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Receptor-interacting protein 3 (RIPK3), a member of the family of serine/threonine protein
kinases, emerged as a critical regulator of necroptosis. Downregulated expression of
RIPK3 is correlated with poor prognosis in multiple tumor types. Here, we show that
RIPK3 is involved in the progression of spontaneous intestinal tumorigenesis. As a clinical
correlate, reduced expression of RIPK3 is positively associated with histological grade,
lymphatic metastasis and poor prognosis in CRC patients. RIPK3-deficient (Ripk3-/-) mice
exhibit increased tumor formation in Apcmin/+ spontaneous intestinal tumorigenesis.
Apcmin/+Ripk3-/- tumors promote hyperactivation of IL-6/STAT3 signaling, which
exacerbates proliferation and inhibits apoptosis. Blocking IL-6 signaling suppressed
tumor formation and reduced STAT3 activation in Apcmin/+Ripk3-/- mice. Thus, our
results reveal that RIPK3 is a tumor suppressor in spontaneous intestinal
tumorigenesis, and implicate targeting the IL-6/STAT3 signaling axis as a potential
therapeutic strategy for intestinal tumor patients with reduced RIPK3.

Keywords: RIPK3, intestinal tumorigenesis, APC mutant mouse model, STAT3 (signal transducer and activator of
transcription 3), IL-6 receptor antibody
INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers worldwide, and the number of deaths
is rising in developing countries (1, 2). An increased frequency of CRC patients is usually diagnosed
at an advance stage (3). Histologically, over 95% of CRC cases are adenocarcinomas, while
squamous cell carcinomas, lymphomas and sarcomas are rarer (4). Increasing evidence reveals
that excessive neoplastic transformation of colonic epithelial cells have the ability to initiate and
develop CRC (5, 6). Moreover, CRCs arise in intestinal epithelial cells upon loss of tumor suppressor
genes such as adenomatous polyposis coli (APC) (7). Thus, investigation of the molecular
mechanisms in CRC tumorigenesis is urgently needed to prevent and treat CRC.

Inflammation is a dynamic and complex process to prevent overwhelming dampens and
maintain tissue homeostasis (8, 9). Accumulation of the inflammatory environment drives
intestinal cell proliferation and tissue regeneration through activation of pro-oncogene factors
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such as signal transducer and activator of transcription 3
(STAT3) (10, 11). Elevated levels of interleukin 6 (IL-6) are
linked with chronic intestinal inflammation and tumorigenesis
(12, 13). The role of IL-6/STAT3 signaling in intestinal cell
proliferation and tumorigenesis is well established (14–16). A
better understanding of the regulation of IL-6/STAT3 activation
would facilitate the development of novel approaches for
CRC therapy.

Necroptosis is a form of necrotic-regulated cell death upon
extracellular and intracellular stimuli in certain pathologies (17–
19). Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are
critical regulatory molecules during necroptosis (20–22). RIPK1
interacts with RIPK3 via the RIP homotypic interaction motif
(RHIM) domains and then forms the necrosome (23). RIPK1-
RIPK3 necrosome complex results in the recruitment and
phosphorylation of mixed-lineage kinase domain-like (MLKL),
which leads to impair membrane integrity and drive necroptosis
(24, 25). Several studies have shown that RIPK3 is involved in
several inflammatory diseases, including intestinal inflammation,
acute pancreatitis and skin inflammatory diseases (23, 26, 27). In
fact, RIPK3 also exhibits a necroptosis-independent function in
intestinal inflammation and tumorigenesis (28, 29). Reduced
RIPK3 expression has been shown in human CRC tumors, and
low expression of RIPK3 is significantly correlated with poor
progression (30, 31). In contrast, overexpression of RIPK3
suppresses CRC cell proliferation, migration and invasion (32).
In particular, loss of RIPK3 is susceptible to intestinal
tumorigenesis in inflammation-associated colon cancer models
(31, 33). However, colitis-associated tumorigenesis represents only
1% of colorectal cancer, and sporadic intestinal tumors are more
prevalent (34). Thus, it is necessary to address the function of
RIPK3 in the progression of spontaneous intestinal tumorigenesis.

In the present study, we revealed a tumor suppressor role for
RIPK3 in spontaneous intestinal tumorigenesis. Expression
analyses of RIPK3 expression showed that RIPK3 is significantly
downregulated in CRC tumors, which predicted a poor prognosis
in CRC. The absence of RIPK3 exhibits dramatically increased
tumor numbers in Apcmin/+ mice through the hyperactivation of
IL-6/STAT3 signals. Anti-IL-6R antibody therapy suppressed
STAT3 activation and attenuated tumor burden in
Apcmin/+Ripk3-/- mice. Our findings highlight that reduced RIPK3
predicts a more aggressive disease and worse outcome in CRC.
MATERIALS AND METHODS

Animal Experiments
All the mice were on a C57BL/6 background and maintained in a
specific pathogen-free (SPF) facility. Ripk3-/- mice and Apcmin/+

mice have been described previously (29, 35). Ripk3-/- mice were
crossed with Apcmin/+ mice to generate Apcmin/+Ripk3+/- and
Ripk3+/- mice. Then, Apcmin/+Ripk3+/- mice were crossed with
Ripk3+/- mice to generate Apcmin/+ and Apcmin/+Ripk3-/- mice.
This study was conducted according the guidelines of the
Institutional Animal Care and Use Committee of the Hubei
University of Medicine.
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Determination of Clinical Scores
Clinical scores were calculated as described in our previous
studies (35). The disease activity index (DAI) was quantified
with a clinical score assessment based on stool consistency and
fecal blood. Briefly, stool scores were determined as follows: 0 =
well-formed pellets; 1 = semi-formed stools in the anus and 2 =
liquid stools adhered in the anus. The bleeding scores were
determined as follows: 0 = no observed blood; 1= visible blood
traces in stool; and 2= gross bleeding in rectal tissue.

Tumor Load
Tumor load was determined according to a published protocol
(36). Tumor load was calculated based on tumor numbers and
tumor diameter.

Tissue Homogenization and
Western Blotting
Isolated intestinal tissues were homogenized using a Mini-Rotor
( T h e r m o S c i e n t i fi c ) a n d l y s e d i n c o m p l e t e
radioimmunoprecipitation assay (RIPA) buffer containing
Roche’s cOmplete™ protease inhibitor cocktail. The protein
concentrations were quantified by a quantitative BCA protein
kit (P0010S; Beyotime Biotechnology, Shanghai, China). The
proteins were separated by SDS-PAGE and detected using
chemiluminescent substrate (Thermo Scientific). The following
primary antibodies were used: rabbit anti-RIPK3 (#ab152130,
Abcam; 1:1000), mouse anti-STAT3 (#9139, CST; 1:1000), rabbit
anti-phospho-STAT3 (Tyr705) (#9145, CST; 1:1000), rabbit
anti-PCNA (#13110, CST; 1:1000), rabbit anti-Cleaved-
Caspase-3 (#9661, CST; 1:1000), and rabbit anti-Cyclin D1
(#2978, CST; 1:1000), and rabbit anti-C-myc (#9402, CST;
1:1000), and anti-GAPDH (#5174, CST; 1:5000).

Quantitative Reverse-Transcriptase
PCR (qRT-PCR)
Intestinal tissues were homogenized in TRIzol reagent (Life
Technologies) to obtain RNA. RNA was reverse-transcribed to
complementary DNA using HiScript III RT SuperMix for qPCR
(gDNA wiper) (# R323, Vazyme Biotech Co.,Ltd), and the levels
of genes were measured using quantitative RT-PCR using SYBR
Premix Ex Taq™ (#RR420, TAKARA) according to the
manufacturer’s instructions. mRNA quantities were normalized
against that of GAPDH.

Isolation of Colon Crypt Cells
Intestines were cleared and then cut into pieces. The colon crypt
cells were collected following shaking after incubation in cold
PBS with 3 mM EDTA/1.5 mM DTT.

Intestinal Tissue for the Analysis of
Cytokine Production
The intestinal tissues were collected and then homogenized in
RIPA buffer containing Roche’s cOmplete™ protease inhibitor
cocktail for 30 mins on ice. The protein concentration of IL-6
was measured by enzyme linked immunosorbent assay (ELISA)
(eBioscience) (37).
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Anti-IL-6R Antibody Treatment
IL-6 signaling was antagonized with the IL-6R antibody
tocilizumab (#A2012, Selleckchem; Houston, TX, USA). Four-
week-old Apcmin/+Ripk3-/- mice were intraperitoneally injected
with 4 mg/kg tocilizumab weekly. After 10 weeks of treatment, all
mice were euthanized, and the intestinal tissues were collected
for further analysis.

Statistical Analysis
The data are represented as the mean ± standard error of
the mean (SEM) and were analyzed by GraphPad Prism
software. Significant significance was determined by 2-tailed
Student’s t-test, one-way ANOVA, Pearson’s correlation
coefficients test, or log-rank test. P values below 0.05 were
statistically significant.
RESULTS

RIPK3 Expression Is Reduced in
Colorectal Cancer (CRC) Patients
To determine the role of RIPK3 in human CRC, we analyzed
the levels of RIPK3 expression in containing 41 normal
intestinal specimens and 286 CRC tumor samples from the
Frontiers in Oncology | www.frontiersin.org 3
Cancer Genome Atlas (TCGA) transcriptome database. CRC
tumor samples showed significantly decreased expression of
RIPK3 relative to normal intestinal tissue samples (Figure 1A).
We next examined the levels of RIPK3 in different stages of CRC
tumor progression. The results revealed that RIPK3 expression
was higher in normal intestinal controls than in four CRC stages
(Figure 1B). Interestingly, RIPK3 expression was lower in
metastatic tumors than in normal counterparts (Figure 1C).
More importantly, overall survival was significantly higher
in patients with high RIPK3 expression than in patients
with reduced RIPK3 expression in colorectal cancer
(Figure 1D). These data indicate reduced RIPK3 expression in
human CRC and suggest a suppressor role of RIPK3 in
colorectal tumorigenesis.

Loss of RIPK3 Aggravates Tumor Burden
in ApcMin/+ Mice
Mutations of the WT Apc allele (Apcmin/+) are found in ~85% of
intestinal tumors and promote intestinal tumorigenesis. Apcmin/+

mice are a suitable mouse model for the study of sporadic
intestinal tumorigenesis. We hypothesized that RIPK3 deletion
might increase the tumor burden in Apcmin/+ mice during
intestinal tumorigenesis. To address the role of RIPK3 in
intestinal tumorigenesis, Apcmin/+Ripk3-/- mice were obtained
by crossing Apcmin/+ mice with Ripk3-/- mice. Tumor
A B

C D

FIGURE 1 | RIPK3 expression is reduced in colorectal cancer (CRC) patients. (A) The levels of RIPK3 mRNA expression in colorectal cancer (CRC) and normal
colorectal (NC) tissues in the TCGA colorectal database. n, sample numbers. (B) The levels of RIPK3 mRNA expression in different stages of CRC progression.
(C) The levels of RIPK3 mRNA expression in metastatic tumors and normal counterparts. (D) Kaplan- Meier analyses of RIPK3 expression in colorectal cancer
patients. *p < 0.05.
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progression in Apcmin/+Ripk3-/- mice and those of Apcmin/+ mice
was analyzed. The results showed significantly more lesions in
the Apcmin/+Ripk3-/- mice than in Apcmin/+ mice (Figure 2A).
Moreover, Apcmin/+Ripk3-/- mice exhibited increased tumor
numbers and tumor loads compared with in Apcmin/+ mice
(Figures 2B, C). Of note, the size of the tumor distribution in
Apcmin/+Ripk3-/- mice tended to be larger than Apcmin/+ mice
(Figure 2D). H&E staining also confirmed that there were larger
Frontiers in Oncology | www.frontiersin.org 4
polyps in Apcmin/+Ripk3-/- intestines than in Apcmin/+ littermate
controls (Figure 2E). Accordingly, anemia and thymus atrophy
were significantly exacerbated in Apcmin/+Ripk3-/- mice
compared to the Apcmin/+ littermate controls (Figures 2F, G).
Analyses of Kaplan-Meier survival found that the survival time
of the Apcmin/+Ripk3-/- mice was dramatically shorter, with a
median survival of only 132 days relative to the median survival
of the Apcmin/+ mice, which was 195 days (Figure 2H).
A B C

D E F

G I J

H

FIGURE 2 | Loss of RIPK3 aggravates tumor burden in ApcMin/+ mice. (A) Polyps in representative intestines from Apcmin/+ and Apcmin/+Ripk3-/- mice. (B, C)
Number of polyps formed (B) and tumor load (C) in 16-week-old Apcmin/+ and Apcmin/+Ripk3-/- intestines. (D) Distribution of tumor size in 16-week-old Apcmin/+ and
Apcmin/+Ripk3-/- mice. (E) Images of the H&E-stained intestines from Apcmin/+ and Apcmin/+Ripk3-/- mice. (F, G) Hematocrit (F) and thymus weight (G) of 16-week-
old WT, Ripk3-/-, Apcmin/+ and Apcmin/+Ripk3-/- mice. (H) Survival of Apcmin/+ and Apcmin/+Ripk3-/- mice as indicated. *p < 0.05, **p < 0.01 and ***p < 0.001 versus
Apcmin/+ mice. (I, J) Whole intestines and colonic crypts were isolated from 16-week-old Apcmin/+ and Apcmin/+Ripk3-/- mice. PCNA and cleavage of caspase-3 were
analyzed by western blotting. *p < 0.05 and ***p < 0.001 versus Apcmin/+ mice.
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Since loss of RIPK3 resulted in higher tumor burdens in the
Apcmin/+ model, we hypothesized that RIPK3 inhibited tumor
progression through regulating cellular proliferation. Compared
with Apcmin/+ mice, Apcmin/+Ripk3-/- tumors and colon crypt
showed increased PCNA and decreased cleavage of caspase-3
proteins (Figures 2I, J). However, there were no significant
difference in proliferation and apoptosis was found in WT and
Ripk3-/- intestines (Figure S1), suggesting that loss of RIPK3
accelerates intestinal tumorigenesis by promoting proliferation
and preventing apoptosis. These results demonstrate that loss of
RIPK3 aggravates intestinal tumorigenesis in Apcmin/+ mice.

Loss of RIPK3 Activates STAT3 Signaling
Pathway in Apcmin/+ Mice
Activation of the STAT3 signaling pathway is associated with
colorectal carcinogenesis and progression. In Apcmin/+ mice,
hyperactivation of STAT3 accelerates intestinal tumorigenesis
(38). To evaluate the status of STAT3 in intestinal epithelial
cells and tumors from Apcmin/+Ripk3-/- mice, we analyzed protein
expression in intestinal tumors and colon crypt cells. The results
indicated that the levels of pSTAT3 were higher in Apcmin/+

Ripk3-/- tumors than in Apcmin/+ tumors, WT and Ripk3-/-

intestines (Figure 3A). We also found higher levels of pSTAT3
in Apcmin/+Ripk3-/- colon crypts than in control mice (Figure 3B).
As tumors from Apcmin/+Ripk3-/- mice display activation of
STAT3 signaling, we determined the reason for STAT3
hyperactivation in Apcmin/+Ripk3-/- mice. IL-6 maintains
persistent activation of STAT3 signaling in CRC (16). We
found significantly increased levels of IL-6 mRNA and protein
in Apcmin/+Ripk3-/- tumors (Figures 3C, D). Aberrant
activation of STAT3 promotes intestinal tumorigenesis by
upregulating STAT3 target genes, which are involved in cell
survival and proliferation (39). The results showed that the
expression of STAT3 target genes (Cyclin D1, C-myc and
Survivin) was increased in Apcmin/+Ripk3-/- tumors compared
with Apcmin/+ tumors (Figure 3E). Consistently, we found
higher levels of these target genes in Apcmin/+Ripk3-/-

colon crypts than in Apcmin/+ mice (Figure 3F). Similarly, qRT-
PCR results also showed significantly increased expression
of these genes in Apcmin/+Ripk3-/- tumors and colon crypts
(Figures 3G, H). However, no remarkable increase in
expression of STAT3 target genes was observed in either the
intestines of the WT or Ripk3-/- intestines (Figure S2). These
results indicate that IL-6/STAT3 signaling is activated in Apcmin/+

Ripk3-/- mice during intestinal tumorigenesis.

Inhibition of IL-6 Blocks Tumor Burden in
Apcmin/+Ripk3-/- Mice
IL-6 is required for homeostasis of intestinal crypts (40, 41), and
tumor formation is suppressed in the absence of IL-6 in the
Apcmin/+ model (38, 42). To confirm the role of IL-6/STAT3
signaling in Apcmin/+Ripk3-/- mice, we investigated the effect of
IL-6 using an anti-IL-6 receptor (anti-IL-6R) antibody. We
injected the anti-IL-6R antibody into Apcmin/+Ripk3-/- mice for
10 weeks (Figure 4A). Treatment with anti-IL-6R antibody
resulted in a lower clinical score in Apcmin/+Ripk3-/- mice
compared to the untreated (UT) mice (Figure 4B). After IL-6R
Frontiers in Oncology | www.frontiersin.org 5
antibody treatment for 10 weeks, the anti-IL6-R-treated
Apcmin/+Ripk3-/- mice showed fewer intestinal polyps than UT
Apcmin/+Ripk3-/- mice (Figure 4C). As expected, anti-IL-6R
antibody therapy alleviated anemia and thymus atrophy in
Apcmin/+Ripk3-/- mice (Figures 4D, E). To elucidate whether
STAT3 activation changes in anti-IL-6R-treated Apcmin/+Ripk3-/-

mice, intestinal polyps were isolated and analyzed by western
blotting. Anti-IL-6R-treated Apcmin/+Ripk3-/- intestines had
decreased levels of p-STAT3 compared to UT Apcmin/+Ripk3-/-

mice (Figure 4F). Consistently, the expression of STAT3 target
genes Cyclin D1, C-myc and Survivin, was markedly suppressed
in anti-IL-6R-treated Apcmin/+Ripk3-/- tumors (Figures 4G, H).
These results demonstrate that increased IL-6/STAT3 signaling
plays a causative role in the increased tumor burden in
Apcmin/+Ripk3-/- mice.
DISCUSSION

In this study, we found that loss of RIPK3 promoted the
initiation and progression of spontaneous intestinal tumors.
RIPK3 is reduced in human CRC patient cohorts and reduced
RIPK3 is associated with poor prognosis in CRC. In the Apcmin/+

model, loss of RIPK3 elevated IL-6 levels, in turn hyperactivating
the STAT3 signaling pathway and contributing to accelerated
intestinal tumorigenesis. Notably, blocking IL-6 with a
neutralizing IL-6 receptor antibody effectively attenuated
tumor burden and STAT3 hyperactivation in Apcmin/+Ripk3-/-

mice. Our results highlight that RIPK3 plays a suppressive role in
intestinal tumorigenesis by inactivating the IL-6/STAT3
signaling axis.

Necroptosis is involved in intestinal inflammation in mice
and human IBD patients (43, 44). Abnormal RIPK3 expression is
increased in Crohn’s disease (CD) and ulcerative colitis (UC)
patients (44, 45). RIPK3 has a necroptosis-independent function
by inhibiting inflammatory responses in DSS-induced acute
colitis (28). In some types of tumors, reduced expression of
RIPK3 appears to occur commonly and was found to correlate
with reduced overall survival and poor prognosis (32, 46, 47).
Previous studies have shown that RIPK3 suppresses
inflammation-associated CRC (31, 33), while conflicting results
suggest that RIPK3 promotes colitis-associated colorectal cancer
(48). Recent work has examined the lack of an overt phenotype
in Ripk3-/- mice in an inflammation-associated CRC model (49).
These studies present conflicting results that might be due to
differences in experimental conditions, commensal microflora
and genetic background of mice. Thus, the results of a previous
study indicate that the role of RIPK3 in the initiation and
progression of CRC is still not clear. In addition, sporadic
intestinal tumors are the majority of colon cancers, and the
importance of RIRP3 needs to be addressed in sporadic intestinal
tumors. Here, we took advantage of genetically engineered
mouse models (GEMs) and established that RIRP3 deficiency
drove increased tumor burden during intestinal tumorigenesis in
Apcmin/+ mice. The present study revealed that the survival time
was shorter in Apcmin/+ mice in the absence of RIRP3, which is
consistent with reduced RIPK3 correlated with poor clinical
April 2021 | Volume 11 | Article 664927
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FIGURE 3 | Loss of RIPK3 activates STAT3 signals in Apcmin/+ mice. (A) The expression of pSTAT3 in 6-week-old Apcmin/+ and Apcmin/+Ripk3-/- intestinal
tumors. (B) The levels of pSTAT3 in Apcmin/+ and Apcmin/+Ripk3-/- colonic crypts. (C) Quantitative mRNA expression of IL-6 in Apcmin/+ and Apcmin/+Ripk3-/-

intestinal tumors. (D) The protein levels of IL-6 in Apcmin/+ and Apcmin/+Ripk3-/- intestinal tumors as determined by ELISA. (E) The expression of STAT3
target genes in Apcmin/+ and Apcmin/+Ripk3-/- intestinal tumors. (F) The expression of STAT3 target genes in Apcmin/+ and Apcmin/+Ripk3-/- colonic crypts.
(G, H) Quantitative mRNA expression of STAT3 target genes in Apcmin/+ and Apcmin/+Ripk3-/- intestinal tumors and colonic crypts. *p < 0.05, **p < 0.01,
***p < 0.001 versus Apcmin/+ mice.
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outcomes in CRC. Consistently, we found reduced RIPK3
expression in human CRC compared with normal tissues using
the TCGA database. RIPK3 expression was significantly
decreased in four CRC stages versus in healthy controls.
Importantly, significantly lower expression of RIPK3 predicted
poor overall survival in CRC patients. In summary, these data
reveal that RIPK3 exerts tumor-suppressive roles in
intestinal tumorigenesis.

Intestinal tumors originate from epithelial cells through
activation of multiple key signaling pathways for cell growth,
differentiation, and survival. Compensatory proliferation and
Frontiers in Oncology | www.frontiersin.org 7
widespread apoptosis are known to contribute to promoting
colorectal carcinogenesis. Here, our results indicated that Apcmin/
+Ripk3-/- tumors exhibited higher proliferative rates and reduced
apoptotic compared to Apcmin/+ tumors. Notably, untransformed
colon tissue and colon crypts of Apcmin/+Ripk3-/- mice also exhibited
higher proliferation and lower apoptosis. Thus, cooperation with
increased proliferation and decreased apoptosis contributes to
accelerated intestinal tumors in Apcmin/+Ripk3-/- mice.

Inflammatory cytokines stimulate the activation of STAT3
signaling, which in turn contributes to promoted epithelial cell
survival and resistance to apoptosis (5). STAT3 is critical for
A B C

D E F

G H

FIGURE 4 | Inhibition of IL-6 blocks tumor burden in Apcmin/+Ripk3-/- mice. (A) Scheme for anti-IL6R antibody treatment in Apcmin/+Ripk3-/- mice. (B) Four-week-old
Apcmin/+Ripk3-/- mice were injected with anti-IL6R antibody with at a dosage of 4 mg/kg weekly for 10 weeks. The clinical scores were monitored. (C) Numbers of
intestinal tumors in Un- or anti-IL6R-treated Apcmin/+Ripk3-/- mice. (D, E) Hematocrit (D) and thymus weight (E) of Apcmin/+Ripk3-/- mice after anti-IL6R therapy for
10 weeks. (F) Intestinal tumors were collected from PBS and anti-IL6R-treated Apcmin/+Ripk3-/- mice. The levels of p-STAT3 were determined by western blotting.
(G, H) The expression of STAT3 target genes expression in PBS and anti-IL6R-treated Apcmin/+Ripk3-/- intestinal tumors. *p < 0.05, ***p < 0.001 versus Un-treated
Apcmin/+Ripk3-/- mice.
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intestinal regeneration and tumorigenesis by regulating survival,
cell cycle progression, and inflammation (50). Hyperactivation of
STAT3 in epithelial cells has been linked to the development of
CRC. Constitutively activated STAT3 in mice is resistant to
intestinal tumor development (14). In contrast, IEC-specific
STAT3-deficient mice exhibit decreased intestinal tumors (16).
In this study, we observed that loss of RIPK3 promoted the
activation of STAT3, thereby accelerating intestinal
tumorigenesis in Apcmin/+ mice. Moreover, RIPK3-deficient
mice exhibited increased expression of STAT3 target genes,
including Cyclin D1, C-myc and Survivin in the Apcmin/+

model. Enhanced levels of IL-6 play a key role in STAT3
signaling in tumor formation and the development of CRC
(42, 51, 52). Indeed, the levels of IL-6 were significantly
upregulated in Apcmin/+Ripk3-/- tumors. However, blocking IL-
6 signals by anti-IL-6R antibody therapy was sufficient to
suppress tumor formation in anti-IL6-R-treated Apcmin/+

Ripk3-/- mice. As expected, decreased levels of pSTAT3 and
target genes were observed in anti-IL-6R-treated Apcmin/+

Ripk3-/- mice and correlated positively with decreased tumor
numbers. Altogether, these data suggest that increased disease
and polyp burden in Apcmin/+Ripk3-/- mice are most likely
mediated by hyperactivation of the IL-6/STAT3 signaling axis.
The contribution of the cell-specific function of RIPK3 in the
suppression of CRC needs to be further investigated using RIPK3
conditional knockout mice in future studies.

In summary, we report that RIPK3 exerts a suppressive role in
intestinal tumorigenesis by suppressing the IL-6/STAT3
signaling axis. Mechanistic analysis provides evidence to
further understand the role of RIPK3 in intestinal
tumorigenesis and identify that increasing RIPK3 may be
considered as a potential therapeutic strategy for CRC therapy.
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