estimation of parameters, and optimal design of stimuli. In the
optimization process, local algorithms such as the constrained
optimization function fmincon in Matlab need an initial guess to
start the iterative procedure, but not all of the initial guesses will
eventually converge to the true value. Generally speaking, as the
number of initial guesses increases, it becomes more and more
likely for one to find the global optimum rather get stuck in a
local optimum. In the following, we perform an analysis to assess

how likely our optimization processes were able to find the global
optimum in repeated trials.

We emphasize that there is no need to always find the
absolutely best solution in the actual optimization process. A
good enough solution is probably good enough. Our purpose
in this section is to perform a simple test to assess how hard
our optimization problem really is. In repeated runs if all
solutions end up to be approximately the same, it means that
the optimization problem is easy, probably with a single global
optimum, which makes repeated runs unnecessary. On the other
hand, if there are many local optima, it is harder to hit on the
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Histogram of optimized likelihood values for 100 trials with random stimuli is
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value from the optimal design trials. Here each trial contained a sequence of

120 stimuli, generated either randomly or by optimal design. Each likelihood

value was obtained by maximizing the likelihood function in Equation (11) using
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increased, the likelihood function also increased, following an approximate

linear relationship. The optimal design yielded better likelihood values than
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best solution in a single run, and repeated runs become useful. In
this situation it is also helpful to allowmultimodal distribution of
the parameter estimates so as to discourage early commitment to
incorrect parameter values (see section 4).

The basic idea of our test is very simple. Let p be the
probability of finding the “best” solution (tentative global
optimum) in an individual run with a random initial guess.
Suppose there are n repeats or starts from different initial values.
Then in n repeated runs, the probably that at least one run will

lead to the “best” solution is

Prob (“best”) = 1− (1− p)n (45)

A rough estimate of probability p can be obtained in two different
ways, as explained below.

First, we consider the optimization process for maximum-
likelihood estimation of parameters. We estimated the value of
Prob (“best”) in (45) by starting the optimization from different
initial guesses and then checking the number of solutions
which stay in a relative error bound of fraction η for each
individual parameter with respect to the best solution with
the highest likelihood value. In other words, to pass the test
the following criterion should be satisfied for all individual
parameters (θ1, · · · , θ8) in (8):

∣

∣

∣
θ̂i − θ̂besti

∣

∣

∣

θi
≤ η (i = 1, · · · , 8) (46)

where θi is the true value, θ̂i is the estimate from a particular run,
θ̂besti is the best solution having the highest likelihood value in
the repeated runs, and η is a constant. For simplicity we used
η = 10% in all simulations reported in this paper; in other words,
the error tolerance was set to be one order of magnitude smaller
than the true parameter value. One may choose other values as
well. To make the criterion less arbitrary, one could use Fisher
information to estimate the asymptotic value of the error. In (46)
we used θ̂besti instead of the true value θi in the numerator of
because even the true global maximum of the likelihood function
could still be substantially different from the true parameter
value. If the above was satisfied for all θ1, · · · , θ8, this result was
counted as one pass of the test. By counting this way, we obtained
an estimate of Prob (“best”), which was then inserted into (45)
to solve for the probability p. The final result was p ≈ 0.85,
which was based on 200 runs with 10 multiple initial guesses per
20 different stimuli configurations, and each configuration had
M = 120 stimuli. In conclusion, in our maximum-likelihood
parameter estimation, we might have a high probability (p ≈

0.85) of obtaining a global maximum of the likelihood function
in a single run. It implies that to get a 99% correct rate we would
only need n = 3 repeats of the optimization procedure.

Next, we consider the optimization process for optimal
design of stimuli. This optimization problem turned out to
be much harder than the maximum-likelihood optimization
described above because there were more local optima. Recall
that the Fisher Information measure Uk (x, θ) is computed with
respect to each parameter θk as shown in (23). We need to
consider how Uk (x, θ) is maximized by the stimulus parameters
x = [x1, · · · , x2N] = [A1, · · · ,AN ,φ1, · · · ,φN] as given in
(15). Like in the case of likelihood analysis, we used repeated
runs to estimate Prob (“best”) first and then computed p from
(45). Similar to (46), the criterion for passing the test was
∣

∣

∣
x̂i − x̂besti

∣

∣

∣
/x̂besti ≤ 10% for all i, where x̂i is the value of

parameter xi obtained by maximizing Uk (x, θ) in a particular
run, and x̂besti is the parameter value that yielded the largest

value of Uk (x, θ) in the repeated runs. Here x̂besti is used in the
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denominator as well as in the numerator because unlike (46),
there was no such as concept as a true stimulus parameter value.

Our simulation indicated that the maximum of the Fisher
InformationmeasureUk (x, θ) tended to dependmore sensitively
on the stimulus Fourier amplitudes An than the stimulus Fourier
phases φn. This difference might be related to the fact that the
optimized amplitudes had a tendency to cluster at the upper
bound, as described in section 3.2. In the following analysis,
the criterion of finding the best solution was applied to the
amplitudes only. The largest probability of finding the best
solution for the amplitudes was p = 0.86, which was obtained for
U1 (x, θ), corresponding to the parameter θ1 = βe. The smallest
probability p = 0.175 was obtained for U5 (x, θ), corresponding
to the parameter θ5 = wee. The second and third smallest values
p = 0.275 and p = 0.35 were obtained forU3 (x, θ) andU6 (x, θ),
corresponding to θ3 = we, and θ6 = wei, respectively. It is worth
mentioning that those three parameters were confounded or had
strong correlations with at least one other network parameter (see
section 3.5). Even in the worst case (p = 0.175 for U5 (x, θ)),
one would find the best solutions for the amplitudes with a
0.99 probability after n = 23 repeated runs with random initial
guesses for the optimization procedure.

In summary, repeated runs with random initial guesses
greatly increased the chance of finding the global maximum,
although in our simulations this method appeared more effective
for maximum-likelihood parameter estimation than stimulus
optimization which suffered much more from the local optima
problem. Fortunately, for practical applications, the existence
of many more local maxima in the stimulus optimization
process might not present a big problem because even partially
optimized stimuli would still be better than nonadaptive random
stimuli. There is a tradeoff between the quality of the stimulus
optimization and the computational time, which could be
reduced further in the future by the increasing power of parallel
computing because repeated runs are readily parallelizable.

3.5. Parameter Confounding
In our simulations, the errors of different parameter estimates
were often correlated (Figure 8). Some of the correlations may
be explained by parameter confounding. The basic idea is that
different parameters may compensate each other such that the
output of the network behaves essentially in the same way,
even when the parameter values are configured differently. It is
known that in individual neurons, different ion channels may be
regulated such that diverse configurations may lead to neurons
with similar neuronal behaviors in their electrical activation
patterns (Prinz et al., 2004). Parameter confounding also exists
at the network level, for example, in multilayer perceptrons
(DiMattina and Zhang, 2010).

We will examine the original dynamical equations and
demonstrate how approximate parameter confounding might
arise. We emphasize that different parameters in the excitatory-
inhibitory network are distinct and independent, and no strict
confounding exists. All the parameter confounding problems
considered here are approximate in nature.

Based on the analysis in Figures 8A,B, three pairs of
parameters stand out with the strongest correlations. These pairs

are (βe, we), (βi,wei) and (wee,wei). We will use the idea of
parameter confounding to offer an intuitive heuristic explanation
of why these three pairs tend to be correlated.

Example 1: Confounding of the Parameter Pair (βe,

we)
We first rewrite the dynamical Equations (3) and (4) in the
following form:

V̇e = −βeVe + βe
{

weege(Ve)− weigi(Vi)
}

+ βeweI (47)

V̇i = −βiVi + βi
{

wiege(Ve)− wiigi(Vi)
}

+ βiwiI (48)

The external stimulus I drives the first Equation (47) through the
weight βewe. If this product is the same, the drive would be the
same, even though the individual parameters are different. For
example, if βe is increased by 25% from its true value while we

is decreased by 20% from its true value, then their product βewe

stays the same, so that the external input I provides the same drive
to (47). Of course, any deviation from the true parameter values
also leads to other differences elsewhere in the system. Therefore,
the confounding relation is only approximate and not strict. This
heuristic argument gives an empirical formula:

βewe = β̂eŵe (49)

where βe and we refer to the true values of these parameters,
whereas β̂e and ŵe refer to the estimated values.

Example 2: Confounding of the Parameter Pair

(wei,βi)
These two parameters appear separately in different equations,
namely, wei appearing only in (47) while βi appearing only in
(48). To combine them, we need to consider the interaction of
these two equations. To simplify the problem, we consider a
linearised system around the equilibrium state:

V̇e = −βeVe + βe
{

weekeVe − weikiVi
}

+ βeweI + Ce (50)

V̇i = −βiVi + βi
{

wiekeVe − wiikiVi
}

+ βiwiI + Ci (51)

where ke and ki are the slopes of the gain functions, and Ce and
Ci are extra terms that depend on the equilibrium state and other
parameters. Note that Vi appears in (50) only once, in the second
term in the curly brackets. Since Vi also satisfies (51), we solve
for Vi in terms of V̇i from (51) and find a solution of the form:
Vi = cV̇i/βi + a where c = −1/(1 + wiiki) is a constant and
a = (βiwiI + Ci)/

(

βi(1+ wiiki)
)

which depends on input I.
Substitution into (50) eliminates Vi, yielding an equation of the
following form:

β−1
e V̇e = (weeke − 1)Ve − cki(wei/βi)V̇i − kiweia+weI + Ce/βe

(52)
Note that the parameter combination wei/βi is a factor that
scales how strongly V̇i influences this equation. We use this
combination as the basis for the following heuristic confounding
relation:

wei/βi = ŵei/β̂i (53)
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Each data point was based on 100 repeated trials each containing a sequence of 120 stimuli. (B) Same data as in panel A, except that the absolute values are shown.

(C) The three pairs of parameters with the highest correlation coefficients in the upper triangle in panel B are shown in the scatter plots. Data from both optimal design

and random trials are shown. Black curves are theoretical predictions according to Equations (49), (53), and (54). Green crosshairs are centered at the true parameter

values.

Example 3: Confounding of the Parameter Pair

(wee,wei)
These two parameters both appear in the curly brackets in (47).
We have a heuristic confounding relation:

weege(V̄e)− weigi(V̄i) = ŵeege(V̄e)− ŵeigi(V̄i) (54)

where V̄e and V̄i are the equilibrium states. If this equation
is satisfied, we expect that the term in the curly brackets in
(47) would be close to a constant [the right-hand side of (54)]
whenever the state Ve and Vi are close to the equilibrium values.
When the state variables vary freely, we expect this relation to
hold only as a crude approximation.

The theoretical curves shown in Figure 8C are based on
Equations (49), (53), and (54), and we emphasize that there is no
free parameter. These three approximate confounding relations
can qualitatively account for the data for optimally designed
stimuli (Figure 8C). The data for random stimuli also appear
to follow the same pattern (Figure 8C) although they seem
to have more scattering than the optimal design counterpart.
The theoretical slopes are somewhat smaller than the slopes of
the empirical correlations, suggesting that the heuristic theory
only accounts for a portion of the correlation. It is possible
that the empirical correlations contain contributions from other
parameters, beyond these three pairs and pair-wise correlations.
The static multilayer perceptrons already show various types
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of parameter confounding behaviors (DiMattina and Zhang,
2010). The dynamic recurrent network models, which formally
subsume the multilayer perceptrons as special equilibrium states,
are expected to have more complicated behaviors of parameter
confounding. In sum, our results indicate that the errors of
different parameter estimates have a tendency to be correlated
in specific manners, and some of the correlation patterns
can be explained by an argument of approximate parameter
confounding or compensation based on the differential equations
of the underlying dynamics.

4. DISCUSSION

We have implemented an adaptive design algorithm for
generating dynamic stimuli that can efficiently probe a recurrent
network with interacting excitatory and inhibitory units so
as to optimize its parameter estimation. The network was a
standard rate model with continuous dynamics which could
reflect the average dynamics of a group of neurons with
similar response properties. Since single-unit recordings in
neurophysiological experiment yield spike train data, our optimal
design process was based on artificial spike trains generated by
an inhomogeneous Poisson process whose rate was determined
by the continuous network state. Our simulated recording
experiment was performed on the excitatory unit in the simplest
excitatory-inhibitory model while the activity of the inhibitory
unit was not directly known (Figure 1B). This situation was not
unlike most neurophysiological experiments where there were
always some relevant neurons whose activities were hidden from
view but contributed indirectly to the recorded data. The time-
varying stimuli were parameterized by a Fourier series whose
parameters were determined by maximizing a utility function
based on the Fisher information matrix; in other words, the
stimuli were designed to elicit responses that would reveal the
most information about the values of the network parameters.
Each stimulus was fed to the network to elicit a Poisson
spike train, and from the available stimulus-response data we
inferred the values of all the network parameters, including the
time constants and all the connection weights, by maximum-
likelihood estimation, and the updated parameter values were
then used to design the next stimulus, and so on, mimicking
a closed-loop experiment (Benda et al., 2007; DiMattina and
Zhang, 2013; Potter et al., 2014; El Hady, 2016). The optimization
process was facilitated by knowing the derivatives of the network
states with respect to the network parameters, and we found it
convenient to compute the time evolutions of the derivatives by
directly solving differential equations derived from the original
system (Figure 3).

We confirmed that optimally designed stimuli elicited
responses with much better likelihood values for parameter
estimation than nonadaptive random stimuli (Figure 7), and
every single parameter was recovered more accurately by the
optimally designed stimuli (Figure 6). The statistical significance
of the differences tended to be more pronounced for parameters
that were harder to estimate with larger relative errors (section
3.3), and this observation underscores the value of the optimal

design method for difficult estimation problems. Following the
approximately linear relationship between the log likelihood and
the number of stimuli (Equations 41, 42), we estimated that the
optimal design would cut down the number of stimuli by about
1/3 to achieve the same level of parameter estimation accuracy
as the nonadaptive random stimuli. Although this saving seems
to be moderate, it still could potentially be important in real
situations where time is extremely valuable, such as when
recording time is seriously limited in experiments. We also noted
that the Fourier amplitudes and phases of the optimally designed
stimuli were not uniformly distributed but had specific features
(Figure 5). Applying the features of optimally designed stimuli
(e.g., the tendency for amplitude saturation) to bias the random
stimuli could potentially lead to better parameter estimation
(DiMattina and Zhang, 2011). In this paper we simply compare
the optimal design against unbiased random stimuli because this
is a fair comparison when one only knows the bounds of the
parameters without any other information.

We found that the errors of different parameter estimates were
correlated in specific ways, and some of the correlation patterns
were rather predictable (Figure 8). We have derived heuristic
formulas to account for some of the most prominent correlation
patterns by an approximate theory of parameter confounding
where the effect of changing one parameter was compensated
by changing another parameter in a particular direction with
an appropriate amount. This finding suggests that it would be
useful in future studies to examine not only the errors of different
parameter estimates but also their correlations, because they may
reflect the underlying network connectivity and dynamics as
predicted by the parameter confounding theory. It would be an
interesting future research topic to study how to take advantage
of the error correlation phenomenon to further improve the
optimal design method.

Our stimulus design is based on maximizing an objective
function or utility function, which may contain multiple
local maxima. The existence of these local maxima makes it
harder to find the global maximum. One related problem is
early commitment to incorrect parameters during the iterative
procedure. If the initial parameter estimates happen to be very
wrong, then subsequent iterations may push the parameter
estimation further down the wrong path, eventually getting stuck
in an incorrect local maximum of the objective function. To
assess how likely this may happen, we run the optimization
procedure repeatedly with randomly chosen initial parameters
and examined how often the final parameter estimates ended
up around the putative global maximum (section 3.4). Although
the problem of local maxima appeared manageable for the
simple model studied in this paper, we expect that the problem
may become more serious as model complexity increases. To
better address the problem of early commitment to incorrect
parameters, we should extend the theoretical framework to allow
a potentially multimodal posterior distribution of the parameter
values rather than only keeping the current best estimates. In a
preliminary experiment of stimulus optimal design for auditory
cortical neurons (Feng et al., 2012; Feng, 2013), four independent
sets of parameter estimates were maintained throughout the
sequential procedure so that a set of seemingly bad estimates at
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the initial stage could still have a chance to win the competition
at a later time. In this work the stimuli as well as the model
were stationary rather than time-varying. In the future it would
be useful to develop our method for time-varying stimuli by
incorporating a potentially multimodal posterior distribution of
the parameters.

Speed of computation is an important issue when applying
optimal design method to a real neurophysiological experiments.
There is a basic tradeoff between the computational time and the
quality of optimization in the optimal design. In our simulation,
the optimization of a single 3-s long stimulus took about 15
min on a single PC with a 6-core Intel Core i7 processor.
The number of steps required to converge to an optimum
depended on multiple factors such as the current values of the
network parameter estimates, the values of the objective function
and the gradients, constraint violation, and step size. The
optimization of the maximum likelihood parameter estimation
had an additional problem: it tended to slow down as the spikes
accumulate [see Equation (11)] leading to an objective function
with gradually increasing complexity. An average value for the
observed duration of the maximum likelihood optimization was
about 38 min. As a result, optimization of one stimulus and
subsequent maximum likelihood estimation took approximately
1 h. So one complete run of a simulated experiment with M =

120 optimally design stimuli took over 100 h.
To bring down the computation time for each 3-s stimulus

to less than 3 s as required for real online experiments,
we would need a 103-fold speedup. There are several ways
to speed up the computation although we did not try to
implement them here since our focus in this paper was on
offline simulation to prove the concept. In our simulation we
integrated the equations using a time step of 0.001-s, which
could be increased to a level as high as 0.01-s to achieve a
10-fold saving of computation steps. If an efficient and stable
numerical differentiation algorithm can be employed, another
optimality criterion such as D or E optimality could be used
in the computation of the Fisher Information metric which
might help reduce the number of steps. Knowing the fact
that the optimal stimulus amplitudes tend to reach the upper
boundary, with a certain probability we could set the amplitudes
directly to the boundary as the starting point for optimization.
The optimization algorithms could be further fine-tuned and
streamlined to save time. It is also possible to save time by early
stopping of the optimization process and not optimizing the
parameters completely. Taking into account of all these factors
considered above, we could conceivably achieve a speedup factor
of 10 or more.

Several key computational procedures are highly
parallelizable, such as multiple initial guesses for optimization.
The stimuli could also be generated in parallel on multiple,
independent processors as a block instead of one by one on a
single processor. Generating the stimuli sequentially on multiple
processors using past response data as if they were moving
on an assembly line could also save time by a factor of 10 or
more. Employment of larger cluster computing systems with
faster processors and a large number of compute cores could
potentially speed up the computation but this option is very

expensive. A much more economical alternative is to take
advantage of GPU computing which has been widely employed
in the field of machine learning. If we could achieve a speedup
factor of 10 or more by parallel computing and block design,
the speed of our optimal design method would start to become
relevant for real experiments.

Although the simulations reported here were focused on the
simplest model which was adequate for our main conclusions
within the scope of this paper, we emphasize that our method
is readily generalizable to more complex network models. It
should be straightforward to extend our derivations of the
utility functions and the derivative equations to more complex
networks with rate-based dynamics (Equation 1) because the
method itself does not have an inherent limitation in this
regard. We noted that even for such a simple network, some
parameters, especially those related to the inhibitory unit
which was not directly observed, were already quite hard to
estimate, and the relative errors remained sizable even with
the help of optimal design which worked significantly better
than nonadaptive random stimuli. This result confirms that
network parameter estimation is intrinsically a hard problem
even for a simple network. For complex networks with more
free parameters, it is reasonable to expect that the parameter
estimation problem could become much harder. For models
with more complex dynamics than the rate model, such as
conductance-based models, the optimal design method needs
to be adapted. The key modification would be the likelihood
function of the spike train (Equation 11), which depends crucially
on how noise is introduced into the model. Our method
becomes irrelevant if the situation involves only deterministic
spike trains. On the other hand, if the spikes can be well
approximated by an inhomogeneous Poisson process, then our
method could still be useful. Moreover, the method of gradient
computation by solving differential equations is still a useful
strategy because in all cases considered above the dynamics
can always be described by a system of ordinary differential
equations.

Advances in the technology for simultaneous recording
from many neurons could increase the amount of information
available about the underlying networks (Buzsáki, 2004; Cai
et al., 2016; Jun et al., 2017) and thus potentially alleviate the
parameter estimation problem in future online experiments.
As mentioned before, optimal design methods have already
been used in experiments on auditory neurons in the inferior
colliculus (Dekel, 2012; Tam, 2012) and the auditory cortex
(Feng et al., 2012; Feng, 2013). Those experiments were based
on feedforward networks without temporal dynamics, and the
spectral amplitudes of stationary sound stimuli were optimized
to improve parameter estimation. The dynamic network models
considered in this paper could be used to accommodate the
transient response properties of auditory neurons such as the
stereotypical time course with both transient and sustained
response components (de la Rocha et al., 2008) (see also
Figure 2). The computational study reported in this paper
presents a necessary first step for extending the optimal
design method to this type of dynamic network models for
sensory neurons. In future studies it would be useful to
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apply the optimal design method to networks with a larger
number of neurons in situations where the response data
are collected simultaneously from multiple neurons, including
both excitatory neurons and inhibitory neurons. More complex
stimulus structures could be utilized. Besides the estimation of
network parameters such as connection weights and the time
constants, one may also estimate intrinsic parameters such as
firing thresholds and slopes. Additional realistic details such
as plasticity and adaptation could also be included. Although
these generalizations require more computational power, the
steady increase of accessible computational capacities over
the years especially in parallel computing should make the
optimal design method increasingly more feasible for real online
experiments.
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